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[1] This paper presents an evaluation of advanced very high resolution radiometer
(AVHRR)-based remote sensing algorithms for detecting active vegetation fires [Li et al.,
2000a] and mapping burned areas [Fraser et al., 2000] throughout North America. The
procedures were originally designed for application in Canada with AVHRR data aboard
the NOAA 14 satellite. They were tested here with both NOAA 11 and NOAA 14 covering
the period 1989–2000. It was found that the active fire detection algorithm performs well
with low commission and omission error rates over forested regions in the absence of
cloud cover. Moderate errors were found over semi-arid areas covered by thin clouds, as
well as along rivers and around lakes observed from sun-glint angles. A modification to a
fire algorithm threshold and the addition of a new test can significantly improve the
detection accuracy. Burned areas mapped by satellite were compared against extensive fire
polygon data acquired by U.S. forest agencies in five western states. The satellite-based
mapping matches nearly 90% of total forested burned area, with the difference being
mainly attributable to omission of some nonburned islands and patches within the fire
polygons. In addition, it maps a significant area of burning outside the fire polygons that
appear to be true fires. The 10% omission error was found to be caused mainly by three
factors: lack or insufficient number of active fires, partial burning, and vegetation
recovery after early season burning. In addition to total area, the location and shapes of
burned scars are consistent with the ground-based maps. Overall, the two algorithms are
competent for detecting and mapping forest fires in North America north of Mexico with
minor modifications. INDEX TERMS: 3360 Meteorology and Atmospheric Dynamics: Remote

sensing; 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 1615 Global

Change: Biogeochemical processes (4805); 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere

interactions; KEYWORDS: forest fire, biomass burning, remote sensing, carbon budget, climate change
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1. Introduction

[2] Wildfire is a major natural disturbance that has
tremendous impact on environment, humans and wildlife,
ecosystem, weather, and climate. There appears to be an
increasing trend of natural fire activity [Weber and Stocks,
1998] that coincides with the observed and predicted

climate-warming trend in mid- and high latitudes [Interna-
tional Panel on Climate Change (IPCC ), 1990; Hansen et
al., 1996]. In 2000, the United States encountered its worst
fire season since 1910. Nearly 80,000 wildfires burned 6.8
(see NIFC.gov) million acres, with a corresponding fire
fighting cost exceeding one billion dollars [Ramsey and
Arrowsmith, 2001]. In Canada, the five most severe fire
years recorded this century occurred after 1980, and the top
three after 1989. It has been predicted that more frequent
wildfires are likely to occur if current warming trends
prevail. A warm climate not only facilitates drying of fuels,
but also is accompanied by increased storm activity, which
provides the lightning ignition source [Williams, 1992]. This
is further compounded by the accumulation of fuel materials
due to suppression practices, which may lead to more
devastating fires. Global warming is caused by the buildup
of greenhouse gases in the atmosphere [IPCC, 1995], while
the latter is further affected by the former [Crutzen et al.,
1979; Kaufman et al., 1990]. A major agent/process that
dictates the feedback is fire that emits considerable amount
of greenhouse gases into the atmosphere.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D2, 4076, doi:10.1029/2001JD001377, 2003

1Earth System Science Interdisciplinary Center and Department of
Meteorology, University of Maryland, College Park, Maryland, USA.

2Also at International Institute for Earth System Science, Nanjing
University, Nanjing, People’s Republic of China.

3Canada Centre for Remote Sensing, Ottawa, Canada.
4Office of Research and Applications, National Environmental Satellite

Data and Information Service, National Oceanic and Atmospheric
Administration, Camp Springs, Maryland, USA.

5Department of Environmental Sciences, University of California,
Berkeley, Berkeley, California, USA.

6Fire Sciences Laboratory, Rocky Mountain Research Station, U.S.
Department of Agriculture Forest Service, Missoula, Montana, USA.

Copyright 2003 by the American Geophysical Union.
0148-0227/03/2001JD001377$09.00

ACL 20 - 1



[3] Although tropical fires are widespread and have been
studied extensively [Hao et al., 1996; Kaufman et al., 1990,
1994; Levine et al., 1995], forest fires in the temperate and
boreal zone also have significant climatic impact due to
much larger capacity of emissions of greenhouse gases and
atmospheric aerosols. Boreal and temperate forests in North
America account for more than 25 percent of the world’s
forests. They are subject to large and intense burning
annually. Extensive periodic wildfires in the forest liberate
huge amounts of carbon. At present, the poor knowledge on
the amount of carbon released from forest fires is one of the
major uncertainties in understanding and closing the global
carbon budget and cycle [Tans et al., 1990; Fung, 1996]. A
considerable amount of global carbon uptake (�2Gt/year)
remains unaccounted for in the carbon budget. It was argued
that the missing carbon might rest in the terrestrial biomes
of the Northern Hemisphere [Tans et al., 1990], in particular
the temperate and boreal forests in North America, which
could account for the bulk (1.7 Gt/year) of the missing
carbon [Fan et al., 1998]. Substantiation of this argument
requires a much-improved estimate of carbon emission and
sequation associated with fire activity that was proved to be
the primary factor driving carbon budget [Chen et al.,
2000].
[4] To this end, accurate and complete information on

long-term fire activity at continental to global scales is
required. Currently, fire information is, at best, ‘‘patchy’’ in
terms of both spatial coverage and temporal continuity and
the quality varies considerably. To remedy the problem, a
major undertaking under the NASA’s Land Cover and Land
Use (LCLUC) program is underway to develop a fire
inventory across North America from 1985 until the present
using satellite data. Satellite remote sensing is the only
feasible means of acquiring fire information on continental
and global scales of relatively uniform quality. The
advanced very high resolution radiometer (AVHRR)
onboard the National Oceanic and Atmospheric Adminis-
tration series of satellite has been demonstrated to be able
to monitor both active fires and map burned fire scars
[Dozier, 1981; Flannigan and Vonder Haar, 1985; Kauf-
man et al., 1990; Pereira and Setzer, 1996; Li et al., 2001].
Among the various sensors that have been employed for
fire detection such as the GOES [Prins and Menzel, 1990],
DMSP [Elvidge et al., 1999], ATSR [Arino et al., 2001],
and MODIS [Kaufman et al., 1998], AVHRR offers the
longest global observation capability that can be used for
both fire monitoring and mapping. As such, we are devel-
oping a long-term fire inventory by processing daily
AVHRR 1-km data covering virtually the entire North
American continent.
[5] This paper is mainly concerned with evaluation and

modification of existing algorithms used for active fire
detection and burned area mapping. Since they were
originally developed for application across the Canadian
boreal forest [Li et al., 2000a; Fraser et al., 2000], it is
necessary to assess and improve, if warranted, their per-
formance over a larger domain and longer duration. The
study is focused on major fires occurred in 5 western states
(Montana, Idaho, Nevada, Utah, and Wyoming) during the
summer of 2000, although analyses are also presented on
fire detection using satellite data covering a much longer
period of time.

[6] The following section describes the data and algo-
rithms used. Section 3 presents the results of fire detection
across North America north of Mexico (hereafter referred to
as NA) and modifications made to the algorithm. A detailed
evaluation of burned area mapping for fires occurred in
western United States is given in section 4. Section 5 is a
summary of the study.

2. Data and Algorithms

2.1. Data

[7] AVHRR data acquired by a series of NOAA polar
orbiting satellites from NOAA 9 through NOAA 14 are
being employed to generate a long-term fire inventory in
NA. Data used in this study are primarily from NOAA 14,
but some images from NOAA 11 are also used for
assessing the applicability of the algorithms that were
derived for application to NOAA 14 data. So far, most
fire studies have employed a small number of AVHRR
scenes. Only a handful of efforts were made using a large
volume of daily AVHRR images for fire detection such as
the IGBP-DIS Fire initiative that produced a one-year
global product of post fires [Justice et al., 1996; Dwyer
et al., 1998], the World Fire Web network that monitors
fires around the world on near real time basis [Grégoire et
al., 2001], and some regional fire monitoring programs
[Setzer and Pereira, 1992; Li et al., 2000a]. Most of the
projects did not process any AVHRR data prior to 1990,
although the data have been available for over two
decades.
[8] There are two types of NOAA AVHRR data collected

at a full resolution (nominally 1-km), namely, the Local Area
Coverage (LAC), and High Resolution Picture Transmission
(HRPT). LAC data are recorded onboard satellite and down-
loaded at two NOAA receiving stations and archived at the
NOAA Satellite Active Archive (SAA). The SAA LAC data
dated back to May 1985 [Gutman et al., 2001]. Over North
America, however, most of the 1-km data in the NOAA
archive are from the HRPT receiving stations. There are
many HRPT receiving stations operated in NA. HRPT data
are supplemented by LAC data for regions outside the
acquisition area of the HRPT stations. HRPT data have been
compiled for a complete global coverage for several years
starting in 1992 [Townshend, 1994].
[9] The bulk of data used here are HRPT data acquired at

the satellite receiving station in Prince Albert, Saskatche-
wan, Canada. The data cover nearly the entire NA except
for the southerly portion of Florida and part of Atlantic
Canada. They were calibrated, geo-referenced, re-sampled
and processed using an automated system called GEO-
COMP-N [Cihlar et al., 2002]. Calibration for visible
(ch.1) and near-IR (ch.2) measurements employ time-
dependent offset and gain values recommended by Rao
and Chen [1996]. The thermal AVHRR channels (3–5) are
calibrated using onboard blackbody reference. NA-wide
composites are registered to Lambert Conformal Conic
projection using an orbit model and high-resolution LAND-
SAT MSS and TM image chips, which typically yield a
positional accuracy better than 1km in Canada.
[10] In the United States, the registration error is larger

for some regions (mainly in the east) due to a lack or
insufficient number of image chips acquired. Note that, as
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the GEOCOMP-N system was setup for application in the
United States, a total of 754 LANDSAT TM image chips
acquired over the United States were implemented into the
system. Most of the chips were acquired in different
months of 1990, while some were acquired between 1985
and 1995. Their distribution is not uniform, denser in
western (especially in California) than in eastern regions.
In general, the accuracy of pixel location registered using
these chips is better than one pixel but varies with the
density of image chips. The original AVHRR data, having a
variable pixel size, were re-sampled to a constant 1 km
resolution. The algorithm of Li et al. [2000a] was coded in
the system for near real-time operation at the Canada
Centre for Remote Sensing during the fire season of
2000. At present, the system is being used to map fires
occurring in NA by processing historical AVHRR data
since 1985 at the University of California at Berkeley, with
the majority of historical data from the NOAA archives and
a small amount from the Canadian receiving stations
operated by the Canada Centre for Remote Sensing
(CCRS).

2.2. Algorithms

[11] In fire-related applications, AVHRR data have been
most frequently employed to detect active fire hot spots
[Flannigan and Vonder Haar, 1986; Kaufman et al., 1990;
Setzer and Pereira, 1991; Justice et al., 1996; Li et al.,
1997, 2000a, 2000b; Randriambelo et al., 1998]. In a
recent review article, Li et al. [2001] discussed the physical
principles, limitations, and recommendations for using
AVHRR to detect fires. In essence, AVHRR channel 3 is
highly sensitive to fires of a range of temperatures. It also
registers high values for some bright and hot objects such
as clouds, barren land, or sun-glint over water. As a result
of thermal emission and solar reflection, AVHRR channel
3 can become saturated, rendering difficulties in discrim-
inating fires from other hot or bright targets [Kennedy et
al., 1994; Randriambelo et al., 1998]. Fire detection
algorithms thus use additional information from other
channels to minimize false hot spots. Almost all fire
detection algorithms are empirical, as the thresholds used
in various tests were determined through analysis of
sample fires. As a result, a fire detection algorithm working
well for one region/biome may not necessarily be valid to
other regions/biomes. The problem can be alleviated, in
principle, through the use of spatial contextual algorithms
that contain variable thresholds instead of fixed ones
[Flasse and Ceccato, 1996; Harris, 1996; Justice et al.,
1996]. However, the detection results obtained by these
algorithms are often not optimized for regional applications
[Li et al., 2001]. Fire detection results from different
algorithms can vary by several factors as they are applied
to the same data sets [Ichoku et al., 2002]. This under-
scores the importance of assessing fire detection algorithms
and products to fully exploit the utility of AVHRR data [Li
et al., 2001]. Following a preliminary assessment, the
algorithm developed at the CCRS [Li et al., 2000a] was
selected to detect active fires in NA, which has low
commission and omission errors. The algorithm consists
of a series threshold tests to mark potential fire pixels and
to remove false fire alarms. As is shown in the following
section, a couple of minor modifications are introduced to

improve detection accuracy in United States, primarily
over nonforest regions.
[12] Since fire hot spots represent only ‘‘snapshots’’ of

burning activity, the temporal composite of active fire
distribution is typically smaller than the actual burned area.
In addition to AVHRR thermal channels that are most useful
for fire detection, shortwave channels convey a signal of
vegetation change caused by fire. The change is often
measured by the Normalized Difference Vegetation Index
(NDVI) computed from radiance/reflectance in the visible
(ch.1: 0.58–0.68 mm) and near infrared (ch.2: 0.73–1.1 mm)
bands, although other indices have been proposed for
mapping burned surfaces [Pereira, 1999]. After green
vegetation is burned, NDVI decreases owing to a rise in
Ch.1 reflectance and decrease in Ch.2 reflectance. Some fire
mapping methods are based on differences between pre- and
post-fire NDVI composites [Kasischke and French, 1995;
Martin and Chuvieco, 1995; Li et al., 2000b]. NDVI
regression [Fernandez et al., 1997] and examination of
NDVI time trajectories [Li et al., 1997] have also been
found effective. A significant advantage of post-fire map-
ping is that, unlike hot spot detection, the indicator of fire
remains detectable for a longer period over boreal and
temperate forests, circumventing problems caused by cloud
cover and limited diurnal sampling. NDVI differencing is
therefore capable of mapping burned areas that could
otherwise be missed by using active fire detection. A main
drawback of NDVI differencing for burn assessment at
regional or continental scales is that a large commission
error may result from a NDVI decrease unrelated to fire
[Kasischke and French, 1995; Li et al., 2000b]. Decreases
can be caused by other factors such as drought, seasonal
vegetation senescence, timber harvesting, image misregis-
tration, and cloud contamination in the post-fire composite.
A further difficulty with the differencing method is that an
effective threshold for separating burns will be spatially and
temporally variable [Kasischke and French, 1995; Fernan-
dez et al., 1997]. To compensate for this variation, Fernan-
dez et al. [1997] derived a dynamic threshold based on each
pixel’s NDVI decrease relative to the NDVI difference
variability within the a region surrounding each fire, while
Roy et al. [1999] used results from an active fire detection
algorithm to classify a burned area index change map.
[13] In light of these limitations, a hybrid method, named

Hot spot and NDVI Differencing Synergy (HANDS) [Fraser
et al., 2000], is proposed for mapping burned areas in
Canada. It was designed to cope with cloud cover and
contamination problems encountered in detecting active fires
and the noise problem inherent in NDVI composites. The
algorithm consists of the following major steps. First, hot
spots are confirmed as real fires by significant decreases in
NDVI between pre- and post-fire NDVI composites. This
process may exclude some real fires, but the key is to assure
that all pixels selected are true fires. Second, NDVI statistics
(mean and standard deviation) are computed from the con-
firmed active fire pixels that are used to identify burned
pixels. This process may not identify all burned pixels, but
the identified ones should be truly burned. Third, regional
thresholds are determined from spatial contingency informa-
tion and active fire flag that are used to reclaim missing
burned pixels. Finally, pixels passed local thresholds were
connected to create burned scar clusters. Any clusters that
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contain less then 10% of confirmed hot spot pixels were
eliminated, assuming that they are noise originated from the
NDVI difference.

3. Application Results

3.1. Active Fire Detection

[14] Note that the fire detection algorithm of Li et al.
[2000a] was designed for application with NOAA 14 data in
Canada. Its application is now being extended across NA
with AVHRR data acquired from other NOAA polar orbiting
satellites, primarily NOAA 14, NOAA 11, and NOAA 9.
Two tests were thus conducted: multi-year application to
other satellites, and single-year application across entire NA.
[15] The first test was performed using sample scenes

from AVHRR/NOAA 11 in 1989, 1991 and 1993. Note that
the sensor functioned from 1989 to 1994. Subtle radiometric
differences in the band-pass and spectral response function
and the level of saturation in AVHRR channel 3 aboard
different NOAA satellites have little impact on fire detec-
tion. However, changes in viewing geometry do impinge
significantly on detection results. For example, near the end
of the lifetime of AVHRR/NOAA 11 in 1994, satellite-
viewing geometry is close to the principle plane. As a result
of strong backscattering by vegetation, it is difficult to
distinguish fires observed from backward directions. Li et
al. [1997] developed an algorithm specifically for use with
NOAA 11 1994 data that basically rejected all backward
observations. Changes in background temperature are usu-
ally not significant enough to cause misidentification over
boreal and temperate forests.
[16] To investigate whether the algorithm of Li et al.

[2000a] is valid for application to NOAA 11 data, scenes
containing fires that occurred in Canada were selected and
the algorithms of Li et al. [2000a] and Li et al. [1997] were
both applied. Figure 1 shows some detection results
obtained over three different years (1989, 1991 and 1993)

in Manitoba, Saskatchewan, Northwest Territories, and
Ontario. Three colors differentiate fires identified by both
algorithms (red), by the NOAA 14 algorithm only (yellow),
and by the NOAA 11 algorithm only (green). It is seen that
both algorithms are able to identify the majority of fires very
well. There is a general agreement between fires detected by
the NOAA 14 algorithm and the NOAA 11 algorithm, as
indicated by the overwhelming number of red spots. Fires
identified by the NOAA 14 algorithm only are due to its
more liberal detection criterion: T3 > 315 in comparison to
T3 > 316 for the NOAA 11 algorithm. All these fires are
confirmed by the ground-based fire reports from Canadian
provincial fire agencies. Therefore, the algorithm of Li et al.
[2000a] is suitable for processing both NOAA 14 and
NOAA 11 data at least across Canada.
[17] To further test its applicability for use in NA, the

algorithm was run daily across the United States and
Canada throughout the 2000 fire season. Figure 2 shows
the detection results for June 25 and July 23. Note that the
active fire pixels are enlarged on the map for easy identi-
fication. While the algorithm detects most fires, some false
fires were also produced, especially in southwest United
States. The false fires occurred mostly at the edges of thin
clouds over a range of warm and bright nonforest land cover
types such as open shrub land, sparsely vegetated surfaces,
pasture and range lands. The deterioration of performance
under such conditions is understandable, given that the
algorithm was originally developed to detect active forest
fires over the Canadian boreal forest zone. Note, however,
that the algorithm’s performance over U.S. forest regions
appears to be reliable. This is further demonstrated below.
[18] To better cope with the more diverse environment,

the fire detection algorithm requires adjustments in the
thresholds to accommodate other land cover types that are
not common in Canada. Using a training database, two
modifications were made for eliminating false fires. The
first aims at eliminating false fires occurring at the edges of

Figure 1. Fire locations identified using the algorithm of Li et al. [2000a] applied to different regions of
Canada and different years spanning the lifetime of NOAA 11. Hots pots (red pixels) are superimposed
over an AVHRR false color composite (RGB = 2, 2, 1). See color version of this figure at back of this issue.
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thin clouds over warm background. The second reduces
false fires due to sun glint, visible along the Columbia River
near the border between Washington and Oregon.

3.1.1. Modification 1

Old test T4� T5 � 4:1 and T3� T4 < 19

New test T4� T5 � 4:1 and T3� T4 < 24

[19] The basis of the modification lies in the fact that for
thin cloud over a warm and bright surface, nonburned pixels
can have rather high values in T3 relative to T4 due to
increased solar reflection and thermal emission.

[20] There are two major constraints in selecting the
threshold of T3-T4. One is that the new threshold should
not undermine the detection over northern region dominated
by forest ecosystem. Second, the threshold is confined to
the saturation point of T3. Because of these constraints,
AVHRR data suffer from an inherent problem that prevents
fires from being detected over certain hot and sparsely
vegetated land. For such scene types channel 3 is readily
saturated during the summer due to excessive solar reflec-
tion and thermal emission. Yet, the brightness temperature
in the thermal channel also becomes rather high. As a result,
there is no distinct difference in T3-T4 between burned and

Figure 2. Active fire detection results across the United States and Canada for two sample dates during
the summer of 2000 (hot spots are shown as enlarged red points, clouds appear white, vegetation is green,
and yellow circles identify questionable results). See color version of this figure at back of this issue.

Figure 3. Same as in Figure 3, but based on the modified algorithm. See color version of this figure at
back of this issue.
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nonburned targets. By analyzing the inter-annual variability
of T3 and T4, Csiszar et al. [2002] showed that fire
detection is most feasible over forest, moderately difficult
over other vegetation types (grassland, pasture, or crop-
land), and very difficult over sparsely vegetated bright
surfaces such as open shrub and barren land.

3.1.2. Modification 2
[21] This modification is designed to eliminate falsely

detected fires due to sun-glint. Sun-glint is mainly caused
by water bodies and can be eliminated if we know exactly
which pixels contain water. In practice, many sun-glint
pixels contain only a small proportion of water and thus

Figure 4. AVHRR clear-sky composites before (top) and after (middle) fires occurring in 2000. Bottom
image shows fire hot spots detected on Aug. 26, 2000. See color version of this figure at back of this issue.
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cannot be screened using a satellite-based land cover
classification. This is due partly to registration error and
partly to sub-pixel water. As a result, false fires are often
observed along rivers and around lakes, as well as over un-
identified small lakes (diameter less than 1 km). Owing to
the large number of lakes and rivers in NA and especially
Canada, observations are excluded if they were made within
a 15� stereo angle surrounding the sun-glint direction (angle
of specular reflection) and if the NIR channel is greater than
16%.
[22] The stereo angle (�) between a ray from the sun

reflected specularly by the surface, and the viewing vector is
given below:

cos �ð Þ ¼ cos m1ð Þ cos m2ð Þ � sin m1ð Þ sin m2ð Þ sin j1ð Þ sin j2ð Þ
� sin m1ð Þ sin m2ð Þ cos j1ð Þ cos j2ð Þ; ð1Þ

where
j1 = satellite azimuth angle;
m1 = satellite zenith angle;
j2 = solar azimuth angle;
m2 = solar zenith angle.
[23] Figure 3 shows similar results as in Figure 2 but

using the revised algorithm. Many of the apparent false fires
(e.g. those inside the circles and around big lakes) are
eliminated. The majority of remaining active fires as
detected correspond to the location of fires mapped by
USDA Forest Service, although a handful of scattered false
fires may still exist such as a couple of ‘‘fire’’ pixels
detected around the Great Lakes region. More rigorous
validation is given below in the context of mapping burned
areas.

3.2. Burned Area Mapping

[24] The HANDS algorithm [Fraser et al., 2000] used to
map burned areas requires both a composite of active fire
locations and pre- and post-fire NDVI composites. Two 10-
day maximum NDVI composites for September 21–30 in

1999 and 2000 were produced by GEOCOMP-N. For
regional and limited case studies, one may directly use
single-date clear-sky images acquired before and after fire.
Figure 4 presents clear-sky images in the western United
States, where severe fires took place in the summer of 2000,
together with an image showing fire hot spots detected on
August 26, 2000. After burning, many fire scars are clearly
visible, especially by comparing the two composites.
[25] Combining the NDVI and active fire composites, one

can obtain a more accurate fire scar map. To do so, the
following quantities were computed that are key variables
of the HANDS algorithm: (1) The normalized NDVI differ-
ence was computed. To account for seasonal differences in
growing condition between the two years, the NDVI com-
posites are first normalized so that the mean NDVI values
between the two years are the same. (2) Confirmed Burned
Pixels (CBP) were computed. The hot spot pixels accom-
panied by a NDVI decrease are designated as ‘‘Confirmed
Burned Pixels (CBP)’’. The CBP are then used to calculate
regional NDVI difference statistics. The CBP are also used
to eliminate commission errors if within a burned cluster the
number of CBP is less that 10% of total pixels. (3) The
regional NDVI difference threshold was computed. Based
on the mean and standard deviation of the NDVI difference
for all CBP, regional NDVI difference thresholds were
determined for each block of 200 � 200 km to isolate
patches of potential burned pixels that were not identified as
hot spots. (4) The local NDVI difference threshold was
computed. This threshold retains pixels within each burned
cluster with a NDVI decrease more than one standard
deviation from the mean NDVI decrease of CBP. Compar-
ison of the histogram of NDVI difference with the local
NDVI difference threshold helps to explain the causes for
commission or omission errors on the burned area mapping.
[26] Both the composites of hot spots and burned areas

obtained from AVHRR using the two algorithms across
NA’s forest areas in 2000 are presented in Figure 5.
Detection results over nonforest regions are less reliable

Figure 5. The distributions of fire hot spots (a: left) and total burned area (b: right) detected from
AVHRR across North America in 2000. See color version of this figure at back of this issue.
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and are addressed by Csiszar et al. [2002]. Major fires took
place in Montana and Idaho. Many scattered fires were
observed in both the United States and Canada with a rather
low noise level. Due to the large spatial coverage and
relatively small area of burning, the two maps looks very
similar. However, distinct differences do exist between the
two when they are zoomed in small regions, as is shown in a
more quantitative assessment presented in the following
section.

4. Validation Analyses

[27] To quantitatively evaluate the performance of fire
detection and mapping algorithms, wildfire burned area
perimeters generated by the U.S. Forest Service are
employed. Extensive ground-based fire perimeters are avail-
able as GIS polygons over five western states where wild-

fires were particularly active in 2000. Figure 6 shows a
close-up comparison of fire polygons and burned areas
mapped by the HANDS in this region. The base map shows
land cover types aggregated from the IGBP-DIS AVHRR-
based classification (http://edcdaac.usgs.gov/glcc/glcc.
html). It is observed that the large fires occurring in
coniferous forest regions are mapped accurately by the
HANDS in terms of their size and shape. The majority of
forest fire polygons are nearly entirely filled by burned area
pixels from the satellite algorithm. By contrast, there are a
numerous unidentified polygons over ‘‘barren’’ land. Note
that the HANDS method is most effective for mapping
burns in forested areas where active fire detection is reliable
and burning produces a significant change in reflectance. A
cursory browsing of AVHRR images indicates at least a
portion of these polygons shows positive signs of burning
(visible smoke plume) but usually last rather short periods.

Figure 6. Comparison of satellite mapped burned area (red) and ground-based fire polygons in five
western states. Background colors denote different land cover types. See color version of this figure at
back of this issue.
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Although the land cover is unlikely to be truly barren land
that has no vegetation to be burned, the biomass content of
the vegetation is relatively low. As shown by Csiszar et al.
[2002], fires occurred over such land cover type are most
difficult, if not impossible, to detect. As the issue is
addressed by Csiszar et al. [2002], the following analysis
is limited to forest fires only.
[28] The HANDS mapped burned area covered 6369

pixels (km2) for the five western states in forested area.
4327 pixels were inside wildfire polygons and 2042 pixels
were outside the polygons. Inside the polygons, compar-
isons are made according to the following scenarios: (1)
Pixels mapped by HANDS comprise 76% of total fire
polygon area. This may be regarded as a conservative
estimate of the accuracy of the satellite mapping method
due to omission errors. Fires mapped by HANDS are
supported by both hot spots and significant reduction in
NDVI, which are thus most likely to be true burns. Actual
mapping accuracy should be higher given scenario 2 and
that fires missed by the polygon data may be picked by the
satellite. (2) HANDS does not map 13% of the fire polygon
area due to both lack of active fires and failure in passing
the NDVI threshold tests. This potentially includes lightly
or surface burned areas where the tree crown is largely
intact, as well as unburned green islands. In generating the
fire polygons by GPS from aircraft, nonburned islands
within large burn scars are often not mapped. (3) Pixels
not mapped by HANDS due to lack of active fires although
NDVI thresholds are passed, which accounts for 8%. They
are likely to be true fires but missed by HANDS, since the

algorithm requires that potential burned areas contain a
minimum 10 percent of CBP in order to minimize commis-
sion errors. In some cases, few or no active fires may be
detected within a burn due to cloud cover, limited diurnal
sampling, and failure of the fire detection algorithm. (4)
Pixels not mapped on the perimeters of fire polygons, which
accounts for 2%. They are ‘‘gray areas’’ as we are not sure if
they are burned or not. It is more likely they are partially
burned areas. (5) Pixels not mapped with active fires but
failed in passing the NDVI tests which accounts for only
1%. This may result from early season burning in which the
NDVI has recovered by the end of fire season. Misregistra-
tion is another likely cause. (6) A large number of pixels
(2042) mapped by HANDS as burned area but missed by
fire polygons. Most of those burned pixels were adjacent to
fire polygons.
[29] To gain more insight into these statistics, Figure 7

shows a comparison of fire polygons and burned pixels
identified with active fires (blue and green inside and
outside the fire polygons, respectively) and without active
fires (red). Nonforest areas are also marked inside the
polygons. First, it is clear that overall satellite mapped
burned areas match closely with the fire polygons. A
significant proportion of the burned area mapped by
HANDS does not have corresponding active fires. Area
not detected within the fire polygons correspond to non-
forest land cover. They are either unburned islands, or
burning was so light that leaves little track seen by satellite.
There are also scattered points or clusters identified as fires
outside the fire polygons.

Figure 7. Fire mapping results classified by source and algorithm inside the selected area shown in
Figure 7. Different colors differentiate between fire polygons, non-forest-covered regions, and state
boundaries. See color version of this figure at back of this issue.
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[30] To help understand the likelihood of burning, the
spatial distribution of fire pixels (Figure 8) and the histo-
grams of NDVI differences (Figure 9) are analyzed under
different categories. Figures 8a and 9a show fire pixels

within the polygons (5593 pixels) regardless of satellite fire
detection results. The histogram shows that 18.6% of pixels
(1066) inside the polygons do not pass the regional NDVI
difference threshold, which is why they are not mapped by

Figure 8. Analysis of fire detection results under different scenarios: (a) all pixels inside the fire
polygons excluding nonforest regions, (b) all mapped fire pixels inside and outside the polygons, (c)
pixels inside the polygons but not mapped, (d) inside the polygons not mapped due to lack of hot spots,
(e) hot spot pixels but not mapped, and (f ) mapped burned pixels outside the polygons. See color version
of this figure at back of this issue.
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HANDS. Unless they result from rapid green-up following
fires, they are likely to be surface fires, lightly burned areas,
or nonburned islands, especially for those with NDVI
change close to zero or even positive.
[31] Figures 8b and 9b show all burned areas mapped by

the HANDS both inside and outside the fire polygons. Since
all pixels (6366) passed the threshold, their NDVI values

decrease by at least 0.039. Note that the number of pixels
outside fire polygons amounts to 1891.
[32] Figures 8c and 9c show pixels inside the fire poly-

gons that were not mapped by HANDS. 60% of these (766)
did not pass the NDVI threshold, while 40% (506) passed
the NDVI threshold but the number of CBP was less than
10% for each cluster. The former may represent nonburned

Figure 9. The histograms of NDVI*10,000 for the six scenarios shown in Figure 8.
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patches of tree canopy inside the fire polygons, which is
evident from a mosaic of high-resolution LANDSAT TM
scenes acquired over the region (Figure 10). Dark shades
inside the circles are fire scars that exhibit varying degree of
burning and topographic effects, producing a pattern with
high spatial variability. It is likely that no manual survey can
provide the level of detailed fire mapping possible with
LANDSAT TM. The 40% remaining pixels appear in
clusters (not random) within the fire polygons. They are
more likely to be true fires but disqualified for lacking
active fires. Hot spot detection frequency is thus an impor-
tant consideration for the mapping algorithm used here.
[33] Figures 8d and 9d show those pixels that were

mapped neither by HANDS nor by the active fire detection
algorithm. 38.4% of these (437 pixels) failed to pass the
HANDS threshold and the remaining (61.6% or 701 pixels)
passed the threshold but contained no or insufficient number
of CBP. For Figures 8c, 8d, 9c, and 9d, the majority of
pixels show little change or increase in NDVI, suggesting
nonburning of tree crowns. Those of large magnitude of
negative NDVI correspond to no or too few active fires,
attesting to real fires.
[34] Figures 8e and 9e show pixels (754) detected as hot

spots but not mapped by HANDS. These pixels all have
positive NDVI changes, and are unlikely to be real fires,
although they could be very small fires at a scale ?1 km,
which AVHRR can detect. This suggests that the HANDS
may be used to eliminate false hot spots except for such
ecosystem that recovers quickly after burning such as
tropical grassland or shrub. Usually, the signal of burned
scars remains for a long period of time after fire.
[35] Figures 8f and 9f show pixels that are outside the fire

polygons but were identified as burned area by HANDS. A
considerable portion of these is located adjacent to the fire
polygons. Large and small clusters of burned pixels are also
found elsewhere, especially in the northwest corner where
fire survey seems not been conducted. These pixels are

accompanied by both active fires and significant NDVI
decrease that are more likely to be real fires.
[36] Figure 11 shows the correlation of burned area

between fire clusters mapped by HANDS and fire polygons.
We chose 131 cases that have relatively clear fire boundaries
to differentiate between different fire events. They cover the
bulk of burned area. The linear correlation coefficient is
0.9875, slope 1.0563, and intercept �0.0805. Note that the
relationship has less scatter as burn size increases.

5. Concluding Remarks

[37] In an effort to develop an inventory of wild fires in
North America, 1-km AVHRR data acquired by a series of
NOAA polar orbiting satellite since 1985 are being pro-
cessed. This paper evaluates the algorithms used for both
detecting active fires [Li et al., 2000a] and mapping burned
area [Fraser et al., 2000]. These algorithms were designed
originally for application across the Canadian boreal forest
ecosystem using AVHRR/NOAA 14 data. Extension of
their applications to other regions in NA with different
AVHRR sensors is subject to quantitative evaluation, as
presented in this paper. The algorithm for detecting active
fires was assessed by applying it to both NOAA 11 and
NOAA 14 data acquired in the United States and Canada;
and the algorithm for mapping burned area was applied to
major fire episodes occurred in U.S. western states in 2000
where extensive ground-based fire polygon data were made
available by the U.S. forest services. Note that the algo-
rithms have been tested extensively across Canada.
[38] Despite noticeable radiometric and observational

differences between AVHRR onboard NOAA 11 and
NOAA 14, the algorithm of Li et al. [2000a] proved to be
well suitable for application with AVHRR from both satel-
lites. Since tests for these sensors span throughout their
lifetime (1989–2000) during which both observation geom-
etry and radiometric characteristics drifted considerably, the
tests bode well for their applications to other AVHRR
sensors. However, when the algorithms were applied to

Figure 10. Mosaic of Landsat-7 TM quick-look images
acquired between Sept 13 and Oct 8, 2000 with visible
burned areas circled. See color version of this figure at back
of this issue.

Figure 11. Comparison of burned area size from indivi-
dual fires based on ground-based observation and satellite
mapping. Statistical variables of a linear regression are
given.
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different ecosystems encountered in the United States, some
problems emerged. A large number of commission and
omission errors occurred over semi-arid regions covered
by thin clouds. False fires caused by sun-glint occurred
adjacent to rivers and around the edge of lakes where
inaccurate registration failed to identify them. The problem
is ameliorated by modifying the threshold in one of the tests
included in the detection algorithm, and adding one more
test for excluding sun-glint effect. The problem persists over
dry and hot arid regions for which there appears to be
inherent difficulties posed to any AVHRR-based fire detec-
tion [Csiszar et al., 2002]. On the other hand, the algorithm
perform very well over forest-covered regions where large
and durable fires usually take place that account for the bulk
of emissions in greenhouse gases and aerosol particulates.
[39] Given the above findings and availability of ground-

based fire polygon data, the HANDS mapping method was
evaluated using the forest fires that occurred in five Rocky
states, primarily in Idaho and Montana. Overall, HANDS
mapped 76% of burned area within the fire polygons. 13%
of the area insider the polygons showed no sign of burning
in terms of both active fire and change in vegetation
greenness, which are likely to be nonburned islands or light
surface burning. Eight percent of the polygon area not
mapped by HANDS showed significant decreases in vege-
tation index but with no hot spots or fewer than that
required to confirm a burned area. Hot spots could be
missed due to cloud cover and infrequent satellite observa-
tion. Two percent of the area that was missed by the
HANDS was located on the perimeter of the polygons that
showed less degree of burning. A significant area of burn
scars was mapped outside of the polygons that appear to be
related to fires. In addition to the areal estimates, the
location and shapes of burned scars are matched fairly well
between ground-based and satellite techniques.
[40] Further analyses indicate that failure to map certain

burned areas may result from the following factors:
1. It may result from the lack of hot spots detected.

HANDS requires that 10% of a potential burn patch
contains hot spots, which was intended to eliminate false
burned area due to nonburning events, but may also
eliminate real burns as well. The criterion needs to be
optimized so that it does not lower the omission errors at the
expense of increasing commission errors. The criterion may
vary with land cover type.
2. Burned areas were rapidly greening up, which

attenuates the NDVI changes during the period of
determining NDVI difference. This is likely for fires
occurring in early season. To remedy the problem, it is
recommended that some burned area be mapped based on
hot spot only, such as in the case of a cluster of hot spots.
3. It may result from partially burned pixels. Pixels on

the edges of burned area or even inside major fires may be
burned to a varying extent. Depending on the definition of
burning, they may or may not be mapped as burned or
nonburned pixels.
[41] In light of the various uncertainties, we conclude that

the fire detection and mapping algorithms with a few minor
adjustments are generally adequate for developing a fire
inventory using multi-AVHRR data with creditable results
over the forest ecosystem in NA. However, in application to
nonforested areas, the detection results will be less reliable.

[42] Acknowledgments. The study was supported by NASA grant
NAG510898 under its Land Cover and Land Use Change (LCLUC)
program. Partial assistance was provided by the National Science Founda-
tion of China (NSFC40028503). We thank Simon Pinnock from the Joint
Research Centre of the European Commission for advice in developing the
sun-glint screening test.

References
Arino, O., et al., Mapping of burned surfaces in vegetation fires, in Global
and Regional Vegetation Fire Monitoring From Space: Planning and
Coordinated International Effort, edited by F. Ahern, J. G. Goldammer,
and C. Justice, pp. 227–255, SPB Acad., The Hague, 2001.

Chen, J. M., W. J. Chen, J. Liu, J. Cihlar, and S. Gray, Annual carbon
balance of Canada’s forest during 1895–1996, Global Biogeochem. Cy-
cles, 14, 839–850, 2000.

Cihlar, J., et al., GeoComp-N, An advanced system for the processing of
coarse and medium resolution satellite data, part 2, Biophysical products
for northern ecosystems, Can. J. Remote Sens., 28, 21–44, 2002.

Crutzen, P. J., L. E. Heidt, J. P. Krasnec, W. H. Pollock, and W. Seiler,
Biomass burning as a source of atmospheric gases, CO, H2O, N2O, NO,
CH3CL and COS, Nature, 282, 253–256, 1979.

Csiszar, I., A. Abuelgasim, J. Jin, and Z. Li, Interannual changes of
active fire detectability from long-term records of the advanced very
high resolution radiometer, 107, doi:10.1029/2001JD001373, in press,
2002.

Dozier, J., A method for satellite identification of surface temperature fields
of subpixel resolution, Remote Sens. Environ., 11, 221–229, 1981.

Dwyer, E., J.-M. Gregoire, and J.-P. Malingreau, A global analysis of
vegetation fires using satellite images: Spatial and temporal dynamics,
Ambio, 27, 175–181, 1998.

Elvidge, C. D., K. E. Baugh, V. R. Hobson, E. A. Kihn, and H. W. Kroehl,
Detection of fires and power outages using DMSP-OLS data, in Remote
Sensing Change Detection: Environmental Monitoring Methods and Ap-
plications, edited by R. S. Lunetta and C. D. Elvidge, pp. 123–135, Ann
Arbor Press, Chelsea, Mich., 1999.

Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmieno, T. Takahashi, and
P. Tans, A large terrestrial carbon sink in North America implied by
atmospheric and oceanic carbon dioxide data and models, Science, 282,
442–446, 1998.

Fernandez, A., P. Illera, and J. L. Casanova, Automatic mapping of surfaces
affected by forest fires in Spain using AVHRR NDVI composite image
data, Remote Sens. Environ., 60, 153–162, 1997.

Flannigan, M. D., and T. H. Vonder Haar, Forest fire monitoring using
NOAA satellite AVHRR, Can. J. For. Res., 16, 975–982, 1986.

Flasse, S. P., and P. Ceccato, A contextual algorithm for AVHRR fire
detection, Int. J. Remote Sens., 17, 419–424, 1996.

Fraser, H. R., Z. Li, and J. Cihlar, Hotspot and NDVI differencing synergy
(HANDS): A new technique for burned area mapping over Boreal Forest,
Remote Sens. Environ., 74, 362–376, 2000.

Fung, I., The global carbon cycle and atmospheric record: ‘‘The problem
definition,’’in Forest Ecosystems, Forest Management and the Global
Carbon Cycle, edited by M. J. Apps and D. T. Price, NATO ASI Ser.,
Ser. I,, 40, 25–34, 1996.
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Figure 1. Fire locations identified using the algorithm of Li et al. [2000a] applied to different regions of
Canada and different years spanning the lifetime of NOAA 11. Hots pots (red pixels) are superimposed
over an AVHRR false color composite (RGB = 2, 2, 1).
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Figure 2. Active fire detection results across the United States and Canada for two sample dates during
the summer of 2000 (hot spots are shown as enlarged red points, clouds appear white, vegetation is green,
and yellow circles identify questionable results).

Figure 3. Same as in Figure 3, but based on the modified algorithm.
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Figure 4. AVHRR clear-sky composites before (top) and after (middle) fires occurring in 2000. Bottom
image shows fire hot spots detected on Aug. 26, 2000.
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Figure 5. The distributions of fire hot spots (a: left) and total burned area (b: right) detected from
AVHRR across North America in 2000.
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Figure 6. Comparison of satellite mapped burned area (red) and ground-based fire polygons in five
western states. Background colors denote different land cover types.
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Figure 7. Fire mapping results classified by source and algorithm inside the selected area shown in
Figure 7. Different colors differentiate between fire polygons, non-forest-covered regions, and state
boundaries.
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Figure 8. Analysis of fire detection results under different scenarios: (a) all pixels inside the fire
polygons excluding nonforest regions, (b) all mapped fire pixels inside and outside the polygons, (c)
pixels inside the polygons but not mapped, (d) inside the polygons not mapped due to lack of hot spots,
(e) hot spot pixels but not mapped, and (f ) mapped burned pixels outside the polygons.

ACL 20 - 10

LI ET AL.: EVALUATION OF SATELLITE FIRE DETECTION



Figure 10. Mosaic of Landsat-7 TM quick-look images acquired between Sept 13 and Oct 8, 2000 with
visible burned areas circled.
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