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Abstract

An interception model that links the temporal variability of rainfall with the storm-based description of the interception
process is derived. Analytical formulae for long-term interception loss are obtained for precipitation with statistical character-
istics derived from observations.

The analysis of the results indicates that the point interception loss is controlled primarily by three time scales: the mean
inter-storm arrival timeta, the mean storm durationt r and the time to evaporate a saturated canopyt0 which depends on canopy
water holding capacityWc and the wet canopy potential evaporation rateEI0, and less importantly, on storm intensity. Addi-
tional assumption of rainfall stationarity leads to a relation between long-term interception loss and gross rainfall that requires a
very small amount of input data.

The interception loss predicted by the analytical model agrees well with that of a Rutter model driven by a synthetic rainfall
time series with the same statistics. Using the parameter values estimated from the observed rainfall data in the Amazon and
southwestern France, the analytical results predict a long-term interception loss close to that observed.q 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The evaporation of intercepted rainfall by plant
canopies typically accounts for 10–30% of the gross
rainfall (Zinke, 1967; Blake, 1975). The unavailabil-
ity of this fraction of rainfall to the soil modifies the
surface–atmosphere energy and moisture balance.
The layer of water on plant leaves also inhibits photo-
synthesis. Coupled land–atmosphere modeling has

suggested potential climate sensitivities to the inter-
ception process (Scott et al., 1995).

The classic approaches to modeling interception
loss use single-storm description and empirical rela-
tions between interception and gross rainfall (Horton,
1919; Zinke, 1967; Blake, 1975; Bras, 1990). Rutter et
al. (1971) constructed a physically based numerical,
point interception model. This model has been the
basis of numerous subsequent analytical or semi-
analytical models (Gash, 1979; Massman, 1983;
Mulder, 1985; Whitehead and Kelliher, 1991; Liu,
1997). The Rutter model has also been implemented
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in many land–surface models, some of which have
modifications to take account of the spatial variability
of rainfall when applied to model grid boxes (e.g.
Shuttleworth, 1988a; Entekhabi and Eagleson, 1989;
Dickinson et al., 1993; Sellers et al., 1996).

While recognizing the importance of the temporal
variability of rainfall on interception loss, early analy-
tical models involved arbitrary assumptions about
rainfall temporal characteristics. They generally
assume regular rainfall events such as one or several
uniformly distributed storms per day. Time averages
of quantities are sometimes used and multiplied
together. Because the temporal rainfall distribution
is skewed and highly non-uniform, and because the
interception process is highly non-linear, there is a
large sensitivity to the precipitation regime assump-
tions (e.g. Lloyd, 1990), and adjusting factors are
sometimes used (e.g. Pearce and Rowe, 1981).

One important characteristic of the interception
process is that a typical storm can saturate the canopy
very quickly because of its low water holding capa-
city. Therefore drizzles tend to produce more inter-
ception loss than intensive showers with the same
total rainfall. On the other hand, how much of this
intercepted water is evaporated after a storm depends
on how soon the next storm comes. Thus various
characteristics of the assumed precipitation regime
can all have a large impact on the calculated intercep-
tion loss. There is a strong need for clearly identifying
the important characteristics.

Here we attempt an analytical model for point
interception loss, taking into account of the
stochastic rainfall distribution in time. The math-
ematical derivation would be more involved than
some other theoretical models, but we expect to
arrive at a solution that links the physically based,
single-storm description of the interception process
with long-term storm characteristics and gross
rainfall. Follow-up work will address the sensitiv-
ities to assumptions about precipitation regimes
and physical processes, and the model’s applica-
tion to global land–surface modeling. The deriva-
tion of the analytical model is described in
Section 2. In Sections 3 and 4, the approximations
and physical implications of the model are
discussed. We then compare the model results
with those of a Rutter model and observations.
Conclusions are drawn in Section 5.

2. Analytical model

2.1. Interception loss during a storm/inter-storm event

2.1.1. Basic description of the interception process
Fig. 1 illustrates a conceptualized sequence of rain-

fall events and the corresponding time evolution in
canopy water storageW and the evaporation of
canopy interceptionEIc. Each rainfall event (including
a storm period and an inter-storm period) is character-
ized by an intensityi, storm durationtr, and inter-
storm break periodtb. The storm inter-arrival time is
defined asta ; tr 1 tb: The storm intensity is assumed
to be constant during a storm for mathematical conve-
nience.

We adopt a version of the Rutter model for describ-
ing the canopy water storage and its evaporation. This
type of model is suitable for describing point inter-
ception processes. In this context, a point is a plot or
an area large enough to include the canopy and inter-
canopy space while small enough such that the rainfall
is homogeneous within this plot. Hence, caution needs
to be taken if one applies this to a land–surface model
as coupled to an atmospheric general circulation
model (GCM) because convective rainfall is not
homogeneous within a model grid box a few hundred
kilometers wide.

A running water balance is maintained for the
canopy storage:

dW
dt
� P 2 EIc 2 Dr �1�

where P is precipitation,EIc is canopy interception
loss, andDr is canopy drainage. Following Rutter,
the evaporation of intercepted waterEIc is:

EIc � W
Wc

EI0 �2�

where EI0 is the potential rate of evaporation (wet
canopy evaporation; Cain et al., 1998) which can be
calculated using the Penman–Monteith equation by
setting the canopy resistance to zero.EI0 needed
here is during and shortly after the storms and will
be assumed a constant during each individual model
period (see below). A very useful time scale is the
time it takes to evaporate a saturated canopy at this
potential rate:

t0 ; Wc=EI0 �3�
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The drainage is taken as:

Dr �
∞ W . Wc

0 W # Wc

(
�4�

The water storage is thus not allowed to exceed a
saturation value or capacityWc, i.e. excess water is
drained instantaneously. This is equivalent to choos-
ing an infinite drainage coefficient in Rutter’s expo-
nential formulation. No drainage is allowed when the
canopy is unsaturated. This version of the Rutter
model will be referred to as Rutter2, while the version
used by Shuttleworth (1988b) will be referred to as
Rutter1. They differ somewhat in theDr parameteri-
zation. Moreover, we assume a closed canopy here
and then consider sparse canopy in Section 2.3.

As it rains over an initially dry canopy, the canopy
water storage undergoes three stages: wetting, satura-

tion and drying, as illustrated by the first storm event
in Fig. 1. However, if the storm intensity is too weak
or the duration is too short the canopy does not reach
saturation before the storm ends, so it undergoes only
two stages: wetting and drying, as shown for the
second event in Fig. 1.

For the wetting period (0,tw), Dr � 0; and Eq. (1)
becomes:

dW
dt
� i 2

W
t0

�5�

with solution:

W � it0�1 2 e2t=t0� �6�
If i is too small or the storm durationtr is too short, the
canopy will not be saturated (the second event in Fig.
1). The threshold rainfall intensity,is, when the
canopy saturates just as the storm ends is determined
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Fig. 1. Schematic diagram for two idealized rainfall events and the response in the canopy water storageW and the evaporation of the
intercepted waterEIc. Each event is characterized by its intensityi, storm durationtr and time for inter-storm breaktb, with the storm inter-
arrival time ta ; tr 1 tb: Wc is the saturation value forW, andEI0 is the wet canopy potential evaporation rate for the intercepted water. The
second event corresponds to a case where the canopy is never saturated during the event. The analytical work assumes that all events start from a
dry canopy and this neglects a second-order term. See text for discussion.



by the condition:

Wc � ist0�1 2 e2tr=t0� �7�
This can be solved to yield:

is � EI0�1 2 e2tr=t0�21 �8�
As the canopy dries after rainfall has ceased:

dW
dt
� 2

W
t0

�9�

with solution:

W �Wr e2�t2tr�=t0 �10�
whereWr is canopy water storage at the time the storm
stops�t � tr�; which isWc for the saturation case. For
the unsaturated case Eq. (6) gives:

Wr � it0�1 2 e2tr=t0� �11�
We now seek an analytical representation of the

cumulative interception loss within an event. For the
saturated case, our derivation is similar to the analy-
tical model of Gash (1979), and for the unsaturated
case it is similar to that of Mulder (1985) and others.

2.1.2. Events with saturated canopy
For events withi . is; the time to reach saturation

tw is given by:

Wc � it0�1 2 e2tw=t0� �12�
Solving for tw:

tw � 2t0 ln�1 2 EI0=i� �13�
The cumulative interception loss normalized byEI0

during (0,tw) is:Ztw

0

EIc

EI0
dt � i

EI0

Ztw

0
�1 2 e2t=t0�dt

� i
EI0

tw 2
i

EI0
t0�1 2 e2tw=t0�

� i
EI0

tw 2
Wc

EI0
�14�

For the saturation period (tw, tr):Ztr

tw

EIc

EI0
dt � tr 2 tw �15�

For the drying period (tr, ta):Zta

tr

EIc

EI0
dt �

Ztb

0
e2t=t0 dt � t0�1 2 e2tb=t0� �16�

Combining Eqs. (14)–(16) and substituting fortw
from Eq. (13), the normalized cumulative interception
loss over the whole event period (0,ta) is:

Gs ;
Zta

0

EIc

EI0
dt � t0�1 2 i=EI0� ln�1 2 EI0=i�

1 tr 2 t0 e2tb=t0 �17�

2.1.3. Events with unsaturated canopy
For events withi # is; one can find the cumulative

interception loss for the wetting period (0,tr) in a way
similar to the saturation case:Ztr

0

EIc

EI0
dt � i

EI0
tr 2

Wr

EI0
�18�

For the drying period (tr, ta):Zta

tr

EIc

EI0
dt � Wr

EI0
�1 2 e2tb=t0� �19�

Combining the above two equations and substituting
Wr from Eq. (11), the normalized cumulative intercep-
tion loss over the whole event period (0,ta) is:

Gu ;
Zta

0

EIc

EI0
dt � i

EI0
{ tr 2 t0�1 2 e2tr=t0� e2tb=t0}

�20�
To summarize, the cumulative interception loss

during a storm/inter-storm event over the period (0,
ta) can be expressed as:

G�i; tr; tb� ;
Zta

0

EIc

EI0
dt �

Gs i . is

Gu i # is

(
�21�

where the expressions forGs, Gu and is are given in
Eqs. (17), (20) and (8), respectively.

2.2. Interception loss driven by stochastic rainfall

Thedistributionof point rainfall ispopularly modeled
by gamma (including exponential) or log-normal
distributions. We have analyzed the measured point
precipitation from the Amazon Region Micrometeor-
ology Experiment (ARME, Shuttleworth, 1988b). The

N. Zeng et al. / Journal of Hydrology 228 (2000) 228–241 231



hourly rainfall data are available from September
1983 to September 1985 for a period of 25 months.

Fig. 2 shows the distribution of hourly rainfall
intensity P, storm intensityi, storm durationtr and
storm breaktb from the 25 month ARME data. In
identifying a storm event, a threshold of 0.25 mm is
applied to remove the likely small artificial rainfall
events due to single tip of the rain gauge bucket,
following Lloyd (1990). On the log scale, the distri-
butions appear very close to straight lines except for
some extremely strong events that are undersampled
because they have a small probability of occurring.
This indicates that an exponential distribution is a
good approximation. Similar results were found for
mid-latitude sites by us (see below) and by others
(e.g. Eagleson, 1978). We therefore assume exponen-
tial distributions for storm intensityi, storm durationtr
and inter-storm break timetb respectively as:

fi�i� � i21
m e2i=im �22�

fr�tr� � t21
r e2tr=tr �23�

fb�tb� � t21
b e2tb=tb �24�

whereim, t r andtb are the means (expectation values)
of i, tr and tb, respectively.

To maintain analytical tractability, we assume

these distributions are independent of each other.
The wet canopy potential evaporation rate for
interception lossEI0 is assumed constant, and each
event is assumed to start from a totally dry canopy.
The latter slightly underestimates the interception loss
because a typical storm quickly saturates the canopy
anyway (a second-order term; see next section). Note
that we do take account of the fact that the exponential
tail after the next event is not evaporated, unlike Gash
(1979) who assumed total evaporation of the canopy
water before the next storm comes. Nevertheless, as
we will show later, this amounts to only a small differ-
ence becausetb q t0 (a first-order term; see next
section). These subtleties are illustrated in Fig. 1 at
the end of the first event and in the beginning of the
second event.

For a sufficiently long period of time when enough
independent events can be realized, the expectation
value of the normalized cumulative interception loss
for an event is:

�G� �
Z∞

0

Z∞

0

Z∞

0
G�i; tr; tb�fi fr fb di dtr dtb �25�

where [ ] denotes expectation value or mean, and the
kernel functionG�i; tr; tb� is defined in Eq. (21).
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Fig. 2. Statistics of 25 month rainfall time series measured at central Amazon from the ARME experiment. Shown are normalized probability
distributions of (a) hourly rainfall in mm h21; (b) inter-storm break timetb in hours; (c) storm durationtr in hours; and (d) storm intensityi in
mm h21. A small number of extreme events give rise to a small probability off scale in the plot.



Integrating the above (see Appendix A) we obtain:

�G� � a1tr 1 t0{a2�1 1 e2�21 2 a3} �26�
where

e1 ; EI0=im �27�

e2 ; t0=tb �28�

d ; tr=t0 �29�

a1 � 1 2
e1

d
1

a3

d2 �30�

a2 � 1 2
2a3

d
�31�

a3 � e1

2
ln

d

e1
�32�

b � a2�1 1 e2�21 2 a3 �33�
The integral involves Bessel functions of the second
kind and approximations were made to neglecte1e2

terms (second-order, see below; we usee to denote a
quantity much smaller than 1, while the other symbols
can be of any order).

The expectation value of the event durationta is

ta ; �ta� � �tr�1 �tb� � tr 1 tb �34�
By definition, the average interception loss for a long
period of time is just the cumulative value divided by

the total time:

F ;
�EIc

EI0
�

Zta

0

EIc

EI0
dt

� ��
�ta�

� a1
tr

ta
1

t0

ta
{a2�1 1 e2�21 2 a3} �35�

where a bar denotes long-term mean values. We term
F the interception function. It is the long-term average
rate of interception loss�EIc normalized by the poten-
tial rateEI0. The coefficientsa1–a3, e1, e2 andd are
related to the mean storm characteristics and environ-
mental condition.

2.3. Interception loss for sparse canopies

For non-closed canopy, we consider the evapora-
tion of intercepted rain only from the area covered by
vegetation. Distinctions are made between the canopy
water storage capacity per unit canopy areaWc

discussed above, the canopy water storage capacity
per ground areaWg and the canopy water holding
capacity per leaf areaW0, as illustrated in Fig. 3.
They are related to each other as:

Wg �W0LAI �36�

Wc �Wg=c �37�
where LAI is the leaf area index (leaf area per unit
ground area) andc is the fraction of vegetation
cover, soWc is typically larger thanWg.

Eq. (35) returns the interception loss per canopy
area EIc. In practice, however, what is commonly
needed is the evaporation rate per unit ground area,
EI, which can be calculated using Eq. (35) as:

�EI � c �EIc � cFEI0 �38�
The factorc scales the evaporation rate from per unit
canopy area to per unit ground area. The underlying
assumption is that canopy evaporation is a purely
vertical process so that horizontal mixing can be
neglected. Therefore, canopy evaporation rate is
given by evaporation rate per unit ground areaEI0.
Eq. (38) is basically a weighted mean of the vegetated
area and non-vegetated area, with the evaporation
from bare soil neglected. This method can be general-
ized straightforwardly to multiple non-overlapping
vegetation covers. Gash et al. (1995) and Valente
et al. (1997) found that a similar procedure
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Fig. 3. Illustration of the relation between water storage capacity per
canopy areaWc and water storage capacity per ground areaWg when
canopy is not fully closed, withc being the fraction of vegetation
cover. Evaporation of intercepted water occurs only over the vege-
tated area when saturated.



significantly improved their estimation of evaporation
from sparse forests. In the following sections, this
procedure is applied to both the analytical model
and the Rutter model.

3. Approximations of the interception function and
test against a Rutter model with synthetic forcing

As shown by Eq. (35), the interception functionF is
mostly determined by the three time scales: the storm
inter-arrival timeta, the storm durationt r (the inter-
storm breaktb � ta 2 tr) and the time to evaporate a
saturated canopy at potential ratet0. Less important is
the storm intensityim. This is because the canopy
water storage capacityWc is small so that most storms
can fill it up in a short amount of time relative to the
storm duration.

Using the 25 month ARME rainfall data we derived
these parameter values, shown in Table 1. The canopy
and evaporation parameters are from Shuttleworth
(1988b) and Lloyd et al. (1988). Parameter values
relevant to the analytical model are derived from
these and shown in Table 2.

Among these,e1 ; EI0=im p 1 since the typical
storm intensity is much larger than the evaporation
rate. We also havee2 ; t0=tb p 1; as the storms are
so far separated such that the canopy has sufficient
time to dry out, an assumption used by Gash (1979).
Nevertheless, this effect adds a first-order correction
(we consider the two terms outside the brackets in Eq.
(35), namelytr=ta andt0=ta as zero-order for intercep-
tion, although interception loss itself can be a higher-
order quantity compared toEI0 or precipitation).

The first approximation we make is to assume the
coefficientsa1 andb are site-independent constants
(but not necessarily one); so we can rewrite Eq. (35)
as:

F1 � a1
tr

ta
1 b

t0

ta
�39�

This approximation significantly reduces the input
data needed and its application will be discussed in
a later work. We have already neglected the second-
order termsO�e1e2� in deriving Eq. (35). A further
approximation is to neglect all the first-order terms
with respect toe1�O�e1��; namely,a1 < 1; a2 < 1
anda3 < 0 :

F2 � tr

ta
1

t0

ta
�1 1 e2�21 �40�

The physical meaning of this approximation is that the
storms are strong enough so that the canopy gets satu-
rated instantaneously. The storm intensity-dependent
termse1 anda1–a3 appear only inF so they add first-
order corrections toF2.

Finally, we approximateF2 by dropping the first-
order terms with respect toe2:

F3 � tr

ta
1

t0

ta
�41�

In this approximation, the inter-storm break is long
enough so that all the water is evaporated before the
next storm comes. The difference betweenF2 andF3

indicates the error resulting from the assumption of
total canopy dryout after a storm.F3 corresponds to a
very simple physical picture in which the evaporation
is at its potential rate during a storm, and the saturated
water is all evaporated after the storm. A similar form
has been commonly used by hydrologists (e.g.
Horton, 1919; Bras, 1990) though only to describe a
single storm. Here we have shown that to first-order
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Table 1
Parameter values for the Amazon site from 25 month ARME data

Parameter Symbol Value

Mean storm inter-arrival time ta 30.3 h
Mean storm duration t r 2.1 h
Mean storm intensity im 3.8 mm h21

Canopy storage capacity Wc 0.8 mm
Wet canopy evaporation EI0 0.21 mm h21

Vegetation cover c 0.92

Table 2
Derived parameters for the Amazon

Parameter Symbol Value

Wc=EI0 t0 3.8 h
EI0=im e1 0.06
t0=tb e2 0.14
tr=t0 d 0.56
Eq. (30) a1 1.10
Eq. (31) a2 0.77
Eq. (32) a3 0.07
Eq. (A9) a4 0.11
Eq. (33) b 0.60



approximation (retain only zeroth-order terms), the
single-storm description can be replaced by its mean
characteristics and applied to long-term interception
loss. The unapproximated analytical result Eq. (35)
adds the corrections (complications) when taking
into account the effects of finite storm intensity and
incomplete drying of the canopy.

In order to test the accuracy of the analytical results
and the successive approximations made for the inter-
ception functionF, we run the numerical Rutter2
model described in the beginning of Section 2.1. A
synthetic rainfall time series is generated as a Monte
Carlo realization of the exponential distributions
(22)–(24) using the ARME parameters forim, tb and
t r (Table 1). The model was run at 1 min time step
using the ARME parameters. Fig. 4 shows the cumu-
lative interception loss from the Rutter model and the
approximationsF, F2 and F3. The results from the
interception functions are straight lines because they
are constant in time, corresponding to a stationary
rainfall process. As expected,F is very close to the
Rutter2 model (F1 is identical toF in this case), while
F2 andF3 overestimate interception loss by about 17%
and 30%, respectively. Theoretically speaking, the
difference betweenF and the Rutter2 model comes

only from the approximations made in the integration
of Eq. (21) and the randomness of the rainfall time
series, because the underlying physics is the same.

4. Test of the model against observations

In the real world, the exponential distributions and
the independence assumption are not exactly satisfied.
This is especially true for extreme events. Observa-
tional limitation adds a further complication. For
instance, the typical resolution of 1 h in rainfall obser-
vation undoubtedly leads to overestimation of the
storm durationt r which is typically 2 h. Despite
these complications, we expect that the theory can
capture the first-order effects, thus providing a
reasonable estimation in the face of many other
uncertainties.

Eq. (35) is best applied to a very long period so
enough rainfall events are included. This is compro-
mised by the fact that the real rainfall is not stationary
in time. Notably it possesses seasonal variation. In
sub-tropical regions, rainfall often has very different
characteristics between the summer convective storm
regime and winter large-scale precipitation regime.
The best time scale for applying Eq. (35) is probably
sub-seasonal scale. In the following, we will apply it
at the monthly time scale, acknowledging that the
calculated interception loss may not be sufficiently
accurate for each month but expecting adjacent
months to compensate for each other.

We have analyzed the observed rainfall character-
istics over a dry season and a wet season separately
using the ARME data and find that the mean storm
durationt r and mean storm intensityim differ by less
than 10% while the inter-arrival timeta differs by a
factor of two, corresponding to a difference of a factor
of two in precipitation. This indicates that the storm
characteristics (t r andim) stay largely the same while
the storm occurring frequency�1=ta� changes from
one climate regime to another. Theoretical considera-
tions have been brought forth (e.g. Emanuel and
Bister, 1996) to explain this tendency. The atmo-
spheric convection responds to an enhancement in
thermal forcing by more frequent occurrence (rather
than more vigorous convective events) to remove the
instability, while the characteristics are determined by
other factors (however, see Section 5 for large-scale
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Fig. 4. Accumulated interception loss over a 760 day period as
predicted by the analytical model and a Rutter model described in
Section 2.1 (Rutter2; thin solid line) with the same underlying
physics, but driven by a synthetic rainfall time series with the
same statistics.F denotes the results from analytical interception
function applied at each time step (thick solid line), whileF2

(dashed line) andF3 (dash-dotted line) are two approximations of
it. See text for more detail.



precipitation). Although it is straightforward to calcu-
latet r andim for each month, we will simply take the
mean values from the 25 month data here and use the
same values for each month. The results are found to
be insensitive to this difference. The main appeal of
this approach is that the resulting simplifications
require less input data. Thus, our task here is simply
to find ta for each month which is related to the
monthly mean precipitation�P by:

�P� �itr�
�ta� �

imtr

ta
�42�

Substitutingta with �P, one can then implement the
interception functionsF, F1, F2 andF3 as:

F � �P
im

a1 1
t0

tr
a2 1 1

t0

tb

� �21

2a3

" #( )
�43�

F1 �
�P

im
a1 1 b

t0

tr

� �
�44�

F2 �
�P

im
1 1

t0

tr
1 1

t0

tb

� �21� �
�45�

F3 �
�P

im
1 1

t0

tr

� �
�46�

where �P is the monthly mean rainfall, andtb is calcu-
lated usingtb � ta 2 tr: Note that all the other para-
meters except for�P andtb are constant for the whole
25 month period.

The predicted monthly and cumulative interception
loss using Eqs. (43) and (38) are shown in Fig. 5, as
well as the Rutter2 model described in Section 2.1
driven by the observed ARME hourly rainfall data
running at 1 min time step. For comparison, also
plotted is the measured total interception loss from
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Fig. 5. (a) Monthly mean; and (b) cumulative interception loss predicted by the analytical interception functionF (thick solid line) and simulated
by the Rutter model (Rutter2, thin solid line). (c) Cumulative interception loss predicted by the analytical interception functionF (solid line; as
in b), F2 (dashed),F3 (dash-dotted). Also plotted are the results from the Rutter model of Shuttleworth (1988b); dashed line), and the measured
total interception loss (Lloyd et al. 1988; scaled to the whole period using the 625 day available data, marked by a cross X on the right).



the ARME experiment (Lloyd et al., 1988; scaled to
the whole period using the data from 625 days of
available data), and the results from the Rutter1
model used by Shuttleworth (1988b). Their version
of the Rutter model differs from ours in that theirs
allows supersaturation. This tends to predict more
interception loss than Rutter2. The difference in the
results partly comes from the fact that we used
constant parameter values throughout the 25 months
while their parameters change with time. It is
interesting to note that the interception functionF2

andF3 overestimate by amounts similar to the Rutter1
model.

Fig. 5 shows that the theoretical interception func-
tion gives very similar results to Rutter2 in the cumu-
lative loss, while the month by month values differ
somewhat. The totals at the end of the 25 months from
the interception functionF and Rutter2 are similar, at
about 543 mm, while the measured value is 521 mm.
The total for Rutter1 is 680 mm.

It is interesting to see the effects of calculating the
total interception loss usingta derived for the whole
period (Table 1) rather than monthly. This involves a
single calculation using Eqs. (35) and (38). The result
gives a total interception loss of 537 mm, very close
the total calculated from the monthly data. This is no
surprise in the sense that the sampling is better for a
longer period. This also indicates that regime transi-
tion from season to season is probably not important
in the Amazon, where the rainfall is almost always
convective.

Similar tests are conducted for a mid-latitude site in
Les Landes forest in southwestern France during the
Hydrological Atmospheric Pilot Experiment
(HAPEX, Gash et al. 1995). The parameter values
are listed in Tables 3 and 4. The monthly and cumu-
lative interception loss calculated by the model and

the Rutter2 model are plotted in Fig. 6. The total
interception loss over the 11 month period is 77 mm
as calculated by the current model, 79 mm by the
Rutter2 model and 73 mm measured by Gash et al.
(1995). The analytical modelF using Eqs. (35) and
(38) andta for the whole period (Table 3) gives a
value of 81 mm.

Two things can be said about these results. The
good agreement between the theory and Rutter2
driven by real data indicates that the theory is capable
of predicting long-term interception loss using aver-
age rainfall characteristics, despite the simple (but
more realistic than in early works) assumptions
made about the rainfall statistics. Secondly, the
measurement uncertainty for the observed total inter-
ception loss is about 200 mm at the ARME site (Lloyd
et al. 1988) and the results from all the models above
including Rutter1 fall in this error range. At a stage
when research is still talking about the kind of accu-
racy with an error factor of two in land–surface
models (e.g. Lloyd 1990; Koster and Milly 1997),
the interception function approach proposed here
(including the approximationsF2 and F3 and fixed
storm characteristicstr and im) offers a simple and
powerful tool for estimating long-term interception
loss (Zeng et al. 2000).

5. Discussion and conclusion

Traditionally, one type of simple model of intercep-
tion is storm-based (Horton, 1919):

EI �Wg 1 cEI0tr �47�
Another type of model is empirically based (Horton,
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Table 3
Parameter values for Les Landes from 11 month data

Parameter Symbol Value

Mean storm inter-arrival time ta 33.2 h
Mean storm duration t r 2.5 h
Mean storm intensity im 1.0 mm h21

Canopy storage capacity Wc 0.56 mm
Wet canopy evaporation EI0 0.17 mm h21

Vegetation cover c 0.45

Table 4
Derived parameters for Les Landes

Parameter Symbol Value

Wc=EI0 t0 3.3 h
EI0=im e1 0.16
t0=tb e2 0.11
tr=t0 d 0.77
Eq. (30) a1 1.10
Eq. (31) a2 0.67
Eq. (32) a3 0.12
Eq. (A9) a4 0.16
Eq. (33) b 0.48



1919; Zinke, 1967; Blake, 1975):

EI � aPG 1 b �48�
wherePG is gross rainfall anda andb are empirically
derived parameters. Eq. (48) has been used for both
single-storm and long-term interception. In compar-
ing Eqs. (47) and (48), Horton stated that: “For practical
purposes, it will probably often be more convenient to
utilize interception results or formulae expressed in
terms of amount of precipitation rather than in terms
of shower duration, although the latter method of
expressing results appears to be more logical”.

Comparing Eqs. (48) with (43)–(46), our analytical
model provides a theoretical basis for the empirical
linear relationship (quasi-linear in the theory) based
on the storm description. The more realistic assump-
tions about temporal rainfall variability have allowed
the inclusion of the effects of finite storm intensity and
incomplete drying of the canopy. The physical

processes and their relative importance are quantified
by our analysis of successive approximations. The
coefficients are estimated based on the physical
processes including storm, canopy and environmental
characteristics. Thus the analytical model here
provides the link needed between the two apparently
different approaches Horton pondered upon three-
quarter of a century ago. In Eqs. (43)–(46), the
equivalent of the interceptb in Eq. (48) is necessarily
zero because our formulation applies to a long period
of time, so there should be no intercepted water when
there has been a long drought. The empirical formula
(48) was sometimes applied to shorter periods when
evaporation of remaining water from previous storm
is included (Gash, 1979).

Extra effort in deriving the formulation returns
rather simple results. The analysis indicates that
long-term interception loss is controlled primarily
by three time scales: the mean storm inter-arrival
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Fig. 6. (a) Monthly mean; and (b) cumulative interception loss for the Les Landes site in southwestern France predicted by the analytical
interception functionF (thick solid line) and simulated by the Rutter model (Rutter2, thin solid line). (c) Cumulative interception loss predicted
by the analytical interception functionF (solid line; as in b),F2 (dashed),F3 (dash-dotted). Also plotted is the measured total interception loss
(Gash et al. 1995) marked by a cross X on the right.



time ta; the mean storm durationtr and the time to
evaporate a wet canopyt0. The former two time scales
are precipitation related while the latter depends on
canopy water holding capacity and wet canopy evapora-
tion rate. Also relevant but less important is storm inten-
sity because most storms saturate the canopy quickly.

The seemingly direct proportionality of interception
loss toEI0 in Eq. (38) actually only applies to the part
related to storm durationtr (first term in Eq. (35))
because in the second termt0 includesEI0 (Eq. (3)).
So they cancel out in the equation forEI. This quantity
is nonetheless important and requires care when one
attempts to estimate it using limited amount of observa-
tion data. For instance, one would assume an upper limit
for EI0 being the net radiation and it can be estimated
using the Penman–Monteith equation applied to some
kind of mean condition over the whole period. The
observations in both validation sites show thatEI0

tends to be somewhat larger than the long-term mean
net radiation. This indicates that during and shortly after
the storms, the canopy environmental condition is such
that interception loss rate can temporarily exceed the
available radiation, implying a negative sensible heat
or a cooling of the surface (Stewart, 1977). It is not
clear what causes the larger (about 25% in the Amazon
case) evaporation rate than net radiation.

The theoretical results agree well with a Rutter model
when driven by synthetic rainfall time series. The
successive approximations reveal the relative impor-
tance of various physical characteristics and processes.
Additional assumption about the stationarity of convec-
tive rainfall allows the model to be applied to realistic
situations with gross rainfall as the major input variable.
Tests against observations and a Rutter model in the
Amazonand southwestern France demonstrate the theo-
ry’s reasonable success in predicting monthly intercep-
tion loss, and for the cumulative interception loss over
longer periods they can agree better because the statis-
tical assumptions are better satisfied.

It is worth noting that the analytical formulae can
be applied to long-term total interception by a single
calculation provided with the mean characteristics
listed above. In a tropical convective rainfall environ-
ment, these characteristics appear to be largely invar-
iant except for the storm inter-arrival time that can be
directly linked to gross rainfall. This lends a poten-
tially powerful method for a quick and reasonably
accurate estimate of interception loss with minimum

amount of input data. At mid-latitudes, however,
storm characteristics can vary more significantly. For
instance, the mean storm duration derived at Boston
(Eagleson, 1978) is more than twice as long as at Les
Landes. A Poisson process-based analysis indicates that
mid-latitude storms tend to have varying storm depth
much more than storm frequency (Salvucci and Song,
2000), in contrast to the convective storm characteristics
in the Amazon data. While further analysis of the
rainfall characteristics and tests of the present model
at various locations are needed, the first order distinc-
tion one can make is probably between convective and
large-scale precipitation regimes. This is especially
relevant because many sub-tropical and mid-latitude
locations tend to have convective storms in summer
and large-scale rainfall in winter.

Many current land–surface models used in GCMs
apply a Rutter model directly to a GCM grid box
which is typically a few 100 km wide. Despite efforts
in incorporating sub-grid rainfall variation, the lack of
or arbitrary assumptions about the temporal correla-
tion is probably responsible for the poor simulation of
interception loss in the tropics (e.g. Lloyd, 1990; Fig.
3 of Koster and Milly 1997). Insights provided by the
present analysis can help the treatment of interception
loss in these models.
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Appendix A

We first integrate Eq. (21) with respect toi:Z∞

0
Gfi di �

Z∞

is
Gs fi di 1

Zis

0
Gu fi di

< e2z{ tr 1 t0�1 2 e2tb=t0�} 1 t0
e1

2
ln z

1 e21
1 {1 2 �1 1 z�e2z}{ tr 2 t0�1 2 e2tr=t0�e2tb=t0}

�A1�
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where

e1 ; EI0=im �A2�

z ; is=im � e1�1 2 e2tr=t0�21 �A3�
In integrating the above, the symbolic algebra soft-
ware Mathematica (Wolfram, 1996) has been used.
The mean storm intensity is much larger compared
to the potential evaporation rate (see Section 2), i.e.
im q EI0; or e1 p 1: This has been used in integrating
the logarithmic term in Eq. (17) by neglectingO�e2

1�
terms.

Now integrate the above with respect totr:Z∞

0

Z∞

0
Gfi di

� �
fr dtr

� a1tr 1 t0{a2�1 2 e2tb=t0�2 a3 2 a4 e2tb=t0}

�A4�
where

d ; tr=t0 �A5�

a1 � 1 2
e1

d
1

a3

d2 �A6�

a2 � 1 2
2a3

d
�A7�

a3 � e1

2
ln

d

e1
�A8�

a4 � a3
d

�A9�

The integral involves Bessel functions of the second
kind and approximations were made usinge1 p 1:

Integrate the above with respect totb:Z∞

0

Z∞

0

Z∞

0
Gfi di

� �
fr dtr

� �
fb dtb

� a1tr 1 t0{a2�1 1 t0=tb�21

2 a4�1 1 tb=t0�21 2 a3} �A10�
The second term in the brackets is a second-order
term, i.e. it involvese1e2 wheree2 ; t0=tb p 1; and
it can be safely neglected to give Eq. (26) in Section 2.
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