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[1] A simple model is developed to describe the significant land-atmosphere interaction
processes in the warm climate. It includes bulk soil hydrology, dynamic vegetation, and
simple land-atmosphere interaction processes. The model can simulate the basic features
of land surface control on evapotranspiration (ET) and exhibits a multiequilibrium
behavior similar to that of some more complex models. In order to study the role of land
surface processes in climate variability on monthly to seasonal timescales, a series of
experiments are performed with the model over different land covers and at different
external forcings. The major findings are: (1) The maximum soil wetness memory and
precipitation predictability tend to occur at a sparser (denser) vegetation cover with the
weakening (strengthening) of external forcing. (2) For vegetated region, the soil moisture
memory and precipitation persistence will be underestimated if vegetation is not
interactive, and the percentage of underestimation is larger over denser vegetation covers.
(3) Interactive vegetation can enhance the low-frequency coherency between soil wetness
and precipitation, but its influence on high-frequency coherency is small. (4) Large
coherencies between soil wetness and precipitation in the time-frequency domain
correspond to strong wavelet power of external forcing in the same domain. These
findings provide guidance for the development of and study with more complex models.

Citation: Wei, J., R. E. Dickinson, and N. Zeng (2006), Climate variability in a simple model of warm climate land-atmosphere

interaction, J. Geophys. Res., 111, G03009, doi:10.1029/2005JG000096.

1. Introduction

[2] Land-atmosphere interaction includes complex
feedbacks among soil, vegetation, and atmosphere [e.g.,
Rodriguez-Iturbe et al., 1999a], and the understanding of it
is hindered by the heterogeneity of land surface properties
and the chaotic nature of the atmosphere. All kinds of
efforts (e.g., remote sensing, field experiments) are made
to study these processes. Currently, modeling is still a
primary approach due to limited observations, especially
for long-timescale and large-space-scale processes.
[3] Land surface models have advanced from a bucket-

type parameterization in the 1960s to the current soil-
vegetation-atmosphere interactive schemes with carbon
and nitrogen cycle (see Pitman [2003] for a review).
However, intercomparison shows that different land models,
even with the same atmospheric forcing, still give signifi-
cantly different surface fluxes and soil wetness [Henderson-
Sellers et al., 1995]. These differences come from the
different parameterizations of individual processes and
the amplification of the differences by the nonlinearity of
the models. Complex models include detailed description of

various processes, but the useful signals are often drowned
out by all kinds of noise. These complex models are not
always suitable for mechanistic study, so various simple
models have been developed and are proven to be efficient
for some purposes [e.g., Rodriguez-Iturbe et al., 1991;
Zeng, 1998; Liu and Avissar, 1999; Zeng et al., 2004]. As
noise in real climate system or GCMs (general circulation
models) may distort some of the relationships or even make
them indiscernible, simple models which properly describe
the important processes and have much less noise can be
more easily used to find such relationships. Current climate
models are not only complex but also computationally
expensive, and most simulations are performed without a
hypothesis as to the expected results, so simulations often
have to be done several times to select the best experimental
design. Such repetition can be very time and energy
consuming for studying longer periods. It is thus preferable
to obtain some qualitative results to guide the long-term
integration of GCMs.
[4] The impact of land cover change on climate has been

a concern since the 1970s [e.g., Charney, 1975]. Many
modeling studies have been done on the mean climate
change caused by land cover changes in the African Sahel
[e.g., Xue and Shukla, 1993; Zheng and Eltahir, 1997;
Clark et al., 2001; Taylor et al., 2002], the Amazon
[e.g., Dickinson and Henderson-Sellers, 1988; Lean and
Warrilow, 1989; Dickinson and Kennedy, 1992], and other
regions [e.g., Xue, 1996; Fu, 2003]. Land cover change can
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impact not only the mean climate but also the climate
variability [Voldoire and Royer, 2004], and the extreme
climate (e.g., drought and flood) may be more important for
us than the mean climate. Hence we will focus on climate
variability in this study.
[5] Soil and vegetation are two main components of land

surface, and they are the primary site for the exchange of
water, energy, and momentum between land and atmo-
sphere. As soil moisture and vegetation change have memo-
ries considerably longer than most of the atmospheric
processes, coupling them to the atmosphere can contribute
to the skills of climate simulation from seasonal [Delworth
and Manabe, 1989; Koster and Suarez, 1995; Koster et al.,
2000, 2004; Xue et al., 2004; Levis and Bonan, 2004] to
decadal timescales [Zeng et al., 1999; Wang and Eltahir,
2000a; Wang et al., 2004; Delire et al., 2004; Brovkin et al.,
2003]. Because of the limitations of computational resour-
ces and models, simulations with coupled GCM-DGVMs
(dynamic global vegetation model) are still not very com-
mon. Most current studies of land-atmosphere interaction
focus on the feedback between soil moisture and precipita-
tion, and the vegetation is fixed at seasonal climatologies.
However, in reality the vegetation will change with climate
and has some memory, so it will not immediately recover
after a drought or a long dry season. A main purpose of this
study is to reveal how the interactive vegetation influences
land-atmosphere interaction and the simulated climate
variability, especially the coupling of soil moisture and
precipitation.
[6] We assumed that the region studied is warm enough

throughout the year, so temperature is not a stress for ET
and vegetation growth, and most precipitation is convective
(e.g., tropical land). On the basis of this assumption, a
simple model of warm climate land-atmosphere interaction
is developed. It includes land surface processes important
for long-term land-atmosphere interaction, and an empirical
relation between precipitation and other variables. The
model is then used to study the role of interactive soil
moisture and vegetation in climate variability and predict-
ability. Monthly to seasonal timescale process is the focus of
this paper. Section 2 describes the model in detail; section 3
gives the performance and behavior of the model; section 4
presents the experiments and results. Conclusions and
discussion are given in section 5.

2. Model Description

[7] A one-dimensional model is developed to simulate
the major physical and biophysical processes in warm
climate land-atmosphere interaction. It includes bulk soil
hydrology, dynamic vegetation, and land-atmosphere inter-
action processes: ET and precipitation. The model simulates
the land surface fluxes at large spatial and long temporal
scales by statistically taking into account smaller and faster
scale variations, so it is suitable for monthly to decadal scale
study. It is not intended to give a precise description of all
kind of processes, but to focus on their interaction and
hence study the role of these processes in climate variability.

2.1. Evapotranspiration

[8] It is assumed that the vegetated area and bare ground
are evenly distributed and they have the same soil moisture

after spatial interaction. ET is described here using a set of
simplified formulas. Evaporation from the bare ground is
calculated as

Eb ¼ Eph Sð Þ; ð1Þ

where Ep is potential ET, h is water stress for evaporation
over ground (0�h� 1) [Dingman, 2002], and S (0� S� 1) is
soil wetness (ratio of volumetric soil water content to soil
porosity). We assumed that under the land surface
change, the change in ET due to soil wetness and
vegetation changes dominates over other effects such as
wind and humidity changes, so Ep is given as a constant.
h is a function of soil moisture and soil properties. If soil
properties do not change, it is only a function of soil
moisture

h Sð Þ ¼ S � Swp
� �

= Sfc � Swp
� �� �c

; ð2Þ

where Swp is soil wilting point, and Sfc is field capacity.
When S < Swp, h = 0. The exponent c accounts for the
possible nonlinear dependence of evaporation on water
deficit.
[9] Vegetation shading is accounted for by taking the soil

evaporation under the vegetation as

Ev ¼ Eph Sð Þe�kbL; ð3Þ

where L is leaf area index (LAI), and kb is the canopy
extinction coefficient that controls what fraction of the soil
surface beneath a canopy is directly exposed to the
atmosphere above the canopy [Campbell and Norman,
1998]. As the interception and transpiration may compen-
sate each other with almost no change in the total [Wang
and Eltahir, 2000b], and their effects on soil moisture are
also the same, transpiration and interception losses are
lumped as

TI ¼ Epb Sð Þ 1� e�kbL
� �

; ð4Þ

where b(S) is vegetation water stress and is defined as

b Sð Þ ¼ S � Swp 1� Lw

Lx

� �� �,
Sfc � Swp 1� Lw

Lx

� �� �" #q

:

ð5Þ

This expression is similar to evaporation water stress in (2)
but accounts for water uptake by roots from deep layers by
decreasing total Swp with increasing rooting depth, and the
rooting depth is assumed to be proportional to Lw (see
section 2.3 for Lw and Lx). Exponent q accounts for the
nonlinear dependence of vegetation water stress on soil
saturation in the bulk model [Rodriguez-Iturbe et al.,
1999b].
[10] The fraction of vegetation coverage is approximated

as

f ¼ L=Lx; ð6Þ
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where Lx is the maximum LAI given as 6. The total ET from
this area, including vegetated and bare land, is

ET ¼ f Ev þ TIð Þ þ 1� fð ÞEb: ð7Þ

2.2. Soil Hydrology

[11] The water budget equation for a single soil layer is

Df
@S

@t
¼ P � ET � R; ð8Þ

where D is the depth of hydrologically active soil, f is
soil porosity, and P is precipitation. Runoff R includes
surface runoff Rs and subsoil gravitational drainage Rd,
and is parameterized simply as [e.g., Dickinson et al.,
1993]

Rs ¼ P � ETð ÞS4 ð9Þ

Rd ¼ KsS
2Bþ3; ð10Þ

where Ks is saturated hydraulic conductivity, and B is the
Clapp-Hornberger exponent [Clapp and Hornberger,
1978].

2.3. Vegetation Dynamics

[12] The simple dynamic vegetation model is based on
the simple LAI model of Zeng et al. [1999], but adds a
seasonal time dependence to model the seasonal variation of
vegetation (leaf phenology). This model considers the
dependence of photosynthesis on soil moisture by retaining
the major biophysical aspects of some complex dynamic
vegetation models [e.g., Foley et al., 1996; Cramer et al.,
2001], but sidesteps the carbon cycle completely. It predicts
LAI L once a day as

@L

@t
¼ ab Sð Þ 1� e�kpL

� �
� L

tl
; ð11Þ

and predicts potential maximum LAI Lw annually as

@Lw
@t

¼ bb Sð Þ 1� e�kpLw
� �

� Lw

tw
: ð12Þ

L, Lw > 0. The first terms on the rhs of equations (11)
and (12) represent photosynthesis while the second terms
represent vegetation losses. Their parameters are: kp, the
extinction coefficient of photosynthetically active radia-
tion, tl, the leaf growth (phenology) timescale, tw, the
timescale of vegetation type transition (succession), and
Lw, the maximum leaf area that currently can be
supported. Both tl and tw depend on climate, vegetation
and soil properties. Lw is associated with vegetation types,
and trees have larger Lw than grasses because they can
support more leaves. For a certain area, L can never
exceed Lw. Lw is not related to current LAI and is only
related to climate condition and vegetation types. The
coefficients a, b are chosen such that under optimal

climate conditions (b = 1), vegetation would grow to its
maximum LAI (L = Lw, Lw = Lx), so

a ¼ Lw

tl 1� e�kpLwð Þ ð13Þ

b ¼ Lx

tw 1� e�kpLxð Þ : ð14Þ

[13] Although the vegetation model only describes the
natural growth of vegetation, the influence of human
activities can be added by prescribing some variables. For
example, a sudden deforestation can be included by takingL=
Lw = 0.01 (this is the prescribed minimum LAI to make
vegetation able to start again in the model), and Lw and L can
be given values to represent planting. The initial value of Lw
depends on the vegetation type planted, and saplings should
has larger Lw than seeds.

2.4. Precipitation

[14] Precipitation has much uncertainty due to its large
temporal and spatial variabilities. In order to decrease these
uncertainties, we assumed that the spatial scale we are
modeling is regional to continental scale. The precipitable
water comes from local ET and horizontal transport, so the
precipitation is calculated as

P ¼ ET � PE=rþ s � F tð Þ; ð15Þ

where PE is precipitation efficiency (PE), r is water
recycling ratio, F is added external forcing, and s is its
forcing strength. PE is the fraction of input moisture flux
that falls as precipitation, and it is associated with both local
and large-scale factors [Eltahir and Bras, 1996]. We express
it as

PE ¼ PEmin þ a f 1� e�mL
� �

þ 1� fð ÞS
� �

; ð16Þ

where PEmin is the minimum PE when the land is very dry
and has no vegetation, a is the strength of vegetation and
soil wetness to trigger and sustain precipitation through the
influence of albedo and roughness length [Lofgren, 1995;
Eltahir, 1996, 1998], and m is an empirical coefficient. This
expression qualitatively considers local impact of vegetation
and soil moisture on rainfall.
[15] The water recycling ratio r is defined as the ratio of

moisture from local ET versus the total of local ET and
horizontal transport [Trenberth, 1999]. It is influenced by
both local and surrounding thermal changes and has a
seasonal cycle [Brubaker et al., 1993]. It is assumed
sinusoidal as

r ¼ rþ sr sin 2pt=Tð Þ: ð17Þ

Although other model variables, such as potential ET,
temperature stress, and PE, could also have a seasonal cycle
like r, such are not considered here to maintain simplicity.
The constant recycling ratio assumes a linear relationship
between ET and horizontal moisture transport. Such is
expected in a deep convective region where a small
perturbation to local energy balance will cause a large-
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scale atmospheric circulation change such that moisture
convergence feedback is quasi-linearly proportional to
change in local moisture static energy which includes ET
[Zeng and Neelin, 1999]. Most warm climate rainfall is deep
convective.
[16] The last term of (15) is a random time series to

describe the uncertainty of precipitation due to the nonlocal
variability, such as that from SST variation and ENSO, and
the internal variability from atmospheric dynamics. Hereaf-
ter, these two variabilities are together referred to as the
‘‘external forcing’’ because they are not from the local land-
atmosphere interaction processes described here. F is given
as a white noise added onto a red noise to represent different
processes and forcings in the atmosphere (F has a mean of 0
and a standard deviation of 1.57 here). In fact, the last term
lumps the disturbances of ET, PE and r. Although such
external forcing could influence almost every part of the
land-atmosphere interaction, it is only added to precipitation
to keep the simulation simple and aid the physical interpre-
tation of the results.

2.5. Model Implementation

[17] The sequence of model calculations is shown in
Figure 1. Initial soil moistures and vegetation are needed
to start the integration. A forward difference scheme is used
to integrate the differential equations. Unless otherwise
mentioned, the parameter values used in the model are
shown in Table 1. They are some characteristic values for
the tropics and not for a specific area. The time step for the

integrations is 1 day, and equation (12) is integrated once a
year. For simplicity, each month is 30 days and each year is
360 days. Considering the coarse parameterization of the
model, only monthly mean values of the outputs are used
for analysis.

3. Model Performance and Behavior

[18] The model-simulated mean annual cycle of soil
wetness, precipitation, LAI, and ET are shown in Figure 2.
LAI lags precipitation and soil wetness, which is consistent
with observations [Zhang et al., 2005], and the exact time of
lag depends on vegetation types (Lw) and leaf phenology
(tl). Figure 3 shows the ET over its potential value as a
function of soil saturation for fully vegetated and bare land.
Their relationships are nonlinear. Vegetated land has larger
ET for the same soil wetness because vegetation can take up
water from deep layers, hence making the deep soil drier
[Scanlon et al., 2005]. If soil wetness is larger than or equal
to field capacity, ET is equal to its potential value. The
results are consistent with those of Lowry [1959] (also
referred to by Rodriguez-Iturbe et al. [1991]). They dem-
onstrate the model’s ability to capture the basic features of
land surface control on ET.
[19] Many studies have demonstrated that a water-con-

strained biosphere-atmosphere system can have multiple
equilibrium states at a certain parameter regime [Zeng and
Neelin, 2000; Wang, 2004; Zeng et al., 2004; Liu et al.,
2005; D’Odorico et al., 2005], and our model also shows
such a feature. This can be illustrated clearly in Figure 4. As
this is a coupled model, the change of climate states (dry or
wet) can be realized by changing some model parameters,
such as the parameters in the formation of precipitation
efficiency and recycling ratio (equations (15) and (16)).
Figure 4 shows how the equilibrium states of the system are
determined by PEmin, a, and r. The parameter space is
divided into three regimes. Over two regimes of the param-
eters, the system has only one stable state: dry or wet; over a
certain regime with small minimum PE (PEmin) and prop-
erly large coupling strength (a) relative to the recycling
ratio (r), the system has two stable states: dry and wet. Only
stable equilibriums can exist in nature. When there is only

Figure 1. Schematic of the model integration cycle.

Table 1. Parameter Values Used in the Model

Parameter Value Unit Source

Ep 5 mm/day Mintz and Walker [1993]
T 360 days
Swp 0.3 Dickinson et al. [1993]
Sfc 0.74 Dingman [2002]
c 2 Lowry [1959]
kb 0.82 Campbell and Norman [1998]
Df 1000 mm Entekhabi et al. [1992]
Ks 1000 mm/day Dickinson et al. [1993]
B 4 Dickinson et al. [1993]
kp 0.75 Zeng et al. [1999]
tl 10 days
tw 4 years
q 0.25 Rodriguez-Iturbe et al. [1999b]
PEmin 0.2
a 0.4
m 0.5
r 0.3 Brubaker et al. [1993]
sr 0.1 Brubaker et al. [1993]
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one stable equilibrium, the equilibrium state is not deter-
mined by the initial conditions; when there are two stable
equilibriums, different initial conditions can reach totally
different equilibrium states, but they can converge to an
intermediate state with enough external forcing [Zeng and
Neelin, 2000; D’Odorico et al., 2005]. The effect of the
external forcing is determined by its strength and frequency;
our results show that strong low-frequency forcing has the
most significant effect (not shown). Moreover, catastrophic
climate shift [Scheffer et al., 2001] can happen when the
change of parameter values makes the climate move from
one regime to another. Some results of the impacts of initial
land covers and external forcings on the equilibrium states
from a more complex model are given by Wang [2004]. Our
results are similar and will not be presented here.

4. Experiments and Results

4.1. Experimental Design

[20] In order to study the land-atmosphere interaction for
different land covers and at different external forcings, we
performed a series of experiments. As monthly to seasonal
climate variability is the focus of this paper, we assume that
there is no large vegetation type transition and the Lw values
are fixed for each land cover. In the first experiment (Exp1),
the Lw values are fixed at 0.5, 2, 3.5, and 5 to represent four
different land covers from sparse to dense: desert, grassland,
tree-grass mixture and forest. For each land cover, three
50-year runs are performed with external forcing strength s =
2, 0.5, and 0.1, respectively. The second experiment (Exp2) is
the same as the first one except that the average seasonal
cycles of LAI from the last 40 years of first experiment are
used, so there is no interannual variability in LAI, but other
variables are still calculated. In the third experiment (Exp3),

average seasonal cycles of both LAI and soil wetness from
the first experiment are used, so there is no interannual
variability in either LAI or soil wetness. The output of the
last 40 years of each run is used for analysis. Hence the
difference between Exp1 and Exp2 can be regarded as
showing the influence of interactive vegetation, and the

Figure 2. Model-simulated seasonal cycles of some variables at no external forcing. Lw is fixed at 3.

Figure 3. ET normalized by its potential value as a
function of soil wetness for bare (Lw = 0.01) and fully
vegetated (Lw = 6) land. Monthly average values are shown.
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difference between Exp2 and Exp3 can be regarded as
showing the influence of interactive soil wetness.

4.2. Data Analysis Methods

[21] Although this is a simple model, it includes substan-
tial nonlinearity and complex interactions. Statistical meth-
ods are used to analyze its output variables. The temporal
variabilities of the variables are estimated by their autocor-
relation. If we assume that the time series of the variable are
similar to a red noise of first-order Markov process [e.g.,
Delworth and Manabe, 1988], the autocorrelation value can
be calculated as [Daniel, 1995]

r tð Þ ¼ exp �t=tð Þ; ð18Þ

where t is the decay timescale, and the autocorrelation r
will reach the e-folding value when t = t. In this study, we
use the lag-one-month autocorrelation to calculate t. The t
value provides a single parameter measure of the memory or
persistence of the variables, and can also be used as a
measure of predictability. In this paper, the memory,
persistence, and predictability all denote the t values. Note
that as the autocorrelation of the hydroclimatological
variables in this study decay to insignificant values in
1 year, the t value is only a measure of monthly to seasonal
variability.
[22] As the time series of external forcing contains

variations of all kinds of frequencies, the wavelet transform
[Torrence and Compo, 1998; Grinsted et al., 2004] is used
to analyze it at local time and frequency and its influence on
the land-atmosphere interaction. Most traditional methods
that examine periodicities in the frequency domain, such as

Fourier analysis, have implicitly assumed that the time
series are stationary in time and give an average power
spectrum for the whole time series. However, most geo-
physical time series are nonstationary. Wavelet transforms
can expand time series into time-frequency space and
therefore find localized variability.
[23] In order to examine the coupling between soil

wetness and precipitation, the cross-wavelet coherency
analysis [Torrence and Compo, 1998; Torrence and
Webster, 1999; Grinsted et al., 2004] is used. The cross-
wavelet coherency finds regions in time frequency space
where the two time series covary (in phase or out of phase)
but do not necessarily have high power. It is defined as the
absolute value squared of the smoothed cross-wavelet
spectrum normalized by the smoothed wavelet power spec-
tra. This definition resembles that of the squared correlation
coefficient, and it is useful to think of the wavelet coherency
as a localized correlation coefficient in time-frequency
space. The unique feature of this method is that it measures
the local values of both coherency and phase lag of the two
time series continuously through time. This feature is over-
looked by many other statistical methods, for example,
correlation, lagged correlation, and cross spectrum analysis,
which describe an average relationship of two time series
over a specified time.

4.3. Results

[24] The t values for the soil wetness and precipitation
anomaly (seasonal cycle removed) time series from the
three experiments are shown in Figure 5. Generally, soil
wetness has larger t values than precipitation, and their t
values are larger than that of the noise in both Exp1 and Exp2

Figure 4. Equilibrium states of LAI (L) in the parameter regime of PEmin/r and a/r. Here r has no
seasonal cycle. The inserts show the dL/dt � L relation. The solid circles in the inserts are stable
equilibrium states and open circles are unstable equilibrium states. Other hydroclimatological variables
such as maximum LAI (Lw), soil wetness (S), and precipitation (P) have similar multiequilibrium states as
LAI.
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(Figures 5a, 5b, 5c, and 5d), which demonstrates the memory
of land and its ability to enhance climate predictability.
Without the memory from land (both vegetation and soil
moisture), the t values for precipitation in Exp3 are close to
the noise (Figure 5e). Next, we will compare the results from
different land covers and different experiments. Let us look at
the results of Exp1 first (Figures 5a and 5b). It evident that
when the external forcing is strong (s = 2), the t values at the
forest are the largest; with the weakening of the external
forcing (s = 0.5, 0.1), the peak t values move to the grassland
and then to the desert. Thus the peak t values tend to move
from dense to sparse vegetation covers with the weakening of
the external forcing. That is, a dense vegetation cover, with its
large resilience, will take a long time to recover from a
dry or wet anomaly caused by a strong external forcing,
while if the external forcing is weak, the internal inter-
actions in the land-atmosphere system will induce some
high-frequency variability relative to the average state,
although in smaller amplitude than that from a stronger
forcing, and decrease the climate persistence. On the
contrary, a sparse vegetation cover has little memory
and is more responsive to a strong forcing; hence the
memory and t values will be smaller with a strong
forcing. In Exp2, after we fix the LAI to the seasonal
climatologies, the t values for a certain forcing decrease
over the vegetated land and have little change over desert
(Figures 5c and 5d). The reason is that climate-vegetation

interaction can damp the high-frequency climate variabil-
ity and increase the climate persistence [Zeng et al.,
1999; Wang and Eltahir, 2000c].
[25] Of the three forcing strengths for the precipitation (s =

2, 0.5, and 0.1), s= 0.5 ismost realistic (as can be judged from
the signal-to-noise ratio), so its t values as measuring
precipitation predictability are most close to the current
climate and can be compared with other studies. If we assume
that the contributions of interactive soil wetness and interac-
tive vegetation to the t values linearly add, we can analyze
their respective contributions from the t value differences of
the three experiments (Figure 6). It is found that soil wetness
contributes more to the predictability over all the land covers,
and that the contribution of interactive vegetation is much
smaller over sparse vegetation covers and comparable only at
dense vegetation covers; the percentage of contribution from
interactive vegetation increases with vegetation density.
Moreover, the contribution of soil wetness to the predictabil-
ity is largest at the grassland, which is consistent with
previous GCM results that soil moisture contributes most to
precipitation predictability in transitional zones between dry
and humid climates [Koster et al., 2000, 2004]. The contri-
bution of interactive vegetation is largest over the tree-grass
mixture and grassland and is reduced over forest by the large
resilience and saturation effects. However, the maximum
contributions of soil wetness and interactive vegetation (at
grassland in Figure 6) will move to a denser (sparser)

Figure 5. Decay timescale t of monthly soil wetness and precipitation anomaly for different land
covers and at different forcing strengths. (a, b) Exp1. (c, d) Exp2. (e) Exp3. The horizontal black line is
the t value of the external forcing. All autocorrelations used to calculate t values are above the 99%
significant level.
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vegetation cover with the strengthening (weakening) of
external forcing (not shown). This moving indicates that
the ‘‘hot spots’’ of land-atmosphere interaction suggested
by Koster et al. [2004] may move in a future climate
change.
[26] The cross-wavelet coherency between soil wetness

and precipitation for Exp1 and Exp2 at forcing strength s =
0.5 is shown in Figure 7. In general, there is more
coherency at low frequencies than at high frequencies
because the soil moisture and precipitation correlates
better at longer timescales. The vegetated lands have less
low-frequency coherency than desert for both experiments
because of vegetation shading, interception and soil-
vegetation-atmosphere interaction. With the vegetation
fixed at seasonal climatologies, Exp2 shows almost the
same coherency pattern as Exp1 except that the coherency
is weakened in some low-frequency regime owing to lack
of vegetation interaction (Figure 7f). This weakening illus-
trates that the interactive vegetation may enhance the low-
frequency soil wetness-precipitation coherency. In addition,
as talked about above, the influence of interactive vegeta-
tion depends on the strength of external forcing, and the
maximum influence (Figure 7f) may move to denser
vegetation with the strengthening of the forcing (not
shown). Owing to the complex nonlinear interactions in
the model, the coherency patterns vary nonlinearly with the
forcing strength (not shown), but several weak coherency
centers exist regardless of the forcing strengths, such as the
weak centers around (50, 8), (200, 0–4), (200, 16–32),
(380, 0–4), and (420, 0–4) (Figure 7).
[27] In order to further investigate the relationship be-

tween the coherency and external forcing, we compare the
coherency pattern with the wavelet power spectrum of the
forcing time series (F) in the same time-frequency domain
(Figures 7 and 8). It is found that the weak coherency
centers in Figures 7a and 7e (as listed above) correspond
very well to the weak power centers in Figure 8 for both
high and low frequencies. We only compare the coherency
centers appear at desert because they may be amplified or
slightly moved by stronger vegetation influence at other

land covers. Evidently, this good correspondence indicates
that much of the large coherency between soil wetness and
precipitation is due to the strong external forcing, and
during periods of weak forcing the coherency will be small.
This corresponds to a ‘‘threshold effect’’ as suggested by
Oglesby et al. [2002]: A strong external forcing can induce
a large soil wetness anomaly, which can lead to a strong
feedback that make precipitation and soil wetness vary in
the same direction; while if the external forcing is weak, the
precipitation and soil wetness anomalies will be small, and
the coherency will be weakened by the variability of
atmospheric and land processes.
[28] As the parameterization of precipitation is a very

uncertain part of our model, and a slight change of the
parameter values may, as mentioned in section 3, lead to
completely different equilibrium states, some experiments
are performed with a little different PEmin and a values,
different formation of equation (16), and different noise. No
qualitative change is found in the results except that the
positions of peak t values in Figure 5 may move with
climate change.

5. Conclusions and Discussion

[29] This study develops a simple model of warm climate
land-atmosphere interaction with interactive land compo-
nents: soil wetness and vegetation. Because of its simplicity,
such a model is useful for many applications; for example, it
can be easily integrated for a long time to estimate the trend
of climate variation, it can clearly separate variability from
different sources and analyze their individual influence on
climate variability, and different climate conditions can be
easily represented by changing a few model parameters.
However, its simplicity may lead to difficulties; it has no
variability from energy balance or related processes, no
boundary layer processes, and no atmospheric dynamics.
Although these limitations may reduce the applicability of
this model, it is especially suitable for study of climate
variability on seasonal to decadal timescales and can pro-
vide some guidance for GCM study.

Figure 6. The t value difference of precipitation at forcing strength s = 0.5 for different land covers.
Bright bars are for Exp1–Exp2, which is the contribution of interactive vegetation to the precipitation
predictability; dark bars are for Exp2–Exp3, which is the contribution of soil wetness to the precipitation
predictability.
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[30] The model is used to study the role of land surface
processes in climate variability over different land covers
and at different external forcings. The major findings and
their implications for the current model studies on warm
climate land-atmosphere interaction and climate prediction
are as follows.
[31] 1. The decay timescales of soil wetness and precip-

itation maximize at sparser (denser) vegetation covers with
the weakening (strengthening) of external forcing. Hence
both the strength of external variabilities and the regional
land cover influence the soil moisture and precipitation
persistence. In a model, these external variabilities can
come from natural regional climate variability or incorrect
model internal dynamics. These incorrect variabilities in the
model may act on the simulated soil moisture and precip-
itation persistence and even transfer to other component in
the climate system [e.g., Wang and Eltahir, 2000b]. There-
fore accurate simulation of climate variability besides mean
climate is an urgent task facing model developers.

[32] 2. The persistence of soil wetness and precipitation is
larger with interactive vegetation, if it is dense, and changes
little, if vegetation is sparse. Thus fixing vegetation in a
model may underestimate the soil moisture memory and
precipitation predictability for densely vegetated warm
regions. Interactive vegetation in these regions is necessary
if a good estimate of soil moisture memory and precipitation
predictability is desired.
[33] 3. Interactive vegetation can enhance the low-

frequency coherency between soil wetness and precipitation
at some land covers (depending on the forcing), but its
influence on high-frequency coherency is small. Thus fixed
seasonal vegetation will not have much influence on the soil
wetness–precipitation relationship at monthly to seasonal
timescales. It also appears that interactive soil moisture is
more important than interactive vegetation for precipitation
variation at these timescales. This is due to the different
ways soil moisture and vegetation interacts with the atmo-
sphere. Observational data also show that the local vegeta-
tion feedback has little influence on precipitation at monthly

Figure 7. Cross-wavelet coherency between soil wetness and precipitation anomalies for different land
covers. Forcing strength s = 0.5. (a, b, c, d) Exp1. (e, f, g, h) Exp2. The thick black contour is 5%
significance level against red noise, and the cone of influence where edge effects might distort the picture
is shown as a lighter shade. The phase information is not shown in this figure. Generally, precipitation
leads soil wetness about one-eighth period at periods less than 1 year and is in phase with soil wetness at
periods larger than 1 year.
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to seasonal timescales and the influence is larger at a longer
timescale [Liu et al., 2006] when the vegetation succession
plays an important role [Zeng et al., 1999].
[34] 4. A strong external forcing can induce a large soil

wetness anomaly and a large coherency between soil wet-
ness and precipitation, while such coherency may be weak if
the external forcing is weak. As the feedback between soil
moisture and precipitation can induce a lagged relationship
between them [Eltahir, 1998; D’Odorico and Porporato,
2004], soil moisture has been used as an initial condition to
predict precipitation in some studies [e.g., Fennessy and
Shukla, 1999; Douville and Chauvin, 2000]. Our study on
their coherency shows that their relationship depends on the

strength of external forcing; a strong external forcing at a
certain time and frequency can induce a strong coherency
(simultaneous or lagged relationship) between soil moisture
and precipitation at a corresponding time and frequency. As
external forcing is usually nonstationary, their relationship
and coherency also exhibit an on-and-off feature.
[35] In this study, the influence of local land processes on

precipitation predictability is divided into the contribution
from soil wetness and the contribution from interactive
vegetation. This influence can also be divided into the
contribution from ET and the contribution from PE (equa-
tion (15)). In order to study their relative importance, two
additional experiments are performed with ET or PE fixed at
seasonal climatologies of Exp1 to neglect their interannual
variabilities. They are denoted Exp4 and Exp5, respectively.
By comparing the t value difference for precipitation
between these two experiments and fully interactive Exp1,
we can obtain the contribution of ET and PE to the
precipitation predictability, respectively. Figure 9 shows
that both ET and PE can contribute to the precipitation
predictability, but that the contribution of ET is much larger.
The reason may be that there is no seasonal temperature
variation in the warm climate we assumed. As PE is mainly
controlled by the monthly temperature, its changes will be
small, while ET, which is mainly controlled by surface soil
wetness and vegetation, will have a relatively large change.
Thus fixing ET at seasonal climatologies will decrease its
control on precipitation and the precipitation variability will
mainly come from external forcing with little predictability,
while fixing PE at seasonal climatologies has a relative
small influence on the precipitation predictability. In this
sense, ET is more important than PE in the warm climate
seasonal precipitation prediction.
[36] A major simplification of the model is its neglect of

atmospheric dynamics and ocean interaction. Although the
red component of the added forcing is similar to the
persistence of the atmosphere and ocean, the linear precip-
itation parameterization neglects the possible scale interac-
tions in the climate system, such as the interactions between
tropical convection, Madden-Julian oscillation, and ENSO.
This neglect may be the reason the weak coherency centers
between soil wetness and precipitation corresponds so well

Figure 9. Same as Figure 6 except dark bars are for Exp1–Exp4, which is the contribution of ET to the
precipitation predictability; bright bars are for Exp1–Exp5, which is the contribution of PE to the
predictability.

Figure 8. Continuous wavelet power spectrum of the
external forcing. (a) High-frequency power (period T <
4 months). (b) Low-frequency power (4 months < T <
32 months). The thick black contour is 5% significance
level against red noise, and the cone of influence where
edgeeffectsmightdistort thepicture is shownasa lighter shade.
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to the weak wavelet power centers of external forcing in the
time-frequency domain. Hence these results need to be
examined by coupled nonlinear models.
[37] This model provides a framework for revision or

further development as needed. The precipitation and veg-
etation parameterizations of the model are designed for
warm climate with convective precipitation. With more
feedbacks from temperature, radiation, and chaotic atmo-
spheric dynamics, the land-atmosphere interaction processes
in cooler climate will be more complex, but their study may
be guided by the results attained here.

[38] Acknowledgments. This work was supported by NSF grant
ATM-03433485. Cross-wavelet and wavelet coherence software were
provided by A. Grinsted. The authors are grateful to the suggestions and
comments from G. Wang, W. Wu, Q. Liu, H. Chen, J. Zhang, W. Shem, and
two anonymous reviewers that substantially improved the manuscript.

References
Brovkin, V., S. Levis,M. F. Loutre,M. Crucifix,M. Claussen,A.Ganopolski,
C. Kubatzki, and V. Petoukhov (2003), Stability analysis of the climate-
vegetation system in northern high latitudes, Clim. Change, 57, 119–
138.

Brubaker, K. L., D. Entekhabi, and P. S. Eagleson (1993), Estimation of
continental precipitation recycling, J. Clim., 6, 1077–1089.

Campbell, G. S., and J. M. Norman (1998), An Introduction to Environ-
mental Biophysics, 2nd ed., 286 pp., Springer, New York.

Charney, J. G. (1975), Dynamics of deserts and drought in the Sahel, Q. J.
R. Meteorol. Soc., 101, 193–202.

Clapp, R. B., and G. M. Hornberger (1978), Empirical equations for some
soil hydraulic properties, Water Resour. Res., 14, 601–604.

Clark, D. B., Y. Xue, R. J. Harding, and P. J. Valdes (2001), Modeling the
impact of land surface degradation on the climate of tropical north Africa,
J. Clim., 14, 1809–1822.

Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure
and function to CO2 and climate change: Results from six dynamic global
vegetation models, Global Change Biol., 7, 357–373.

Daniel, S. W. (1995), Statistical Methods in the Atmospheric Sciences,
467 pp., Elsevier, New York.

Delire, C., J. A. Foley, and S. Thompson (2004), Long-term variability in a
coupled atmosphere-biosphere model, J. Clim., 17, 3947–3959.

Delworth, T., and S. Manabe (1988), The influence of potential evaporation
on the variabilities of simulated soil wetness and climate, J. Clim., 1,
523–547.

Delworth, T., and S. Manabe (1989), The influence of soil wetness on near-
surface atmospheric variability, J. Clim., 2, 1447–1462.

Dickinson, R. E., and P. Kennedy (1992), Impact on regional climate of
Amazonian deforestation, Geophys. Res. Lett., 19, 1947–1950.

Dickinson, R. E., and A. Henderson-Sellers (1988), Modelling tropical
deforestation: A study of GCM land-surface parametrizations, Q. J. R.
Meteorol. Soc., 114, 439–462.

Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy (1993), Bio-
sphere Atmosphere Transfer Scheme (BATS) version le as coupled to the
NCAR Community Climate Model, NCAR Tech. Note NCAR/TN-
387+STR, 72 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.

Dingman, S. L. (2002), Physical Hydrology, 2nd ed., 646 pp., Prentice-
Hall, Upper Saddle River, N. J.

D’Odorico, P., and A. Porporato (2004), Preferential states in soil moisture
and climate dynamics, Proc. Natl. Acad. Sci. U. S. A., 101, 8848–8851.

D’Odorico, P., F. Laio, and L. Ridolfi (2005), Noise-induced stability in
dryland plant ecosystems, Proc. Natl. Acad. Sci. U. S. A., 102, 10,819–
10,822.

Douville, H., and F. Chauvin (2000), Relevance of soil moisture for
seasonal climate predictions: A preliminary study, Clim. Dyn., 16,
719–736.

Eltahir, E. A. B. (1996), The role of vegetation in sustaining large-scale atmo-
spheric circulations in the tropics, J. Geophys. Res., 101, 4255–4267.

Eltahir, E. A. B. (1998), A soil moisture– rainfall feedback mechanism:
1. Theory and observations, Water Resour. Res., 34, 765–776.

Eltahir, E. A. B., and R. L. Bras (1996), Precipitation recycling, Rev.
Geophys, 34, 367–378.

Entekhabi, D., I. Rodriguez-Iturbe, and R. L. Bras (1992), Variability in
large-scale water balance with land surface-atmosphere interaction,
J. Clim., 5, 798–813.

Fennessy, M. J., and J. Shukla (1999), Impact of initial soil wetness on
seasonal atmospheric prediction, J. Clim., 12, 3167–3180.

Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch,
and A. Haxeltine (1996), An integrated biosphere model of land surface
processes, terrestrial carbon balance, and vegetation dynamics, Global
Biogeochem. Cycles, 10, 603–628.

Fu, C. B. (2003), Potential impacts of human-induced land cover change on
East Asia monsoon, Global Planet. Change, 37, 219–229.

Grinsted, A., J. Moore, and S. Jevrejeva (2004), Application of the cross
wavelet transform and wavelet coherence to geophysical time series,
Nonlinear Proc. Geophys., 11, 561–566.

Henderson-Sellers, A., A. J. Pitman, P. K. Love, P. Irannejad, and T. Chen
(1995), The Project for Intercomparison of Land Surface Parameterisa-
tion Schemes (PILPS) phases 2 and 3, Bull. Am. Meteorol. Soc., 76, 489–
503.

Koster, R. D., and M. J. Suarez (1995), Relative contributions of land and
ocean processes to precipitation variability, J. Geophys. Res., 100,
13,775–13,790.

Koster, R. D., M. J. Suarez, and M. Heiser (2000), Variance and predict-
ability of precipitation at seasonal-to-interannual timescales, J. Hydrome-
teorol., 1, 26–46.

Koster, R. D., et al. (2004), Regions of strong coupling between soil
moisture and precipitation, Science, 305, 1138–1140.

Lean, J., and D. A. Warrilow (1989), Simulation of the regional climatic
impact of Amazon deforestation, Nature, 342, 411–413.

Levis, S., and G. Bonan (2004), Simulating springtime temperature patterns
in the Community Atmosphere Model coupled to the Community Land
Model using prognostic leaf area, J. Clim., 17, 4531–4540.

Liu, S. K., S. D. Liu, Z. T. Fu, and S. Lan (2005), A nonlinear coupled soil
moisture-vegetation model, Adv. Atmos. Sci., 22, 337–343.

Liu, Y., and R. Avissar (1999), A study of persistence in the land–
atmosphere system with a fourth-order analytical model, J. Clim.,
12, 2154–2168.

Liu, Z., M. Notaro, J. Kutzbach, and N. Liu (2006), Assessing global
vegetation–climate feedbacks from observation, J. Clim., 19, 787–814.

Lofgren, B. M. (1995), Sensitivity of land–ocean circulations, precipita-
tion, and soil moisture to perturbed land surface albedo, J. Clim., 8,
2521–2542.

Lowry, W. P. (1959), The falling rate phase of evaporative soil moisture
loss: A critical evaluation, Bull. Am. Meteorol. Soc., 40, 605.

Mintz, Y., and G. K. Walker (1993), Global fields of soil moisture and land
surface evapotranspiration derived from observed precipitation and sur-
face air temperature, J. Appl. Meteorol., 32, 1305–1334.

Oglesby, R. J., S. Marshall, D. J. Erickson, J. O. Roads, and F. R. Robertson
(2002), Thresholds in atmosphere-soil moisture interactions: Results from
climate model studies, J. Geophys. Res., 107(D14), 4224, doi:10.1029/
2001JD001045.

Pitman, A. J. (2003), The evolution of, and revolution in, land surface
schemes designed for climate models, Int. J. Climatol., 23, 479–510.

Rodriguez-Iturbe, I., D. Entekhabi, and R. F. Bras (1991), Nonlinear dy-
namics of soil moisture at climate scales: 1. Stochastic analysis, Water
Resour. Res., 27, 1899–1906.

Rodriguez-Iturbe, I., P. D’Odorico, A. Porporato, and L. Ridolfi (1999a),
On the spatial and temporal links between vegetation, climate and soil
moisture, Water Resour. Res., 35, 3709–3722.

Rodriguez-Iturbe, I., P. D’Odorico, A. Porporato, and L. Ridolfi (1999b),
Tree-grass coexistence in savannas: The role of spatial dynamics and
climate fluctuations, Geophys. Res Lett., 26, 247–250.

Scanlon, B. R., D. G. Levitt, R. C. Reedy, K. E. Keese, and M. J. Sully
(2005), Ecological controls on water-cycle response to climate variability
in deserts, Proc. Natl. Acad. Sci. U. S. A., 102, 6033–6038.

Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker (2001),
Catastrophic shifts in ecosystems, Nature, 413, 591–596.

Taylor, C. M., E. F. Lambin, N. Stephenne, R. J. Harding, and R. L. H.
Essery (2002), The influence of land use change on climate in the Sahel,
J. Clim., 15, 3615–3629.

Torrence, C., and G. P. Compo (1998), A practical guide to wavelet ana-
lysis, Bull. Am. Meteorol. Soc., 79, 61–78.

Torrence, C., and P. Webster (1999), Interdecadal changes in the ESNO-
monsoon system, J. Clim., 12, 2679–2690.

Trenberth, K. E. (1999), Atmospheric moisture recycling: Role of advection
and local evaporation, J. Clim., 12, 1368–1381.

Voldoire, A., and J. F. Royer (2004), Tropical deforestation and climate
variability, Clim. Dyn., 22, 857–874.

Wang, G. (2004), A conceptual modeling study on biosphere-atmosphere
interactions and its implications for physically based climate modeling,
J. Clim., 17, 2572–2583.

Wang, G., and E. A. B. Eltahir (2000a), Ecosystem dynamics and the Sahel
drought, Geophys. Res Lett., 27, 95–98.

Wang, G., and E. A. B. Eltahir (2000b), Modeling the biosphere-
atmosphere system: The impact of the sub-grid variability in rainfall
interception, J. Clim., 13, 2887–2899.

G03009 WEI ET AL.: LAND PROCESSES AND CLIMATE VARIABILITY

11 of 12

G03009



Wang, G., and E. A. B. Eltahir (2000c), The role of ecosystem dynamics in
enhancing the low-frequency variability of the Sahel rainfall, Water Re-
sour. Res., 36, 1013–1021.

Wang, G., E. A. B. Eltahir, J. A. Foley, D. Pollard, and S. Levis (2004),
Decadal variability of rainfall in the Sahel: Results from the coupled
GENESIS-IBIS atmosphere-biosphere model, Clim. Dyn., 22, 625–
637, doi:10.1007/s00382-004-0411-3.

Xue, Y. (1996), The Impact of desertification in the Mongolian and the
Inner Mongolian grassland on the regional climate, J. Clim., 9, 2173–
2189.

Xue, Y., and J. Shukla (1993), The influence of land surface properties on
Sahel climate: Part I. Desertification, J. Clim., 6, 2232–2245.

Xue, Y., H.-M. H. Juang, W. Li, S. Prince, R. DeFries, Y. Jiao, and R. Vasic
(2004), Role of land surface processes in monsoon development: Part I.
East Asia and West Africa, J. Geophys. Res., 109, D03105, doi:10.1029/
2003JD003556.

Zeng, N. (1998), Understanding climate sensitivity to tropical deforestation
in a mechanistic model, J. Clim., 11, 1969–1975.

Zeng, N., and J. D. Neelin (1999), A land-atmosphere interaction theory for
the tropical deforestation problem, J. Clim., 12, 857–872.

Zeng, N., and J. D. Neelin (2000), The role of vegetation-climate interac-
tion and interannual variability in shaping the African savanna, J. Clim.,
13, 2665–2670.

Zeng, N., J. D. Neelin, K.-M. Lau, and C. J. Tucker (1999), Enhancement
of interdecadal climate variability in the Sahel by vegetation interaction,
Science, 286, 1537–1540.

Zeng, X., S. S. P. Shen, X. Zeng, and R. E. Dickinson (2004), Multiple
equilibrium states and the abrupt transitions in a dynamical system of soil
water interacting with vegetation, Geophys. Res. Lett., 31, L05501,
doi:10.1029/2003GL018910.

Zhang, X., M. A. Friedl, C. B. Schaaf, A. H. Strahler, and Z. Liu (2005),
Monitoring the response of vegetation phenology to precipitation in
Africa by coupling MODIS and TRMM instruments, J. Geophys. Res.,
110, D12103, doi:10.1029/2004JD005263.

Zheng, X., and E. A. B. Eltahir (1997), The response to deforestation and
desertification in a model of West African monsoon, Geophys. Res. Lett.,
24, 155–158.

�����������������������
R. E. Dickinson and J. Wei, School of Earth and Atmospheric Sciences,

Georgia Institute of Technology, Atlanta, GA 30332-0340, USA.
(robted@eas.gatech.edu; jwei@eas.gatech.edu)
N. Zeng, Department of Atmospheric and Oceanic Science and Earth

System Science Interdisciplinary Center, University of Maryland at College
Park, College Park, MD 20742, USA. (zeng@atmos.umd.edu)

G03009 WEI ET AL.: LAND PROCESSES AND CLIMATE VARIABILITY

12 of 12

G03009


