
Variability of Basin-Scale Terrestrial Water Storage from a PER Water Budget
Method: The Amazon and the Mississippi

NING ZENG

Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland,
College Park, College Park, Maryland

JIN-HO YOON

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

ANNARITA MARIOTTI

Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland,
and ENEA Climate section, Rome, Italy

SEAN SWENSON

University of Colorado, Boulder, Colorado

(Manuscript received 15 August 2006, in final form 17 April 2007)

ABSTRACT

In an approach termed the PER method, where the key input variables are observed precipitation P and
runoff R and estimated evaporation, the authors apply the basin water budget equation to diagnose the
long-term variability of the total terrestrial water storage (TWS). Unlike the typical offline land surface
model estimate where only atmospheric variables are used as input, the direct use of observed runoff in the
PER method imposes an important constraint on the diagnosed TWS. Although there is a lack of basin-
scale observations of evaporation, the tendency of E to have significantly less variability than the difference
between precipitation and runoff (P � R) minimizes the uncertainties originating from estimated evapo-
ration. Compared to the more traditional method using atmospheric moisture convergence (MC) minus R
(MCR method), the use of observed precipitation in the PER method is expected to lead to general
improvement, especially in regions where atmospheric radiosonde data are too sparse to constrain the
atmospheric model analyzed MC, such as in the remote tropics.

TWS was diagnosed using the PER method for the Amazon (1970–2006) and the Mississippi basin
(1928–2006) and compared with the MCR method, land surface model and reanalyses, and NASA’s Gravity
Recovery and Climate Experiment (GRACE) satellite gravity data. The seasonal cycle of diagnosed TWS
over the Amazon is about 300 mm. The interannual TWS variability in these two basins is 100–200 mm, but
multidecadal changes can be as large as 600–800 mm. Major droughts, such as the Dust Bowl period, had
large impacts, with water storage depleted by 500 mm over a decade. Within the short period 2003–06 when
GRACE data were available, PER and GRACE show good agreement both for seasonal cycle and inter-
annual variability, providing potential to cross validate each other. In contrast, land surface model results
are significantly smaller than PER and GRACE, especially toward longer time scales. While the authors
currently lack independent means to verify these long-term changes, simple error analysis using three
precipitation datasets and three evaporation estimates suggest that the multidecadal amplitude can be
uncertain up to a factor of 2, while the agreement is high on interannual time scales. The large TWS
variability implies the remarkable capacity of land surface in storing and taking up water that may be
underrepresented in models. The results also suggest the existence of water storage memories on multiyear
time scales, significantly longer than typically assumed seasonal time scales associated with surface soil
moisture.
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1. Introduction

Freshwater stored on the continents in the soil, at the
surface, or underground is fundamental for life on land.
These water reservoirs are also important for climate as
they provide potential feedback mechanisms for cli-
mate variability (e.g., Yeh et al. 1984; Delworth and
Manabe 1993; Zeng et al. 1999; Koster et al. 2004).
Motivated in part by the prospect of improving sea-
sonal-interannual climate prediction using the knowl-
edge of soil moisture state, there has been significant
interest in soil moisture variability in recent years.

Several methods have been used in obtaining soil
moisture information, including in situ observations,
satellite remote sensing, offline land surface model
simulations, land data assimilation, and basin-scale
budget analysis. Table 1 lists some of these methods
and examples as well as their main characteristics.
While being ground truth, in situ observations are lim-
ited in spatial and temporal coverage, mostly in a few
regions, including the United States, former Soviet
Union, and China. Models resolve soil moisture at high
spatiotemporal resolution but are less constrained by
observation. Satellite gravity measurements only have
reliable information on scales larger than a few 100 000
km2, that is, the size of a medium-size river basin. The
two basin budget methods only give basin-scale soil wa-
ter storage, but there is no fundamental limit on the
basin size.

Each of these methods has its own advantages and
limitations. There is limited understanding of the con-
sistency or agreement of these often independent meth-
ods. While there is a reasonable understanding of the
climatological seasonal cycles of all aspects of the hy-
drological cycle, there is a significant lack of knowledge
on the interannual variability of terrestrial hydrological
variables, including soil moisture.

While most other methods in Table 1 estimate near-
surface soil moisture, the two basin budget approaches
and the satellite gravity sensor measure total terrestrial
water storage (TWS). This water storage includes mois-
ture near the surface but also at the surface (snow and
reservoir), deeper soil moisture, and groundwater (Fig.
1). Deep soil and groundwater variability may be par-
ticularly large (Rodell and Famiglietti 2001; Senevi-
ratne et al. 2004). There is some confusion of terminol-
ogy in literature as “soil moisture” is sometimes used to
describe all the water on land. Here we make a clear
distinction between the various components of the wa-
ter storage versus the total (TWS) as shown in Fig. 1.
For instance, a traditional land surface model simulates
only soil moisture 1–2 m below the surface, which

would be smaller than the total water storage discussed
in this paper.

Much emphasis has been on near-surface soil mois-
ture, partly because seasonal crops in agriculture are
typically shallow rooted. However, trees, shrubs, and
some natural grasses can have very deep roots that have
been observed to take water from deep soil and
groundwater, for instance, below 8 m over the Amazon
(Nepstad et al. 1994), 5–20 m in Edwards Plateau,
Texas (Jackson et al. 1999), and 7 m in Arizona (Davis
and Pase 1977). Recent research has suggested the po-
tential importance on land hydrology and climate of
such variability through plant deep root water uptake
(Kleidon and Heimann 2000; Jackson et al. 2000;
Amenu et al. 2005). In addition to the apparent effects
of irrigation and drinking water usage, the role of un-
derground water in climate may also be more important
than once thought. The ability of forest roots to use
deep water in the Amazon is critical in sustaining the
large dry season evapotranspiration (Shuttleworth
1988; Nepstad et al. 1994) and further influencing cli-
mate through water vapor recycling. When deeper wa-
ter storage is utilized by vegetation, the dynamic range
of effective field capacity becomes larger and leads to a
longer land water memory that may be of importance
to climate variability. There is, thus, a strong need in
knowing how water storage, especially in the lower
part, varies over time and space.

In general, observations have been too short to dem-
onstrate decadal soil moisture variability, but such in-
formation is becoming available for a few places, such
as the Ukraine (Robock et al. 2005) and Illinois
(Hollinger and Isard 1994; Yeh et al. 1998; Rodell and
Famiglietti 2001). Here we propose a new application
of the basin-scale water budget equation termed PER
method, where the key input variables are observed
precipitation P and runoff R and evaporation E. In
addition to seasonal-interannual variability, the PER
method presented here can provide useful information
on decadal and longer timescale water storage variabil-
ity, limited mainly by the length of precipitation and
runoff data. This method is to apply the simple basin
water budget equation to diagnose the long-term vari-
ability of TWS using observed precipitation and runoff
and estimated evaporation. We present the method in
section 2 and contrast it with the more traditional
method using atmospheric moisture convergence and
runoff, also with typical offline land surface modeling.
We then discuss the seasonal cycle and interannual
variability from this method for the Amazon basin in
sections 3 and 4, and compare the results with the mois-
ture convergence method and satellite gravity-based
observations. In section 5, the long-term TWS variabil-

15 JANUARY 2008 Z E N G E T A L . 249



ity is presented for the Mississippi basin. Uncertainties
of the method are discussed in section 6, followed by a
comparison with the newly available Gravity Recovery
and Climate Experiment (GRACE) satellite data for
2003–06 (section 7) and conclusions in section 8.

2. Methodology, data, and models

a. Basin budget method for total water storage:
MCR

The traditional moisture convergence method
(termed MCR here; Rasmusson 1968; Roads et al. 1994;
Masuda et al. 2001; Zeng 1999; Seneviratne et al. 2004)
considers the atmosphere and land surface over a drain-
age basin as one single box, thus precipitation and
evaporation vanish as interior fluxes for the total water
budget. In this method (Fig. 2), moisture convergence
(C; the vertically integrated water vapor flux) and ob-
served streamflow for the drainage basin (runoff inte-
grated over the whole basin) are integrated to obtain
the change in atmosphere W and soil water storage S:

d�W � S�

dt
� C � R. �1�

Using the recent atmospheric reanalyses, this method
appears to produce reasonable estimates of the sea-
sonal cycles and in some cases year-to-year variability
over several basins around the world [Roads et al.

FIG. 1. Major components of total land water storage. Tradi-
tional methods, including in situ soil moisture measurements and
land surface modeling, have focused on the near-surface compo-
nent. This study focuses on the TWS using basin budget PER
method.

TABLE 1. Methods commonly used to estimate soil moisture variability.

Method Examples Advantages Limitations

Degree of
observational

constraint

In situ Global soil moisture
data banka

Direct measurement Point data; limited coverage;
near surface

High

Remote sensing microwave Microwaveb High spatial and temporal
resolution

Surface; area sparsely vegetated High

Remote sensing gravity GRACEc Independent; total column Low resolution; only since 2002 High
Offline land model forced

by atmospheric variables
GSWPd; PDSIe High spatial and temporal

resolution
Model dependent; top soil layers Medium

Data assimilation model �
observation

GLDASf High spatial and temporal
resolution

Model dependent; top soil layers Medium-high

Basin-scale budget MCR Rasmusson (1968) Long-term; total column Basin only; sensitive to quality of
atmospheric data

Medium

Basin-scale budget PER This study Long-term; total column Basin only; some uncertainty in
evaporation

Medium-high

a Robock et al. (2000).
b Engman and Chauhan (1995).
c Tapley et al. (2004) and Wahr et al. (2004).
d Dirmeyer et al. (1999).
e Palmer drought severity index.
f Global Land Data Assimilation System: Rodell et al. (2004a).
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(1994); Zeng (1999); Seneviratne et al. (2004); change
in W is typically much smaller than that of S]. However,
on decadal and longer time scales, the results are less
robust especially over remote tropical regions, such as
the Amazon. Our analysis (not shown) suggests that the
lack of radiosonde data in these regions left the host
atmospheric model poorly constrained and the simula-
tion of convective rainfall is one of the weaker aspects
of the models. Artificial jumps in the reanalysis systems
when different observations are injected (Kalnay et al.
1996; Betts et al. 2005) may also be important. Such
problems may be significantly alleviated if the observed
precipitation is used in place of moisture convergence
because precipitation is generally a better observed
quantity over a longer period of time, and this leads to
the PER method.

b. Basin budget method for total water storage:
PER

In the PER method, only the land surface is consid-
ered (Fig. 3). The water budget equation for the land
box is

dS

dt
� P � E � R, �2�

where S is the total terrestrial water storage, P is pre-
cipitation, and E is evaporation (for simplicity, we use

evaporation and evapotranspiration interchangeably
here).

In this method, precipitation and runoff are ob-
served, and evaporation may be estimated using a land
surface model driven by observed precipitation and
other atmospheric variables (see caveats below in sec-
tion 2c). Thus the water budget Eq. (2) can be explicitly
written for this method as

dS

dt
� Pobs � Eest � Robs, �3�

where the subscript “obs” denotes “observation,” and
“est” denotes “estimate.” Compared to the moisture
convergence method, the PER method uses observed P
and R, thus more observational constraint. In contrast,
offline land surface model uses only observed P as in-
put (section 2e).

Similar to the moisture convergence method (Ras-
musson 1968; see discussions of this technique in Zeng
1999), a constant correction is added to E such that P �
E* � R (E* � E � correction) integrated over the
analysis period is zero. As a result, the diagnosed TWS
has the same value at the beginning and the end of the
integration. This is equivalent to removing a linear
trend in TWS. This correction is necessary as typical
estimation of E tends to have systematic bias when
compared to P � R, as indicated by the vertical shifts of
E estimates relative to P � R in Fig. 4. This bias can
easily result in unrealistically large drift (trend) in the
integrated S [e.g., Fig. 6c of Zeng (1999) and Fig. 9a of

FIG. 2. The moisture convergence method in diagnosing basin-
scale soil moisture variability. The atmosphere and land are
treated as one single box such that the total water storage (W �
S) can be diagnosed as a time integral of moisture convergence (C;
from atmospheric analysis) � R (observed); P and E are not
needed because they are interior fluxes. Adapted from Zeng
(1999).

FIG. 3. Vertically integrated land water budget. Total S is a time
integral of P � E � R. In the PER method, P and R are from
observations while E needs to be estimated using model. In con-
trast, a typical offline land surface model uses only observed P
while E and R are modeled.
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Seneviratne et al. (2004) for similar situations in MCR
method]. For instance, because E in the National Cen-
ters for Environmental Prediction–Department of En-
ergy (NCEP–DOE) reanalysis-2 (NCEP R2; Kana-
mitsu et al. 2002) is about 1 mm day�1 larger than P �
R (Fig. 4a), the imbalance without E correction would
lead to about a 365-mm drift at the end of the first year,
so that the diagnosed S would go out of range in 2–3 yr
(e.g., Fig. 6b). Although simple-land (SLand; Zeng et
al. 2000; see description below in section 2e) has a
rather small bias in the Amazon, it is larger in the Mis-
sissippi. Thus this is a fundamental limitation of this
method in that only the relative changes within the in-
tegration period can be inferred from such methods.
But the relative variations within the period still pro-
vide valuable information not readily available other-
wise.

c. Potential weakness of the PER method:
Evaporation

The main potential weakness of the PER method is
that basin-scale evaporation is generally not available
and needs to be estimated. Should such estimates in-
troduce large error, uncertainty would be large in the
diagnosed water storage. Equation (3) indicates that a
sufficient criterion is for the variation of Eest to be sig-
nificantly smaller than that of Pobs � Robs. Because the

magnitude of variation is often time scale dependent,
this criterion may differ, for instance, on seasonal ver-
sus interannual time scales.

Observational evidence suggests that evaporation in-
deed tends to have relatively small variation. Field
measurements at the heart of the Amazon rain forest
show a rather small seasonal amplitude in evaporation
despite the large seasonal cycle in precipitation and soil
moisture (Shuttleworth 1988; Werth and Avissar 2004).
In the extratropics, such as the Mississippi basin where
radiation (thus potential evaporation) has large sea-
sonal cycle, the seasonal amplitude of E can be large,
but the interannual variation is much smaller. To assess
the uncertainty introduced by estimated evaporation,
we have analyzed the evaporation from the model
SLand (Zeng et al. 2000) and from the following re-
analysis products: the 40-yr European Centre for Me-
dium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA-40; Gibson et al. 1997), NCEP R2
(Kanamitsu et al. 2002), and the North American Re-
gional Reanalysis (NARR; Mesinger et al. 2006). The
reanalysis E was also simulated by the embedded land
surface model, which is typically more sophisticated
than SLand. The results (Fig. 4) show that the variance
of interannual variability in E is smaller than Pobs �
Robs by a factor of 3 to 8 (as measured by standard
deviation) over the Amazon, while for the Mississippi it

FIG. 4. Here E estimated from the SLand model and ERA-40, NCEP R2, and NARR
reanalyses compared to observed P � E (mm day�1). The uncertainty in diagnosed water
storage [Eq. (3)] due to the estimated E would be small if E variability is significantly smaller
than that of P � E. Seasonal cycle has been removed using a 12-month running mean.
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is a factor of 2 to 3 smaller. This of course does not
exclude possible larger uncertainties for particular
events. For instance, the changes in NARR evaporation
in 1988 and 1999 are comparable to P � R, with con-
sequences that will be discussed in section 6. Thus, in
the worst-case scenario, even if the estimated Eest is
completely out of phase with the (unknown) truth, the
diagnosed water storage would still reflect the domi-
nant signal from Pobs � Robs. In practice, the uncer-
tainty would be smaller than the worst-case scenario
because the model estimate can capture the variability
in E to some degree because it is mainly driven by
observed precipitation and radiation. The resulting un-
certainties in diagnosed TWS will be assessed in section
6 using multiple evaporation estimates.

d. Forcing data for the PER and MCR method

To study the TWS variability in the Amazon and
Mississippi drainage basin using the PER method, the
observed gauge-based precipitation for 1901–2002 from
the Climate Research Unit of the University of East
Anglia (CRU; New et al. 1999; Mitchell and Jones
2005) was used in Eq. (3). Precipitation from the gauge-
based Precipitation Reconstruction over Land (PRECL;
Chen et al. 2002) dataset for 2003–06 was merged with
CRU to produce a “control” precipitation dataset that
was used for most of the analysis unless otherwise
specified. We also used precipitation from the satellite–
gauge blended Climate Prediction Center (CPC)
Merged Analysis of Precipitation (CMAP; Xie and Ar-
kin 1996) dataset, and the uncertainties due to the use
of these three different precipitation datasets will be
discussed in section 6.

The monthly historical streamflow records for the
Amazon River at Obidos and for the Xingu River at
Altamira were used to reconstruct the Amazon basin
runoff, following the method used by Zeng (1999). The
Amazon runoff data are from the Brazilian National
Water Agency (ANA). The data are noninterrupted
from 1970 to 2006. The historical streamflow of the
Mississippi River basin observed at Vicksburg, Missis-
sippi, extends only to September 1998 [obtained from
the National Water Information System, U.S. Geologi-
cal Survey (USGS) Web site http://waterdata.usgs.gov/
nwis/]. Recent record of the streamflow is estimated
based on the daily data of water height observed at the
same location [0800 central standard time (CST) read-
ing], which is obtained from http://rivergages.com
maintained by the U.S. Army Corps of Engineers. Fol-
lowing Qian et al. (2007), a simple linear regression
between the streamflow and the river height for the
period of 1948 till 1997 provided the long-term stream-
flow data (S � river level � 0.07452 � 0.06102). The

long-term variability from 1928 to 2006 for the Missis-
sippi basin will be analyzed.

Evaporation is estimated using an offline simulation
of SLand (section 2e) forced by the CRU precipitation
(but PRECL or CMAP is used for sensitivity experi-
ments discussed in section 6). Here, E* estimated using
SLand will be the “control-case” evaporation and will
be used in all of the analysis and figures unless other-
wise specified. For comparison, we will also show re-
sults using the ERA-40, NCEP R2, and NARR reanaly-
sis evaporation products as discussed in section 2c
above. The precipitation and evaporation data were ag-
gregated to the drainage basin of interest as basin av-
erages, and Eq. (3) was integrated at monthly time step
to obtain S, with an arbitrary integration constant. Sec-
tion 6 will also discuss the uncertainty due to the use of
different evaporation estimates from SLand, ERA-40,
NCEP R2, and NARR.

For the MCR method for the Amazon seasonal cycle
in section 3, moisture convergence from the reanalyses
NCEP–National Center for Atmospheric Research
(NCAR; Kalnay et al. 1996), ERA-40 (Gibson et al.
1997), and Goddard Earth Observing System version 1
(GEOS1; Schubert et al. 1993) is used in addition to the
runoff above.

The Southern Oscillation index (SOI) is used as an
index for the atmospheric variability over the tropical
Pacific Ocean for comparison purpose because the
Amazon climate and hydrological variability are signifi-
cantly influenced by the El Niño–Southern Oscillation
(ENSO; e.g., Zeng 1999).

e. Land surface model and the GRACE gravity
data

In a one-layer land surface model running in offline
mode (i.e., not interacting with the atmosphere), Eq.
(2) is forced by P, while E and R are simulated (pa-
rameterized) as functions of S [and also precipitation,
radiation, and other variables and parameters (see, e.g.,
the bucket model of Manabe et al. 1965 or the SLand
model of Zeng et al. 2000)]:

dS

dt
� Pobs � Emod�S� � Rmod�S�, �4�

where the subscript “mod” denotes “modeled.”
The precipitation from the CRU dataset and surface

air temperature from the National Aeronautics and
Space Administration (NASA) Goddard Institute for
Space Studies (GISS; Hansen et al. 1999) were used in
conjunction with the climatological values of surface
wind and vapor pressure, along with radiation from the
NCEP–NCAR reanalysis to drive an offline model
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SLand (Zeng et al. 2000) coupled to a dynamic vegeta-
tion model Vegetation–Global–Atmosphere–Soil
(VEGAS; Zeng et al. 2005). The model was run at
1° � 1° resolution at daily time step and the results
were then aggregated over the studied basin for the
budget analysis at monthly time steps.

The CPC leaky bucket model was run similarly as
SLand, driven by precipitation from PRECL and air
temperature from NCEP–NCAR reanalysis 1 (Fan and
van den Dool 2004). Compared to SLand, which has a
field capacity of 500 mm, the leaky bucket model has a
750-mm field capacity.

In a multilayer land surface model, a similar budget
equation can be obtained if all the layers are vertically
integrated. It is beyond the scope of this paper to de-
scribe them, and the readers are referred to Shao and
Henderson-Sellers (1996) for a summary of such mod-
els. Here we will use one such model, the Common
Land Model (CLM; Dai et al. 2003). Used here is soil
moisture integrated from the surface to 3 m below from
the Community Land Model, version 3 (CLM3) that
was forced by PRECL and the Global Precipitation
Climatology Project (GPCP) merged precipitation
(Qian et al. 2007). While SLand, the leaky bucket, and
CLM results are used here for comparison with the
PER method, the extent is limited as the focus here is
to demonstrate the feasibility of a new technique,
rather than a comprehensive intercomparison study.

The advent of recent satellite gravity-based measure-
ment from NASA’s GRACE mission provides an inde-
pendent means to validate the interannual variability of
the diagnostic method (Tapley et al. 2004; Wahr et al.
2004). The variation in the earth’s gravity field as mea-
sured by multiple satellites from space indicates largely
the changes in water mass distribution. The resolution

of such technique is inherently low compared to other
methods, but it depicts broad-scale changes in the hy-
drological cycle not easily obtainable using other meth-
ods. Because there is no relevant data to compare,
GRACE error is estimated by comparison with data-
constrained numerical models (Wahr et al. 2004). At
the current stage, error in the measured equivalent wa-
ter thickness (equivalent to TWS as defined here) is 15
mm with 1000-km smoothing (Gaussian half-width).
The error increases at higher resolution, and it is 30%
better with 1500 km smooth, while 40% worse for 750
km smoothing. In this paper, we somewhat arbitrarily
chose 500-km resolution to strike a balance between
resolving the two studied basins and reducing
GRACE’s intrinsic error. The results are shown in sec-
tions 3 (Amazon seasonal cycle) and 7 (interannual
variability for the Amazon and Mississippi).

3. Seasonal cycle over the Amazon basin

After applying the PER method to the Amazon basin
following Eq. (3), using the data input described in sec-
tion 2, a monthly time series of S was obtained. A cli-
matological seasonal cycle was then derived as the av-
erage of the 37-yr (1970–2006) diagnosed total land wa-
ter storage. Figure 5 shows the seasonal cycle for the
Amazon basin. The three MC method analyses (Fig.
5a) have similar seasonal amplitude of 175–200 mm,
while the satellite gravity-based estimate from GRACE
and the PER method have an amplitude of about 300
mm (Fig. 5b). The three offline land models, SLand
(Zeng et al. 2000), the leaky bucket model (Fan and van
den Dool 2004), and CLM (Dai et al. 2003), have an
amplitude ranging from 50 to 150 mm. Both GRACE
and the PER method give a maximum in April–May
and a minimum in October–November after the drier

FIG. 5. Seasonal cycle of Amazon S using (a) the MCR method with moisture convergence
from three reanalyses; (b) the PER method using observed P, R, and SLand model estimated
E and that derived using GRACE satellite observations (Fig. 11); (c) simulated by three
offline land surface models (SLand, CPC leaky bucket, and CLM) forced by observed atmo-
spheric variables.
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boreal summer (the basin averages tend to be domi-
nated by the larger southern Amazon). The models and
reanalyses produced maximum and minimum some-
what earlier by 1–2 months.

To the extent that GRACE measurement can be
considered as a good observation of the basin-scale wa-
ter storage, the PER method appears to capture this
observed change. The reanalyses and the offline models
thus tend to underestimate somewhat the seasonal
cycle amplitude in the Amazon. Given the uncertainties
in all these methods and large interannual variability
(below), the seasonal cycle of Amazon water storage
can be given as 250 � 100 mm. However, the two basin
budget methods (GRACE and P � E) include all the
changes from surface to underground water, thus pro-
viding an upper limit to the models, which normally
include only a fraction of the active soil moisture as
discussed further below. A caveat we emphasize is that
such a conclusion can differ for different basins as data

quality and model may behave very differently at dif-
ferent places.

4. Amazon interannual and decadal variability
1970–97

Figure 6a shows the water input (P � E*) and the
observed runoff R of the Amazon basin at monthly
resolution. There is a robust seasonal cycle over which
P � E surpasses R during winter and spring, when land
water storage is recharged. The input P � E is less than
R from early summer to fall when TWS is discharged
(Fig. 6b; the term “discharge” is used here to indicate
the “recharge–discharge” of soil water holding capac-
ity, not to be confused with “river discharge” to which
we refer to as streamflow or runoff). Overall, R has a
seasona amplitude about a factor of 2 smaller and a
phase lag of 3–4 months relative to P � E* (also see
Zeng 1999). This reduced amplitude and phase lag is

FIG. 6. (a) Variabilities of P � E* and R in mm day�1; (b) the diagnosed Amazon soil
moisture in mm. When P � E* is greater than R, the soil water storage increases, undergoing
a recharge period (heavy shading); when P � E* is less than R, the soil undergoes a discharge
(light shading). There is a strong seasonal cycle but also with comparable or larger interan-
nual–interdecadal variabilities.
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typical because TWS is a damped and delayed response
to the driving precipitation due to its memory effect.

The diagnosed TWS shows large interannual to in-
terdecadal variability on which the seasonal cycle is su-
perimposed. The long-term variability can be seen
more clearly by filtering out the seasonal cycle using a
simple 12-month running mean (Fig. 7b, solid line). On
multidecadal time scales, there is a major recharge pe-
riod from 1971 to 1985, followed by a discharge after-
ward (Figs. 7a,b). The minimum to maximum differ-

ence over the 37 yr is about 800 mm. We note again
that, the correction in E* (section 2b) removes any
long-term trend so that over the whole analysis period
there is no net gain in soil water storage. Thus the
lowest frequency change can only be viewed as relative,
that is, the general decrease since 1985 is only relative
to the increase in the previous 15 yr.

The large change of up to 800 mm in TWS is remark-
able, as many current land surface models have field
capacity (the maximum change in soil moisture a model

FIG. 7. (a) Variabilities of P � E* and R in mm day�1 and the SOI (labeled on the right in
mb); (b) the diagnosed Amazon S (mm) from the PER method; (c) same as in (b) except for
the high frequency component (higher than 7 yr, i.e., interannual but not decadal and longer);
(d) S simulated by 3 models: SLand, Leaky Bucket, and CLM. A major recharge period
occurred during two large La Niña events in 1974–75, and a major discharge period was
associated with the protracted El Niño of 1991–93. Note the small amplitude in S from models
compared to the PER method. Seasonal cycle was removed by a 12-month running mean.
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can produce) comparable to this, and the earlier bucket
model had a field capacity of only 150 mm (Manabe et
al. 1965). Although we currently have no other means
to validate the magnitude of such long-term change, the
general variation (ups and downs) can be assessed be-
cause Amazon hydrological cycle is dominated by
ENSO-related interannual variability. For instance, the
period with largest recharge during 1974–75 corre-
sponds to two major La Niña events before the 1976–77
decadal climate shift in the Pacific Ocean, as indicated
by the SOI. In the other direction, the major discharge
period of the early 1990s was caused by the protracted
El Niño of 1991/93 and that of 1986/87.

A simple high-pass filter was applied to the diag-
nosed TWS in Fig. 7b to remove the frequencies lower
than 7 yr. The remaining signal is mostly interannual
(Fig. 7c), showing decreasing TWS during events, such
as the 1982/83 El Niño. However, even in this case, the
major peaks reflect the lower frequency variations,
such as the two La Niña events around 1975 and the
early 1990 El Niño. Plotted in Fig. 7d are the model-
simulated soil moisture from SLand and the CPC leaky
bucket model, and both show significantly smaller vari-
ability at about 1/3 of the diagnosed TWS amplitude on
interannual time scales, while the decadal and longer-
term variability is even smaller (cf. Fig. 7b).

Such large differences especially on longer time
scales are striking. While the PER method may over-
estimate the amplitude of these slow variations (section
6), the models appear to significantly underestimate it.
One contributor of the smaller model changes is that
current land surface models typically only represent the
water holding capacity of the top 1–2 m of soil. Among
the two one-layer models, SLand has a field capacity of
500 mm, while the leaky bucket model has a field ca-
pacity of 750 mm. Interestingly, the multilayer model
CLM has a variability with amplitude comparable to
SLand. Thus it is understandable that these models un-
derestimate the multidecadal change that is comparable
to the model field capacity. However, simple increase in
model soil depth may not be sufficient if deep soil water
cannot be utilized by vegetation. On the other hand, the
phasing of the models agrees reasonably well with the
PER result and among themselves (Figs. 7c,d). It re-
mains to be seen how other complex land models and
data assimilation systems compare with the water bud-
get and satellite results.

5. Variability in the Mississippi basin from 1928 to
2006

Data quality and model may behave very differently
from basin to basin, especially across different climatic

regimes. It is thus of great interest to see how the PER
method works for midlatitude regions. We have applied
the method to the Mississippi basin (Fig. 8). The total
water storage (Fig. 8b) in the Mississippi decreases by
about 400 mm from the 1920s to the end of the 1930s
(the Dust Bowl period), followed by a recharge period
in the 1940s. The drought in the 1950s plunged soil
moisture to the lowest level and then recovered to high
level during the following two decades of pluvial period
(Seager et al. 2005). Smaller drought events also left
their impact on TWS, such as 1988. The long-term
change from low in the 1930s and 1950s to the high in
the late 1990s is about 600 mm. Further analysis (not
shown) suggests that these changes are largely influ-
enced by the west part of the basin, in particular, the
Great Plains region. Since the western part of the Mis-
sissippi basin is semiarid, while the east side is temper-
ate humid, and the climate varies greatly across the
basin, the basin average analysis may mute some of the
more interesting regional changes. For instance, during
the recent 1998–2002 drought of the American West
(Hoerling and Kumar 2003; Seager et al. 2005), the
Mississippi total water storage dropped by about 120
mm, significantly smaller than the change in earlier de-
cades.

On interannual time scales shorter than 7 yr (Fig. 8c),
the amplitude of interannual variability is about 100
mm. Such an amplitude is comparable to the total water
storage variability based on in situ observations of the
major components of the TWS for Illinois (Rodell and
Famiglietti 2001), if the assumption can be made that
Illinois is representative of the whole Mississippi basin.
Interestingly, the two-model simulated soil moisture
has interannual amplitude much closer to the diagnosed
one than in the Amazon case (Fig. 8d). In both cases,
the phase relationships are generally in good agreement
(not surprisingly because they all reflect the signal in
the precipitation forcing). However, the decadal and
interdecadal variabilities in the two models are still
much smaller than the diagnosed.

One implication of the diagnosed variability in Fig.
8b is potentially very long memory in terrestrial water
storage, including soil moisture. For instance, the dis-
charge during the Dust Bowl period is somewhat larger
than that of the 1950s drought, as seen by the larger
shaded area with negative P � E* � R values for the
1930s in Fig. 8a, yet TWS is at a minimum at the end of
the 1950s drought. This is because the recharge in the
1940s is not sufficient to recover the water loss in the
1930s. Thus in a way the memory of the Dust Bowl
period was not forgotten until a few decades later.
While uncertainties in the data and methodology may
hamper the accuracy of such detailed interpretation,
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the results nonetheless suggest a significantly longer
water storage memory than typically assumed.

6. Uncertainties due to errors in P, E, and R

To quantify impact on S due to the uncertainties in
observed precipitation, we used three different precipi-
tation datasets: CRU (our control case that has been
used in previous sections), PRECL, and CMAP in Eq.
(3) to diagnose S. Here, E was derived using SLand
with the corresponding P as forcing (identical E was
also used in sensitivity runs, and the results are very

similar). The PER method was applied to the period of
January 1982–December 2002 so that the overall trend
may be different from the longer data shown in Figs. 7b
and 8b. The TWS derived using different precipitation
datasets show general agreement for both the Amazon
and Mississippi (Fig. 9), especially between the two
gauge-based datasets CRU and PRECL, while the sat-
ellite–gauge blended CMAP results are somewhat
more different. The correlation between S derived from
the three precipitation datasets ranges from 0.45 to 0.79
(Table 2, upper row). The ratio of standard deviation
ranges from 0.54 to 1.93, thus the amplitude uncertainty

FIG. 8. Same as in Fig. 7 but for the Mississippi basin. The major discharge periods are the
Dust Bowl in the 1930s and the drought in the 1950s. A major recharge took place during the
pluvial period from the 1960s to the 1990s.
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can be close to a factor of 2. The high frequency com-
ponent derived using a high-pass filter with cutoff at 7
yr shows significantly better consistency among the
three datasets (lower two panels of Fig. 9), with corre-
lation ranging from 0.33 to 0.83 and the � ratio from
0.57 to 1.64 (Table 2, lower row). A quick inspection of
Fig. 9 shows that nearly all the interannual variations
are in agreement, and the amplitude mismatch occurs
for few events.

We argued in section 2c that estimated evaporation
may be a main potential source of uncertainty because
precipitation and runoff are observed [Eq. (3)]. Figure
10 shows the results from using different evaporation
estimates. The different evaporation estimates give
generally similar S, especially on interannual time
scales (less than 7 yr). The correlation is from 0.69 to
0.98 and the ratio of standard deviation is from 0.98 to
1.27, excluding NARR (Table 3). A major discrepancy

occurs between S from NARR and the other two,
mostly in two periods around 1988 and 1999, such that
the correlation is �0.12 (not significant at the 95% con-
fidence level) with SLand. This discrepancy corre-
sponds to the large changes in E from NARR for this
period that are comparable to changes in P � E (sec-
tion 2c and Fig. 4). It is not clear why NARR evapo-
ration can be so different from the other two, and such
differences need to be better understood before we
have confidence in the long-term S variability derived
this way. An additional caveat is that all these evapo-
ration estimates are model based, thus possibility re-
mains that actual E may have larger variability than
depicted by these estimates.

Another source of uncertainty may come from the
fact that the observational systems of precipitation and
runoff may have changed over time, for instance, due to
the replacement of instrumentation or changes in mea-

TABLE 2. Uncertainty in the PER method due to different precipitation datasets. “Corr” is the correlation between S from PRECL
or CMAP and CRU; “�/�” is the ratio of the corresponding standard deviations; “Total” is the full time series of S, while “HF” is its
high frequency component with a period less than 7 yr.

Amazon Mississippi

PRECL/CRU CMAP/CRU PRECL/CRU CMAP/CRU

Corr �/� Corr �/� Corr �/� Corr �/�

Total 0.51 0.54 0.63 0.83 0.79 1.68 0.45 1.93
HF 	 7 yr 0.72 0.57 0.33 0.84 0.82 1.12 0.83 1.64

FIG. 9. Relative 
S (mm) diagnosed by the PER method using three different precipitation datasets CRU,
PRECL, and CMAP. Evaporation was estimated using the SLand model forced by the corresponding precipita-
tion. Correlation and relative amplitude are listed in Table 2. These indicate the uncertainty in the PER method
due to uncertainties in the observed precipitation forcing data.
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surement protocol. We have seen that the diagnosed S
is relatively sensitive to persistent imbalance in P � E,
which contributes to S cumulatively. Should R be “ar-
tificially shifted” relative to P from one subperiod to
the next, the error would also accumulate together with
the real signal. The correction procedure in E* (section
2a) removes the linear trend (in both signal and error)
for the whole period, but the variations are still subject
to “subperiod” systematic errors in precipitation and
runoff. Such errors are difficult to quantify and will
have to be analyzed case by case for individual basins.

7. Comparison with GRACE data

We have shown in section 3 and Fig. 5 that the av-
erage Amazon TWS seasonal cycles from GRACE and
PER are both about 300 mm. Here we compare the
PER results with those of GRACE for the period Feb-
ruary 2003–June 2006 (Fig. 11). The resolution of sat-
ellite gravity measurement is inherently low, but appli-
cation is suitable for large basins, such as the Amazon

and Mississippi where the intrinsic error becomes suf-
ficiently small. The data shown in Fig. 11 were pro-
duced using a resolution of 500 km, after we also tested
other resolutions.

Over the Amazon, the TWS diagnosed from PER
method shows overall agreement with the equivalent
water thickness from GRACE, such as the small sea-
sonal variation during 2004 and the large increase in
2006. The largest difference occurred at the end of the
2003 dry season when PER method shows 50–100-mm
lower water storage. For the Mississippi, the seasonal
cycle and much of the interannual variability are simi-
lar, but the agreement is somewhat lower than the
Amazon. In particular, the PER method shows a gen-
eral increasing trend from 2004 to 2006 that is not clear
in GRACE (but present in the 1000-km resolution
data, not shown). Interesting, the interannual variabil-
ity in the Mississippi is large enough to be comparable
to the seasonal cycle, while the Amazon interannual
variability is significantly less than its seasonal cycle.

Thus, GRACE data and the PER method show

TABLE 3. Similar to Table 2 but for evaporation using the estimates of SLand, NCEP R2, ERA-40, and NARR.

Amazon Mississippi

NCEP R2/SLand ERA-40/SLand NARR/SLand ERA-40/SLand

Corr �/� Corr �/� Corr �/� Corr �/�

Total 0.94 1.47 0.98 1.43 �0.12 0.98 0.69 1.27
HF 	 7 yr 0.93 1.15 0.97 1.18 0.29 1.63 0.72 0.84

FIG. 10. Same as in Fig. 9 but for evaporation uncertainty, using E estimated by SLand, ERA-40, and NCEP
R2 for the Amazon and NARR for the Mississippi.
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broadly consistent results for the two basins both for
the seasonal cycle and the interannual variability, with
the caveat that both methods have their own uncertain-
ties and the overlapping period is too short to statisti-
cally verify the water budget approach. It is also inter-
esting to note that while we used estimated evaporation
to derive TWS, which is then compared to the GRACE
data, recent work has used GRACE TWS as an input to
derive evaporation (Rodell et al. 2004b) or P � E
(Swenson and Wahr 2006). In both cases, observed P
and R are used. These methods essentially look at the
same water budget Eq. (2) from a different view angle,
and future work is needed to compare such results.

8. Discussion

At first sight, it is surprising that the mere use of
observed runoff would lead to much larger S variability

in the PER method, compared to a typical offline land
model simulation. Both methods use identical P and E,
with the only difference that the model simulates its
own runoff and the PER method uses observed runoff.
This difference is seen clearly by comparing the solid
line in Fig. 7b with that in Fig. 7d for the Amazon and
Fig. 8b with Fig. 8d for the Mississippi.

Insight comes from a comparison of how R follows P
differently in the two cases. Theoretically speaking, be-
cause P is the main driving force of land surface hy-
drology and the water storage “buffering” effect acts as
a low-pass filter of the precipitation signal, the subse-
quent outgoing fluxes, including R (Fig. 3), are damped
and delayed responses to P. Indeed, Figs. 12 and 13
show that observed R has an overall interannual am-
plitude of about 2/3 of P, with a typical lag of about a
few months. This damping is larger on a seasonal time
scale (Fig. 6a). Such a relationship can be shown easily

FIG. 11. Changes in Amazon and Mississippi water storage (mm) from the GRACE satellite gravity measurements (short horizontal
bars with shading for error), compared with that from the PER method (solid line).
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with mathematical rigor in simple first-order force-
damped equations, such as Eq. (2) in the special case of
a single intrinsic time scale. The most important point
here is that the modeled R follows P much too closely

compared to observed R, both in terms of amplitude
and phasing. As a result, modeled R has a stronger
tendency to cancel out changes in precipitation so that
the difference P � E is much smaller than observed

FIG. 13. Same as in Fig. 12 but for the Mississippi basin. The modeled R captures more of
the observed variability than for the Amazon.

FIG. 12. (a) Anomalies of observed and modeled (SLand) runoff against precipitation (mm
day�1); (b) differences between observed precipitation and observed (dashed) and modeled
(line with open circles) runoff. The observed runoff is more different from observed precipi-
tation especially over the Amazon, implying the large capacity of land to store water that is
underrepresented by models.
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(Figs. 12, 13), thus leading to smaller variability in the
diagnosed S (neglecting E variability; section 2b). This
is especially the case for the Amazon and explains why
the models severely underestimate TWS variability
there (section 4 and Fig. 7d). For the Mississippi, the
model-simulated amplitude in S (Fig. 8d) is closer to
that diagnosed (Fig. 8c) on the interannual time scale
(though still largely underestimated on decadal and
longer time scales), consistent with the fact that the
model P � E is much closer to observed (Fig. 13). It is
probably not surprising that the model does a poorer
job over the Amazon than the Mississippi because the
Amazon rain forest likely has larger dynamic range due
to the deep soil and deep roots.

Such a damped and significantly delayed response of
runoff to precipitation suggests the large capacity of
land surface in storing and taking up water, a capacity
models appear to significantly underrepresent. To put it
another way, real land surface seems to be able to hold
up more water from wet episodes, and then uses it more
slowly during dry periods, while models tend to have
overly sensitive runoff response that flushes out “ex-
cessive” water too quickly.

9. Conclusions

Applying the basin water budget equation in the
PER method for the Amazon and the Mississippi ba-
sins, we found changes of 100–200 mm on interannual
time scales and 600–800 mm over multidecadal time
scales in terrestrial total water storage for these two
basins. Such large change especially on longer time
scales is remarkable, as many land surface models have
field capacity (the maximum change in soil moisture a
model can produce) comparable or smaller than this.

Theoretically speaking, the diagnosed TWS variabil-
ity is larger than or equal to any modeled soil moisture
variability because the diagnosis includes all the pos-
sible changes in the basin, including surface and under-
ground water and water stored in vegetation, while
models typically only simulate soil moisture change in
the top 1–2 m. For example, during flooding season, the
Amazon River expands into adjacent forest and the
surface water can account for up to 10% of the seasonal
soil moisture change. However, the major contributor
missing in simple land surface models is likely the
deeper soil moisture storage and groundwater. Such
deep water storage is utilized by deep roots. In one
instance, Nepstad et al. (1994) found deep root water
uptake down to 8 m below the surface that sustained
normal growth during a prolonged dry period. Even
deeper roots have been observed in many other regions
(Schenk and Jackson 2005). More sophisticated models

may include several soil layers, which would increase
the effective filed capacity and thus the amplitude of
variation. However, the lack of deep roots may prevent
the model to utilize deep water storage as efficiently as
nature does. Our analysis with a simple model suggests
that model runoff may respond too quickly to remove
excessive precipitation such that soil moisture variabil-
ity is small, regardless of the specified field capacity. It
is worth noting that even if a model simulates a good
mean seasonal cycle in runoff [as is often validated in a
model intercomparison project, such as the Global Soil
Wetness Project (GSWP)], it does not guarantee a good
simulation of interannual variability, as it is the differ-
ence in P and R that matters most to water storage
(section 6 above). Projects, such as GSWP-2 (http://
www.iges.org/gswp2/), are expected to make available
longer-term simulations where interannual variability
can be assessed. Because of the sensitivity of cumula-
tive TWS to the imbalance between P, E, and R [Eq. (3)
and section 6], any persistent error will accumulate and
manifest itself in the integrated TWS as long-term
change. Thus the PER method can easily overestimate
long-term TWS changes for small but persistent system-
atic error in P, E, and R. The simple error analysis
(section 6) suggests an uncertainty of factor of 2 on
decadal and longer time scales. Despite such a caveat,
the large changes on decadal to multidecadal time
scales found here suggest that current models may sig-
nificantly underestimate such variations. An important
implication is that land surface may have a memory
beyond 1-yr related to the change in the total water
storage,1 significantly longer than the typically cited 1
month to 1 season.

The PER basin budget method uses observed pre-
cipitation and runoff, combined with estimated evapo-
transpiration, to estimate the change in total land water
storage. The land water budget equation [Eq. (2)] is
simple and has been used for various purposes (e.g.,
Mintz and Walker 1993). But to our knowledge, it had
not been applied for long-term water storage variability
in a way similar to the PER method discussed here. Our
preliminary analysis suggests its ability in depicting
long-term water storage change, in a way significantly
more robust than the moisture convergence method.
The results will thus provide an important means to
cross-validate other methods, such as GRACE data. If
such comparison leads to confidence in both methods
over the period when satellite is available (recent years

1 In a simplistic way, time scale can be estimated as capacity
divided by flux. Assuming a field capacity of 1000 mm for the
Amazon, then the time scale is 1000 mm/(5 mm day�1) � 200
days.
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and near future) as suggested by this work, they will
provide important information on water storage vari-
ability in major periods of the twentieth century when
the basin budget method is applicable. They can also
provide validated approaches for long-term land water
monitoring in the future.
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