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[1] Using a 25-year hindcast experiment, we explore the possibility of
seasonal-interannual prediction of terrestrial ecosystems and the global carbon cycle. This
has been achieved using a prototype forecasting system in which the dynamic
vegetation and terrestrial carbon cycle model VEGAS was forced with 15-member
ensemble climate predictions generated by the NOAA/NCEP coupled climate forecasting
system (CFS) for the period 1981–2005, with lead times up to 9 months. The results
show that the predictability is dominated by the ENSO signal with its major influence on
the tropical and subtropical regions, including South America, Indonesia, southern Africa,
eastern Australia, western United States, and central Asia. There is also important
non-ENSO related predictability such as that associated with midlatitude drought.
Comparison of the dynamical prediction results with benchmark statistical prediction
methods such as anomaly persistence and damping show that the dynamical method
performs significantly better. The hindcasted ecosystem variables and carbon flux show
significantly slower decrease in skill at longer lead time compared to the climate
forcing variables, partly because of the memories in land and vegetation processes that
filter out the higher-frequency noise and sustain the signal.
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1. Introduction: Prospect for Ecosystem and
Carbon Prediction

[2] An age-old method of environmental prediction that
society relies heavily on is the assumption that the seasonal
cycle repeats itself each year. A prominent example is the
seasonal shifting agricultural practice involving planting in
the spring, crop growth in the summer, and harvest in the
fall, an invention that dates back to the dawn of civilization.
However, interannual climate variability renders one year
different from another. The interannual climate anomalies
(deviations from an average seasonal cycle) tend to be less
predictable, often with adverse effects on human activities.
[3] Recently, forecasts of climate anomalies have been

used to predict certain ecosystem characteristics such as

crop yield and malaria epidemics, and the focus has been on
end-user applications such as farmers operating at regional
or smaller scales [e.g., Cane et al., 1994; Hammer et al.,
2000; Hansen and Indeje, 2004; Palmer et al., 2004]. The
methodology is typically statistical: observed correlation
between climate anomalies and a certain application indi-
cator, for example, crop yield, is used to predict this
indicator, provided that climate anomalies can be predicted
either statistically or dynamically. On the carbon cycle side,
several projects focusing on carbon data assimilation are
under way in which error propagation in observations and
model parameters is quantified and optimized to produce
the best analysis, thus laying the foundation for running a
model in prediction mode [Rayner et al., 2005; Scholze et
al., 2007].
[4] Here we develop a system for prediction of carbon

cycle variability on seasonal-interannual timescales within
an organized, quantitative framework.
[5] Distinction is made here between prediction and

projection. While projection of future ecosystem and carbon
cycle change in response to long-term climate change has
been considered in numerous studies, in particular Inter-
governmental Panel on Climate Change (IPCC) working
group II related activities, the work reported here aims at a
deterministic prediction on the shorter seasonal-to-interan-
nual timescales. In this case the prediction is deterministic
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for climate timescales, not weather timescales (which is
predictable only up to 1–2 weeks).
[6] What does one expect from seasonal-interannual eco-

carbon prediction? A main target is to predict spatial
patterns and temporal variability of carbon fluxes and
pool sizes (note that ecosystem productivity is typically
expressed as a carbon flux) a few months ahead of time.
Specific examples include reduced productivity and en-
hanced fire and CO2 flux from Amazon to Indonesia when
a drought is predicted, say in response to an upcoming El
Niño event, and concurrent reduced CO2 outgassing and
phytoplankton production in the eastern Equatorial Pacific
Ocean. Such linkages have been documented by observa-
tional and modeling studies [e.g., Jones et al., 2001; Zeng et
al., 2005a; Patra et al., 2005; Turk et al., 2001]. Another
example is to predict atmospheric CO2 concentration and
growth rate, say at Mauna Loa, or global total land-atmo-
sphere carbon flux. Although varying by only 2–3 ppmv on
interannual timescales which has little impact on green-
house effect, atmospheric CO2 is an integrated indicator of
the global biosphere and carbon cycle (recall how the
Keeling Curve of Mauna Loa CO2 concentration clearly
depicts the seasonal cycle of the Northern Hemisphere
biosphere) [Keeling et al., 1995]. Analogous to NINO3 as
an index for climate anomalies associated with ENSO,
atmospheric CO2 can be used as a broad index for anoma-
lies in the ecosystem function and the global carbon cycle.
Therefore, we will use global total land-atmospheric CO2

flux as a key indicator in measuring the prediction skill,
while also assessing the spatial distribution in ecosystem
productivity and carbon fluxes.
[7] Seasonal-interannual ecosystem and carbon cycle pre-

dictions have become possible due mainly to two strands of
research and development in recent years: (1) significantly
improved climate prediction systems, such as the National
Oceanic and Atmospheric Administration/National Centers
for Environmental Prediction (NOAA/NCEP) coupled Cli-
mate Forecast System (CFS) [Saha et al., 2006], and similar
efforts such as the European DEMETER and EUROSIP
project [Palmer and Shukla, 2000; Palmer et al., 2004]; and
(2) development of global dynamic vegetation and terres-
trial carbon cycle models on the land side and carbon-
ecosystem models on the ocean side that, when forced
offline by observed climate variables, are capable of simu-
lating the major interannual variability in CO2 fluxes
associated with phenomena such as ENSO and drought
episodes [Zeng et al., 2005a, 2005b; Peylin et al., 2005].
[8] Here we report a prototype prediction system where

the NCEP/CFS climate prediction is used to drive the
vegetation/terrestrial carbon model Vegetation-Global-
Atmosphere-Soil (VEGAS). The system is dynamical in
two important aspects: (1) the CFS predicts the evolution
of the physical climate system based on the basis of the
internal dynamics of the coupled atmosphere-land-ocean
system; and (2) the dynamic vegetation model represents
vegetation growth and decay, competition, and the full
terrestrial carbon cycle from photosynthesis to carbon allo-
cation and decomposition.
[9] Seasonal-interannual climate prediction has so far

relied heavily on ENSO prediction. For instance, major

teleconnections are seen across the tropics, as well as some
midlatitude regions such as western United States, southern
Africa, and central Asia. Such statistical linkage has been
employed for agricultural prediction, typically at regional
scale. Yet a state-of-the-art climate-carbon prediction sys-
tem may be able to capture other changes that may or may
not be associated with known modes of climate variability.
One example is the 1998–2002 midlatitude drought result-
ing from unusual synergistic anomalies in sea surface
temperatures in the Pacific, Indian, and Atlantic oceans
[Hoerling and Kumar, 2003; Zeng et al., 2005b]. Such
changes are difficult, if not impossible, for statistical
method to predict, but in principle are predictable in a
dynamical prediction system.

2. Design of the Eco-carbon Prediction System

2.1. Setup of the Prediction System

[10] We set up a prototype eco-carbon prediction system
using the dynamic vegetation and terrestrial carbon cycle
model VEGAS [Zeng, 2003; Zeng et al., 2004, 2005a]
forced by the predicted climate from the NCEP Climate
Forecast System [Saha et al., 2006]. This proposed frame-
work does not include ecosystem feedback to the climate
because current climate prediction systems are not set up to
do so. Since interannual climate variability arises largely
from the coupling between physical ocean, atmosphere, and
land, such a ‘‘one-way’’ approach will capture most of the
variability.
[11] Potential ambiguity warrants some explanation of the

key terminology:
[12] 1. Operational forecast: Predicting what will happen

in the future using dynamical or statistical methods, initial-
ized (dynamical) or trained (statistical) by observational
input from the past and present.
[13] 2. Hindcast or Retrospective Forecast: Similar to

operational forecast, except that the models are applied to
past situations, but using only observations to initialize
before the period the hindcast is issued for, i.e., even though
later observations are already available but are not used.
This retrospective approach is useful when the system can
be applied to a long period of time to test model skill. Thus,
in essence, hindcasting is not different from forecasting and
we will use the term ‘‘forecast’’ to describe a procedure
applicable to both when there is no ambiguity and ‘‘oper-
ational forecast’’ verus ‘‘hindcast’’ when distinction is
needed, while ‘‘prediction’’ is used similar to forecast but
in an even more general sense.
[14] 3. Validation versus Observation: Ideally, one should

use various observations to test the skill of the hindcast as
these events already took place. Unfortunately, unlike
climate variables such as precipitation and temperature,
there are only limited observations of the major ecosystem
and carbon variables with sufficient spatiotemporal resolu-
tion. The approach here is to use the results from an
‘‘offline’’ simulation in which the vegetation model was
forced with observed (as opposed to predicted) climate.
Such results for VEGAS had been previously compared
with CO2 fluxes derived using atmospheric inversion of
observed CO2 concentrations and satellite vegetation index
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[Zeng et al., 2005a; Rodenbeck et al., 2003]. Similar
comparisons have been conducted using other models
and inversions and the broad-scale interannual variability
in carbon fluxes have been found consistent with inversion
and other indicators [Peylin et al., 2005]. An example is
shown in Figure 1 for the total land-atmosphere carbon
flux. An overall agreement between the forward model and
the inversion is seen, although both have large uncertainty.
The uncertainty for the inversion can be seen in the
differences when different number of CO2 stations are
used, although the actual uncertainty is likely much higher.
Such offline forecast is what one would get if the climate
prediction is ‘‘perfect’’ (exactly like the observed climate)
and will be referred to as ‘‘the validation’’. Thus the skill
assessed here originates solely from climate prediction, not
from the vegetation model, and the difference between this
validation and the hindcast shows how errors in climate
prediction propagates into carbon cycle prediction. Never-
theless, this is fundamentally different from simply com-
paring the CFS predicted climate variables with their
observed counterparts, because the eco-carbon model is a
nonlinear transformation of the predicted climate informa-
tion. As we will show in our results, the skill in eco-carbon
prediction is actually higher than that of the climate forcing
because of many important ecosystem processes. Since the
model in its offline mode has been validated with inver-
sion, vegetation index, and other data, one has certain
confidence that the exercise here is not purely ‘‘mathemat-
ical’’, but suggests real potential for prediction; that is, the
hindcasted ecosystem and carbon variables should have
some realism compared to their observational counterparts
if available.
[15] Such a validation approach has been formally pro-

posed recently by Morse et al. [2005] in application to
malaria prediction where it is referred to as ‘‘tier-2’’

validation, while the kind using observed ecosystem and
carbon variables would be termed ‘‘tier-3’’ validation.
However, there is the possibility of some degree of tier-3
validation with currently available data such as site carbon
flux measurements. We chose the tier-2 approach here as a
key first step toward full validation without being hampered
by complication from data quality and other compounding
issues.
[16] The forecast procedure of our prototype system

includes a few major steps described below and illustrated
in Figures 2 and 3. It uses the hindcast setup with VEGAS
and CFS as an example, but can be done similarly in
operational forecast or for the ocean.
[17] 1. A 25-year (1981–2005) hindcasted climate data set

from NCEP/CFS [Saha et al., 2006] was preprocessed. To
avoid anybias towhich the carbonmodelmaybe sensitive, the
monthly anomalies (deviations from the 25-year mean clima-
tology) of precipitation/temperature were derived. These
anomalies were then added to an observed climatology of
CRU [Mitchell and Jones, 2005] to produce full-valued
climate forcings.
[18] 2. Spin up the vegetation model to equilibrium using

January 1981 climate forcing to avoid any ‘‘shock’’ to the
vegetation state at model startup.
[19] 3. Run VEGAS for 9 months into future forced by

CFS forecasts climate processed from step 1. This is a
continuous run from current to 9 months into future forced
by the continuous climate forcing. This is done 15 times
using 15 CFS ensemble members. The monthly forcing is
interpolated to the vegetation model’s daily time step. The
9 month and 15 member output of the ecosystem and
carbon cycle variables are saved as the hindcast output
predicted at this month.
[20] 4. The vegetation state variables such as leaf carbon

predicted at the end of the first month above are saved and

Figure 1. Global total land-atmosphere carbon flux simulated by the vegetation-carbon model VEGAS
forced by observed climate (black), compared to that derived from an inversion of a network of
atmospheric CO2 concentrations (red lines with each line representing an inversion using different
number of stations [Rodenbeck et al., 2003]), and the Mauna Loa CO2 growth rate (green). The results
were smoothed by a 12 month running mean to remove the seasonal cycle. This offline VEGAS
simulation is termed the ‘‘validation’’ and used here to validate the hindcasts in a ‘‘tier-2’’ validation
approach [Morse et al., 2005].
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averaged over the 15 member ensemble to serve as the
initial condition for the next month’s forecast.
[21] 5. Repeat steps 3 and 4, but for the next month, until

the end of the hindcast period.
[22] Compared to typical state-of-the-art climate predic-

tion in which sophisticated data assimilation is used for
initialization, step 4 is a simple way of initializing the
prediction. Carbon data assimilation has only been attemp-
ted recently [Rayner et al., 2005] and is not yet ready for
application to the prediction problem. However, an attempt
has been made in expanding a data assimilation system for
prediction by Scholze et al. [2007], although the focus there
is different from ours. Future research should explore ways
to assimilate ecosystem variables such as vegetation struc-
ture for prediction purpose.

[23] For a significant fraction of the land surface, espe-
cially in midlatitude regions, human management such as
agriculture, forestry and fire suppression has major impacts
on carbon fluxes. To avoid complications, our prototype
experiment here only considers natural variability and
potential vegetation. Useful results are expected despite of
this simplification because human management tends to
alleviate adverse climate effects such as drought, but not
to reverse them.

2.2. Model Description: Vegas and CFS

[24] The terrestrial carbon model VEGAS [Zeng, 2003;
Zeng et al., 2004, 2005a] simulates the dynamics of
vegetation growth and competition among different plant

Figure 2. Schematic diagram of a prototype forecast system, showing its configuration of model and
forcing.

Figure 3. Schematic diagram of a prototype forecast system, showing the temporal structure in real time
(horizontal axis, t from Jan1981 to Dec2005 at monthly interval) and forecast lead time (vertical axis,
L = 1 to 9 months). The ensemble mean of 1 month lead (L = 1) forecast of state variables is used to
initialize the model at the next month.
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functional types (PFTs). It includes four PFTs: broadleaf
tree, needleleaf tree, cold grass, and warm grass. The
different photosynthetic pathways are distinguished for C3
(the first three PFTs above) and C4 (warm grass) plants.
Phenology is simulated dynamically as the balance between
growth and respiration/turnover. Competition is determined
by climatic constraints and resource allocation strategy such
as temperature tolerance and height-dependent shading. The
relative competitive advantage then determines fractional
coverage of each PFT with possibility of coexistence.
Accompanying the vegetation dynamics is the full terrestrial
carbon cycle, starting from photosynthetic carbon assimila-
tion in the leaves and the allocation of this carbon into
three vegetation carbon pools: leaf, root, and wood. After
accounting for respiration, the biomass turnover from these
three vegetation carbon pools cascades into a fast soil
carbon pool, an intermediate, and finally a slow soil pool.
Temperature and moisture-dependent decomposition of
these carbon pools returns carbon back into the atmosphere,
thus closing the terrestrial carbon cycle. A fire module
includes the effects of moisture availability, fuel loading,
and PFT-dependent resistance. The vegetation component is
coupled to land and atmosphere through a soil moisture
dependence of photosynthesis and evapotranspiration, as
well as dependence on temperature, radiation, and atmo-
spheric CO2.
[25] The NCEP Climate Forecast System (CFS) is the fully

coupled ocean-land-atmosphere dynamical seasonal predic-
tion system that became operational at NCEP in August
2004 [Saha et al., 2006] (http://cfs.ncep.noaa.gov/). The
atmospheric component of the CFS is a lower-resolution
version of the Global Forecast System (GFS) that was the
operational global weather prediction model at NCEP
during 2003. The ocean component is the GFDL Modular
Ocean Model version 3 (MOM3). The land component is
that of Mahrt and Pan [1984]. There are several important
improvements inherent in the new CFS relative to the
previous dynamical forecast system. These include (1) the
atmosphere-ocean coupling spans almost all of the globe (as
opposed to the tropical Pacific only); and (2) the CFS is a
fully coupled modeling system with no flux correction (as
opposed to the previous uncoupled tier-2 system, which
employed multiple bias and flux corrections) [Kanamitsu et
al., 2002].
[26] The CFS provides important advances in opera-

tional seasonal prediction on a number of fronts [Saha et
al., 2006]. For the first time in the history of U.S.
operational seasonal prediction, a dynamical modeling
system has demonstrated a level of skill in forecasting
U.S. surface temperature and precipitation that is compa-
rable to the skill of the statistical methods used by the
NCEP Climate Prediction Center (CPC). This represents a
significant improvement over the previous dynamical
modeling system used at NCEP. Furthermore, the skill
provided by the CFS spatially and temporally comple-
ments the skill provided by the statistical tools. The
availability of a dynamical modeling tool with demon-
strated skill should result in overall improvement in the
operational seasonal forecasts and have significant practi-

cal implications for land climate variability relevant to
this project.

3. Results From the 25-Year Hindcast
Experiment

[27] An implementation of the forecast procedure
described in section 2.1 yielded a large hindcast
product even at monthly output frequency. It includes
300 (25 year � 12 month) forecasts with each forecast
consisting of 9 month lead time and 15 ensemble
members, in addition to the 2 dimensionality (latitude
and longitude), thus essentially a 5-dimensional data set
for all the vegetation and carbon variables. The simula-
tion is equivalent to a single model run of 40,500 months
(3375 years). As a prototype, VEGAS was run at a
relatively coarse resolution of 2.5� � 2.5�.
[28] To facilitate the analysis of the results, we define a

total land-atmospheric carbon flux as

Fta ¼ Rh � NPP ð1Þ

where NPP is the Net Primary Productivity and Rh is the
heterotrophic or soil respiration. Fta is sometimes termed
Net Ecosystem Exchange (NEE), but the ecological
literature is not always consistent on the definitions of
these terms [Chapin et al., 2006], e.g., whether fire should
be included. For simplicity here, the carbon loss due to fire
is lumped into autotrophic respiration (aboveground
biomass burned; thus in NPP) and Rh (litterfall burned)
because both fire and respiration lose carbon via oxidation,
so that Fta is zero under steady state, i.e., no net
accumulation of carbon over large spatial and long
timescales. While precipitation exerts strong control on
NPP (growth), temperature has a major control on Rh

[Schlesinger, 1991; Zeng et al., 2005a]. From the point of
view of ecosystem prediction, NPP is most relevant. For the
purpose of predicting atmospheric CO2, the net carbon flux
Fta is most relevant. While important variables such as leaf
biomass, fire carbon flux, Rh, and soil carbon are all
available, results will only be shown for NPP and Fta here.
[29] A ‘‘plume’’ chart (Figure 4) shows the hindcasted

NPP at one grid point in the Amazon and another in
southeastern United States for a 3.5-year period during
1996–1999. When compared with the validation, the hind-
cast NPP captures the large changes associated with the
1997–1998 El Niño. Each member of the ensemble forecast
starts from a slightly different initial condition in the climate
forecast while the initial vegetation state is the same for
each member as described above. The multiple ensemble
members (plumes) clearly demonstrate the power of ensem-
ble forecasting. For instance, some members from the
September 1997 Amazon forecast overpredict the decreased
NPP, some others predict increased NPP, but many others,
as well as the ensemble mean correctly predict decreased
NPP. In the March 1998 forecast for southwestern United
States, the model predicts an initial increase followed by a
decrease after 3 months, very similar to the validation,
suggesting skill in transitional events with long lead time.
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On the other hand, the transition after December 1998 was
only captured by few ensemble members. It is interesting
that southwestern United States has much larger scatter
across the ensemble members than the Amazon, and its
interannual variability is also larger relative to its seasonal
amplitude.
[30] Figure 5a shows the global total land-atmosphere

carbon flux from the hindcast compared to the validation.
The hindcasts reproduce the major interannual variability,
including two major El Niño events in 1982–1983 and
1997–1998, although the amplitude is underestimated
for 1997–1998. A surprising yet good result is that the
forecast deteriorates relatively slowly as a function of lead
time L (L = 1 month is the average of the first month and so
on); that is, a forecast 9 months into future still carries
significant amount of predictability compared to, for exam-
ple, a 1 month lead forecast. This is partly due to the spatial
averaging, partly due to the skill in the CFS predicted
climate, and also importantly due to the memory in the
hydroecosystem such as soil moisture which tends to filter
out higher-frequency noise. Such skill stems from the good
climate prediction skill in the tropics as CFS captures the
major interannual anomalies in precipitation and tempera-
ture there (Figures 5b and 5c), as long established by
observational and modeling work [Rayner et al., 1998;
Zeng et al., 2005a; Patra et al., 2005].
[31] Figure 6 shows anomaly correlation between the

hindcast and the validation land-atmosphere carbon flux
Fta for three lead times L = 1, 3, and 6 months.

Anomaly correlation is a commonly used skill indicator
defined as

r ¼ x0y0

sxsy

ð2Þ

where s is variance, prime denotes anomaly, overline
denotes average, x is any variable from the hindcast while y
is the corresponding variable from the validation. Many
land regions have some skill, with correlation greater than
0.5 in many places in the first month. A summary of
statistics (Figure 7) shows that for Fta at L = 1 month, 15%
of the land area has correlation higher than 0.5, and 62% of
the land area has correlation higher than 0.3 (statisti-
cally significant at 95% level based on student t-test).
At L = 3 months, 25% of the land area has correlation
higher than 0.3.
[32] The area with high skill tends to be in the tropics,

including the Amazon, Indonesia, and Australia, but also
midlatitude regions such as southern Africa, the U.S. West
and southwest/central Asia. This is not surprising, as these
regions all have well established teleconnection with ENSO,
the dominant interannual climate mode in precipitation and
temperature [e.g., Ropelewski and Halpert, 1987].
[33] The skill generally decreases at longer lead time

(larger L), as expected. At 3 month lead, the land area with
correlation higher than 0.5 in Fta dropped to 10% while it
decreased to slightly below 30% for correlation higher than
0.3. At 6 month lead, the skill decreases more, but signif-

Figure 4. A time section of the predicted NPP anomalies (kgC m�2 a�1) for two grid points, one over
the Amazon, the other one southwestern United States, compared to the validation (black line). Each line
represents one individual member of a 15-member ensemble forecast. For clarity, the forecasts were
‘‘thinned’’ to show only every 6 months and for a 6 month long forecast while the actual forecasts were
monthly and 9 months long. The top two panels are for anomalies while the lower panels include
seasonal cycle.
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icant correlation is still seen in the regions identified above
such as the Amazon and U.S. West, with only a few
regions having negative correlations (i.e., prediction is on
average opposite of what happened) that are not statisti-
cally significant.
[34] From the viewpoint of predicting global total eco-

system productivity or CO2, anomaly correlation may not
be the best indicator because regions with high correlation
may have small amplitude that contributes little to the
global total. A better measure for this purpose is regres-

sion as shown in Figure 8. In this case, regression is
defined as

R ¼ x0y0

sy

ð3Þ

Compared to Figure 6b, the regression pattern shown in
Figure 8 is dominated by the same regions with higher and
longer predictability such as the Amazon and southwestern
United States.

Figure 5. (a) Global total land-atmosphere carbon flux (PgC a�1) predicted by the hindcast experiment
compared to the validation (solid black line); (b) Tropical mean precipitation (mm d�1) from CFS
compared to the observation; (c) Tropical mean temperature (Celsius) from CFS compared to the
observation. Each line represents the 15-member ensemble mean of the forecasts for a particular lead time
(from 1 to 9 months), obtained by combining all the forecasts for that lead time. Seasonal cycle has been
removed.
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[35] A well known ‘‘spring barrier’’ exists in ENSO
prediction as prominently seen in the CFS precipitation
and the forecasted NPP, as the forecast made in the spring
has much lower correlation (Figure 9a) [e.g., Webster and
Yang, 1992; Saha et al., 2006]. This spring barrier in
climate prediction manifests itself in the ecosystem predic-
tion as a ‘‘summer barrier’’ with a delay of about one season
due to the memory in land and vegetation (Figure 9b).
[36] Because ENSO dominates the interannual CO2

signal, statistical skill analysis inevitably depicts how the
system performs with ENSO which tends to be dominated

by the tropics [Zeng et al., 2005a]. Because of this, any
statistical prediction will also be dominated by the ENSO
signal [e.g., Rayner et al., 1998; Jones and Cox, 2005;
Patra et al., 2005]. However, there are other important
variabilities a dynamical prediction system can also cap-
ture. For instance, during the period of 1998–2002, much
of the midlatitude Northern Hemisphere was in the grip of
a wide-spread drought caused by an unusual pattern of the
tropical ocean temperature anomalies [Hoerling and
Kumar, 2003]. Zeng et al. [2005b] suggested that this
drought played a key role in the consecutive large CO2

Figure 6. Anomaly correlation of net land-atmosphere carbon flux between validation and the forecasts
for lead time 1, 3, and 6 months.
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growth in 2002–2003. Figure 10 shows the hindcasted net
carbon flux averaged over 1998–2002 compared to the
validation. The hindcast captures much of the drought-

induced carbon flux in North America and Eurasia. Since
the hindcasts are only for 9 months, the 3.5-year average
shown in Figure 10 includes both the skill of the seasonal

Figure 7. Summary of correlation skill for Figure 6, showing the cumulative percentage area that have
correlation between forecasted and the validation Fta higher than a given value (horizontal axis).
Correlation values smaller than 0.1 (including negative correlations) are not shown. Note the rapid
decrease in skill at L � 2 in the CFS forecasted climate (precipitation and temperature), but the
significantly higher skill in the carbon model forecasted NPP and Fta.

Figure 8. Regression between the forecasts and the validation land-atmosphere carbon flux Fta for lead
time of 3 months (kgC m�2 a�1). Compared to the correlation in Figure 6b, large flux anomalies remain
only in regions with strong ENSO teleconnection which are also the main contributors to global total
carbon flux.
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forecast and the persistence of the drought. Nonetheless,
the persistence ultimately comes from SST that provides
useful information for predicting the biosphere. In the case
of long-lasting climate anomalies, even if the seasonal
climate prediction itself has no skill, the dynamic vegeta-
tion model would carry past climate information into
future because its initial condition reflects cumulative
effect of the past.
[37] The pillar of seasonal-interannual climate prediction

is the predictability related to the tropical ENSO SST
anomalies which generally weakens outside the tropics.
The fact that the forecasted ecosystem response is similar
to the validation indicates that significant predictability also
exists in regions outside the tropics. Since these variabilities
are not always related to ENSO, other variations captured

by the CFS forecast system are also useful for eco-carbon
prediction.

4. Comparison of the Dynamical Method With
Some Statistical Methods

[38] While the hindcast experiments discussed above
demonstrate significant skill in seasonal prediction, it is
important to establish benchmarks to which the dynamical
prediction can be compared. Two statistical methods are
used here in the absence of information on future climate.
The first is the persistence method in which the climate
anomaly at the time of forecast is simply assumed to persist
into future (Persistence). The second is a damping method
in which the climate anomaly at the time of forecast is

Figure 9. Seasonal dependence of the forecast skill (correlation between forecast and the validation for
precipitation and Fta averaged over the tropics). The vertical axis is lead time L while the horizontal axis
is the month the forecast was issued. A so-called ‘‘spring barrier’’ is prominent in the CFS precipitation
and the forecasted Fta as the forecast made in the spring has much lower correlation. Note that the spring
barrier in climate prediction manifests itself in Fta as a ‘‘summer barrier’’ with a delay of about one
season due to the memory in land and vegetation.

Figure 10. Land-atmosphere carbon flux (kgC m�2 a�1) averaged for the midlatitude drought period of
1998–2002 from (a) the hindcast at L = 6; and (b) the validation.
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assumed to decrease at a rate defined by the decorrelation
timescale of the variable (e.g., precipitation). An autocor-
relation analysis using the observed precipitation and tem-
perature was conducted with the seasonal cycle preremoved
(not shown), and the decorrelation timescale ranges from
3–7 months. Then climate anomalies for the ‘‘future’’ were
allowed to decrease exponentially from the current values to
zero at the (spatially varying) decorrelation timescale
(Damping). An additional experiment was also conducted
in which climate forcing anomalies were set to zero in the
9 month forecast, thus showing only the decay of the initial
condition (Initial Condition) which reflects the cumulative
effect of past anomalies.
[39] Figure 11 shows the anomaly correlation of tropical

Fta. These two benchmark methods have skill comparable to
the dynamical prediction at L = 1 and 2. Not surprisingly,
their skills deteriorate faster than the dynamical prediction.
At L = 9, the anomaly correlation for the dynamical
prediction is still over 0.6 while the two statistical bench-
mark methods have about 0.4. These are all statistically
significant at 95% level.
[40] Another issue of interest is how much of the predict-

ability comes from the memory in the eco-carbon system
(Initial Condition). If no information on climate anomaly is
used, as in the case of Initial Condition only, the skill drops
much more rapidly. While this is expected, an interesting
finding is the memory effect in land and vegetation that
nonetheless gives rise to a correlation of 0.4 at L = 3 and 0.2
at L = 9.
[41] Anomaly correlation depicts the skill in phase rela-

tionship, but it does not compare magnitude of the changes.

For this purpose, we use the Taylor diagram [Taylor, 2001],
a method originating from atmospheric model intercompar-
ison that depicts simultaneously in a 2-D plot the magni-
tude, phase, and root-mean-square errors. Figure 12 shows
the following for tropical carbon flux:
[42] 1. The fully dynamical prediction has a correlation

that decreases slowly from 0.8 to 0.65 as lead time increases
from 1 to 9 months, while Persistence and Damping
decrease more rapidly from 0.8 to 0.4 (more clearly seen
in Figure 11).
[43] 2. The amplitude (standard deviation or variance)

changes only slightly from L = 1 to 9 for the dynamical
method (1.1 of validation at L = 9). In contrast, Persis-
tence amplitude increases rapidly and reaches 1.7 (70%
higher) of validation at L = 9. Instead, the Damping
method has an amplitude that decreases to 0.4 of valida-
tion at L = 9. Neither is surprising in that Persistence
maintains the anomaly, while the signal decreases toward
zero in Damping.
[44] 3. In the Initial Condition only case, correlation

decreases from 0.64 to near 0.1 while the amplitude from
Figure 11. The correlation skill between hindcast and the
validation of tropically averaged land-atmosphere carbon
flux for four forecasting methods: Dynamical, Persistence,
Damping, and Initial Condition only. Values above 0.39 as
indicated by the horizontal line are statistically significant at
95% level.

Figure 12. Taylor diagram [Taylor, 2001] showing the
skill of the fully dynamical prediction (Dynamical)
compared to Persistence, Damping, and Initial Condition
only. The radial distance indicates standard deviation of
each method normalized by that of the validation, while the
azimuth angle represents the anomaly correlation between
each forecast and the validation. The distance to the REF
point (the validation, or where a perfect forecast would be)
is the root-mean-square (RMS) error. Plotted dots are for
tropical total carbon flux. The numbers indicate lead time L
in months. The Dynamical method has high skill that decays
slowly with lead time. Persistence deteriorates modestly in
correlation but with rapid amplitude overprediction, while
Damping leads to rapidly underpredicted amplitude. Initial
Condition only has lower but non-negligible skill.
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0.5 to 0.1 of validation, thus the signal is ‘‘forgotten’’ much
more quickly than the other methods. This is not surprising
as the persistence method makes the climate anomaly last
longer, while the damping method relaxes the anomaly to
zero. In many ways, the initial condition only case is an
extreme of the damping method, but with the climate
anomaly damped to zero instantaneously. Its skill is the
lowest both in amplitude and phase in Figure 12. Despite
this, as discussed previously, the spatial patterns show that
in certain regions where the ENSO influence is strong, the
memories in land and vegetation have significant contribu-
tion to the eco-carbon predictability. In summary, although
some signal is carried along by the initial condition, simple
statistical methods such as persistence and damping as-
sumption of climate anomalies improve significantly, but
dynamical prediction is much better especially at long lead
time.

5. Discussion and Conclusion

[45] Using a 25-year hindcast experiment, we demon-
strate the feasibility of seasonal-interannual prediction of
terrestrial ecosystems and the global carbon cycle variables.
This has been achieved using a prototype forecasting system
in which the dynamic vegetation and terrestrial carbon cycle
model VEGAS was forced with the 15-member ensemble
climate prediction with lead time up to 9 months from the
NCEP/CFS climate forecast system.
[46] The results show that the predictability is dominated

by the ENSO signal for its major influence on the tropical
and subtropical regions, but there is also important non-
ENSO related predictability such as that associated with
midlatitude drought. The correlation between global total
land-atmospheric carbon flux from the hindcast with that
from a validation experiment in which observed climate
was used to drive the carbon model is higher than 0.42 at
3 month lead time. The correlation is higher at 0.79 for
the tropical flux, while it is only 0.56 for the Northern
Hemisphere extratropics. The anomaly correlation is higher
than 0.3 for 25% of the land area at 3 month lead. Much of
the predictability comes from regions with major ENSO
teleconnection such as the Amazon, Indonesia, western
United States, and central Asia.
[47] Compared to the CFS predicted precipitation and

temperature where skill deteriorates rapidly at longer lead
time, the hindcasted NPP and carbon flux show significantly
slower decrease in skill, especially for the global or tropical
total carbon flux, likely because of the memories in land and
vegetation processes that filter out the higher-frequency
noise and sustain the signal.
[48] Comparison of the dynamical prediction results with

benchmark statistical methods show that the dynamical
method is significantly better than either anomaly persis-
tence or damping of the current climate anomalies. Using
initial condition only also leads to some predictability,
consistent with the notion of a land-vegetation memory.
Given the high correlation between ENSO and MLO CO2, it
is expected that a simple regression on ENSO will have
good skill in prediction MLO CO2 [Jones and Cox, 2005;
Patra et al., 2005]. Our test shows that the dynamical

prediction has better skill (correlation 0.55 compared to
0.46 for ENSO regression). Of course the dynamical meth-
od also gets the geographical distribution as well as changes
not related to ENSO.
[49] The validation of the hindcasts described here uses a

tier-2 approach [Morse et al., 2005]; that is, the validation is
from an offline model rather than direct observations of the
ecosystem and carbon variables. However, since the model
in its offline mode has been validated with fluxes from
atmospheric inversion, vegetation index, and other data
(Figure 1) [Zeng et al., 2005a, 2005b; Qian et al., 2008];
our results suggest real potential for prediction in that the
hindcasted ecosystem and carbon variables do represent
nature to a certain degree. Obviously, in-depth evaluation
will be needed in the future.
[50] We conclude that seasonal-interannual prediction of

the ecosystem and carbon cycle is feasible. Such predic-
tion will be useful for a suite of activities such as
ecosystem management, agriculture, and fire preparedness.
The current system can be improved in several ways
including (1) combination of statistical and dynamical
methods; for instance, statistically correcting the systematic
bias in the climate prediction; and (2) the initialization used
is simplistic and can be improved in the future with
observed climate variable and in conjunction with carbon
data assimilation [Rayner et al., 2005; Scholze et al., 2007].
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