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Abstract

When using composite optical satellite images for land studies, an accurate and sensitive method
is needed to detect pixels contaminated by unwanted atmospheric and surface effects. In this
paper, we have examined the feasibility of using an algorithm previously developed for post-
season analysis but in a �forward� mode, i.e. for identifying contaminated pixels in current-
season data. The CECANT algorithm (Cloud Elimination from Composites using Albedo and
NDVI Trend; Cihlar, 1996) uses AVHRR channel 1 reflectance to detect strongly contaminated
pixels (bright clouds, snow), and the normalized difference vegetation index (NDVI) to identify
partially contaminated pixels over land. However, this approach needs a complete NDVI
seasonal trajectory to derive the adaptive thresholds. Since some important applications imply
near-real time processing we have examined the possibility of deriving the thresholds from
previous (historical) AVHRR data. Using four years of AVHRR data of Canada we found the
accuracy to vary (55-100%), with thresholds from a single year yielding anomalous results in
some compositing periods. On the other hand, the use of thresholds derived from averaged data
(over 3 years in this case) produced more accurate and consistent results. Assuming that
contamination masks derived from each year�s data are 100% accurate, the masks based on the
three years of AVHRR data were 75-95% correct (4-year average), depending on the
compositing period. Two alternative adjustments were attempted to improve the accuracy and
consistency of the identification of contaminated pixels. By relaxing one of the CECANT
thresholds the errors of omission and commission could be more equally balanced (~10 and 20%,
respectively). Further improvement was obtained by adjusting the NDVI data to the data set
initially used in deriving the threshold coefficients, and then deriving a new set of coefficients
for that period. In this case, the omission and commission errors were nearly equal and,
importantly, the performance was consistent among all the years. The performance of an
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alternative, simplified cloud screening method (based on fixed reflectance and temperature
thresholds) was also examined for a comparison, and was found to have lower accuracy (58%
compared to 87%, 4-year average). It is concluded that CECANT may be effectively applied in
near-real time processing of satellite optical data. However, the residual mismatches indicate that
a reprocessing after the end of the growing season may be desirable for applications requiring
high radiometric accuracy.
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Introduction

Numerous studies have demonstrated the importance of optical satellite data for studies of
vegetation dynamics (e.g., Townshend, 1994).  Although the NOAA Advanced Very High
Resolution Radiometer (AVHRR) is currently the primary data source for such studies, new
sensors will be launched in 1998 and subsequently with significant improvements for biospheric
monitoring. Since these data are subject to strong atmospheric interference as well as other types
of noise, corrections are essential prior to the extraction of biophysical information. The
necessity of detecting fully as well as partly contaminated pixels in composite satellite images
intended for land biosphere studies has been previously demonstrated (Gutman, 1992; Gutman et
al., 1995; Cihlar et al., 1998).

Various techniques have been developed to identify cloudy pixels over ocean and land surfaces
to exclude the pixels from further analysis. In most cases, the techniques have been developed for
use with single-date images. Several such schemes have been previously developed for land
applications (Gutman, 1992; Gutman et al., 1987; Saunders and Kriebel, 1988; Stowe et al.,
1991; Derrien et al., 1993; Loudjani et al., 1994; Simpson, 1994; Simpson and Gobat, 1996). In
the case of composite images, two options exist. One is to detect clouds in individual input
scenes, and then retain all clear pixels for further analysis; the second is to retain the least
contaminated pixel, selected by means of a compositing criterion such as the maximum
normalized difference vegetation index (NDVI; Holben, 1986). The former is a highly desirable
approach but it requires a very accurate cloud detection method. Ultimately, this will be the
preferred approach after the variety of measurements increases to the point where small
atmospheric effects (and surface, such as snow) can be reliably detected. The MODIS data
(Salomonson, 1988) will make major strides in this regard. Unfortunately, due to the temporal
variability and spatial heterogeneity of land cover, it is difficult to define accurate and
universally applicable thresholds that would differentiate between clear and contaminated pixels.
So far, accurate detection of subpixel clouds and other similar contamination has not been
successfully demonstrated for single-date AVHRR and similar data because of insufficient
spectral information about the atmospheric conditions represented in the satellite images. For
example, a cloud mask is produced in the AVHRR Pathfinder for all input scenes (James and
Kalluri, 1994) but the final composites are created using maximum NDVI as a selection criterion.
An important practical consideration in near-real time operation is data processing burden. For
composites containing images from d days, the cloud screening effort is reduced by a factor of
(d-1)/d.
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Recently, Cihlar (1996) described a technique for detecting contaminated pixels in image
composites. CECANT (Cloud Elimination from Composites using Albedo and NDVI Trend)
detects fully cloudy pixels as well as those contaminated by subpixel clouds, fog, smoke, and
snow. While this method performs well with composite images (Cihlar, 1996) the derivation of
its thresholds requires knowledge of the seasonal NDVI trajectory. The method can thus be used
for post-seasonal analysis of the surface dynamics (Cihlar et al., 1997, 1998) but its usefulness
for near-real time processing, e.g. crop and range condition monitoring (Allison et al., 1989;
Smith, 1994), has not been established.

In this paper we explore the impact of the changes in CECANT thresholds on the identification
of the contaminated pixels. The objective is to determine if this approach can be used for near-
real time processing of AVHRR data.  After briefly reviewing the principal requirements of the
CECANT method we describe the data set and the analysis procedure employed to evaluate the
effect of interannual changes in the thresholds. For comparison, we also evaluate the
performance of a physically-based cloud detection algorithm of Wu et al. (1995).

Methodology

1. Principles

The CECANT method is based on the following assumptions (Cihlar, 1996):

1. For a given pixel, at least some compositing periods during the growing season contain
uncontaminated pixels.
2. The first peak in the AVHRR channel 1 histogram (corresponding to surface reflectance in the
red spectral region of about ≤0.20) contains clear-sky, snow/ice-free, atmospherically
uncontaminated land pixels.
3. NDVI values for a given pixel increase monotonically from the beginning of the growing
season until they reach the seasonal peak green (maximum NDVI) for that pixel.

CECANT uses the AVHRR channel 1 for coarse filtering and the seasonal trajectory of the
NDVI curve as fine filter for partly contaminated pixels. Its application requires the computation
of two values for each pixel, R and Z:

R i j t
NDVI i j t NDVI i j t

M i j
a( , , )

( , , ) ( , , )
( , )

=
−

,                                      [1]



5

Z i j t
NDVI i j t NDVI i j t

NDVI i j t
( , , )

( , , ) ( , , )
( , , )

max

max
=

−
,                                    [2]

where:

NDVI = measured value;
NDVIa = estimated average value obtained as a best fit to the NDVI seasonal curve;
NDVImax = estimated maximum value obtained by fitting an upper envelope to the NDVI
seasonal curve;
M = median value of the absolute difference between NDVI and NDVIa for each pixel (i,j)
i,j = line and pixel coordinates;
t = compositing period.

Thus in essence, CECANT flags a pixel as contaminated if its NDVI is much lower than would
be expected for that pixel and period. Four thresholds are required for each period to identify
partially contaminated pixels:

C1: the maximum channel 1 reflectance of a clear-sky, snow- or ice-free land pixel in the
data set (defined as C1≤0.3).

Rmin(t): the maximum acceptable deviation of the measured value NDVI(i,j,t) below the
estimated NDVIa(i,j,t). Lower NDVI(i,j,t) values are considered contaminated.

Rmax(t): the maximum acceptable deviation of the measured value NDVI(i,j,t) above the
estimated NDVIa(i,j,t). Pixels with R values higher than Rmax represent anomalously high
NDVI, e.g. due to local misregistration.

Zmax(t): the maximum acceptable deviation of the measured value NDVI(i,j,t) below the
estimated NDVImax(i,j,t). Pixels with lower NDVI are considered unacceptable even if
NDVI>NDVIa.

The three thresholds (Rmin, Rmax, Zmax) are obtained as follows (Cihlar, 1996):

R t R tmeanmin ( ) ( )= −1,                                                                                        [3]

R t R tmeanmax ( ) ( ) ,= + 4                                                                                        [4]

Z t Z t Z tmean meanmax ( ) ( ) *| ( )|= + 2 ,                                                                       [5]
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where Rmean and Zmean are computed from R, Z values of all pixels (i,j,t) for which C1≤0.3. These
thresholds are thus determined separately for each compositing period. A given pixel is then
considered to be clear if {C1(i,j,t)≤0.3 and {Rmin(t)<R(i,j,t) ≤Rmax(t)} and Z(i,j,t) ≤Zmax(t)}, and
contaminated otherwise. Eq. (3)-(5) were derived empirically after inspecting a seasonal RZ plots
for the Canadian landmass (Cihlar, 1996).

From the above description it is evident that CECANT requires for each pixel (i,j): M(i,j),
seasonal trajectories of NDVImax(i,j) and NDVIa (i,j), and thresholds R(t) and Z(t). If these values
did not vary among years CECANT could be used for near-real time processing provided that at
least one year of data is available to derive the thresholds. In this paper we test the effect of using
NDVImax, NDVIa, Rmean and Zmean thresholds from year k in year l, k≠l.

2. Data and methods

We have employed AVHRR data over the landmass of Canada from the 1993 to 1996 period,
NOAA-11 for the first two years and NOAA-14 for the last two. In each case except 1994 (last
period 1-10 September) data from the 11 April to 31 October were used. The satellite data were
processed using the CCRS Geocoding and Compositing system (GEOCOMP; Robertson et al.,
1992). Briefly, GEOCOMP performs sensor calibration with time degradation (Cihlar and
Teillet, 1995); registration to the Lambert Conformal Conic projection (49oN and 77oN parallels,
reference meridian 95oW) and resampling to 1km pixel size; and compositing for 10-day periods
by retaining data with the maximum NDVI value. Atmospheric correction of AVHRR channels 1
and 2 was made using the SMAC algorithm of Rahman and Dedieu (1994). Cihlar et al. (1997)
provide more detailed information on data processing. The data were then subsampled by
retaining every 6th line and 6th pixel to make analysis easier; total number of land pixels was
246521.

For each year, CECANT ancillary data were computed: M(i,j), NDVImax(i,j,t), NDVIa(i,j,t),
Rmean(t) and Zmean(t). From these data, the three thresholds (Rmin(t), Rmax (t), Zmax(t)) were
computed using Eq. [3]-[5]. In addition, a combined set was computed from the three full years
(�93, �95, �96). To this end, the NDVI(i,j,t) values were first averaged for each pixel and
compositing period over the 3 years and using this data set, R(t) and Z(t) were computed as if the
averaged values originated in one year.

With the above thresholds five sets of cloud masks were computed for each year: one using
thresholds for the same year (RZsy), three with RZ thresholds derived in the other years (RZoy),
and one using the 3-year average thresholds (RZm). To evaluate these various combinations we
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assumed that the mask derived from same-year data (RZsy) was 100% accurate and could thus
serve as a reference. We then logically compared the pairs of masks to count the pixels that were:

a1 = contaminated in both masks;
a2 = clear in both masks;
a3 = contaminated in the test mask but clear in the reference mask; and
a4 = clear in the test mask but contaminated in the reference mask.

Based on these pixel counts we computed three measures to characterize the relation between the
reference and the test set for each period t:
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where:
-  MCFCO is matching contaminated pixels fraction, or the number of contaminated pixels in the
reference set which were also identified as contaminated in the test set, expressed in percent of
the number of contaminated pixels in the reference set;
- OCFCL is the fraction of undetected (omitted) contaminated pixels, or pixels identified as clear
in the test set but contaminated in the reference set, expressed as proportion of clear-sky pixels in
the reference set (in %);
- CCFCL is the fraction of wrongly included (committed) contaminated pixels, i.e. pixels
identified as contaminated in the test set but clear in the reference set, expressed as proportion of
clear-sky pixels in the reference set (in %).
- NP(ai(k,l),t) is the number of pixels in the period t for the combination ai from the two years (i
refers to the above combinations, i=1 to 4);
- k is the year of the reference set;
- l is the year of the test set;

The three measures were chosen to quantify various aspects of the CECANT performance.
MCFCO describes its ability to identify exactly the same pixels with different sets of coefficients.
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Figure 1. Comparison of the contaminated pixels detected by RZ
thresholds derived from the original data and those from another
year, shown as mean values for Canada for 20 compositing periods
and four years. Figure 1a-1b: Matched Contaminated Fraction
MCFCO  for RZ thresholds from year x applied to data from year y,
y≠x. Figure 1c: Average MCFCO accuracy by the data set year.

OCFCL and CCFCL are expressed in relation
to clear-sky pixels and thus represent
relative errors remaining in the data set,
since clear-sky pixels are the focus of the
data processing and analysis. By definition,
the range of MCFCO is (0,100) for any
period t. The lower bound for OCFCL and
CCFCL is zero but the upper bound does not
have a fixed value; it could exceed 100 if
the number of differently labeled pixels
exceeds clear pixels (Eq. [7], [8]).

Results and discussion

1. Effects of RZoy

Figure 1a-1b shows MCFCO values for the
12 combinations of reference year RZoy

(e.g., 93RZ) vs. test year (e.g., 1994 data).
The curves span an overall MCFCO range of
about 40%, and they also have a definite
seasonal trend with a broad minimum in the
summer. In the first half of the season
(prior to Period 11) the combinations
involving 1994 tended to have the lowest
MCFCO values but in the second half others
occupied the extreme positions. Figure 1a-
1b also shows examples of a sudden
fluctuation in MCFCO values, e.g. for
periods 11 and 16 in the combination
96data/95RZ. The performance was most
consistent early and late in the season
where the albedo (C1 threshold) was an
important criterion.

The consistently lower MCFCO values
involving 1994 data in the first half of the
season could be partly due to imperfect
corrections for atmospheric and

J. Straby
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Figure 2. The distribution of contaminated pixels (in white) for
Period 10 (1-10 July 1995). Figure 2a: contaminated pixels
were identified using RZ for 1995 (29.1% of all pixels). Figure
2b: contaminated pixels were identified using RZm (34.2% of
all pixels).  The values for MCFCO, OCFCL, and CCFCL were
respectively: 92.5%, 3.1%, 27.1% when using Eq.[3] for Rmin;
and 85.0%, 6.1%, and 16.2% with Eq. [9]. Figure 2c:
Difference between Figure 2a and 2b (shown as black, 18.9%
of all pixels).

bidirectional effects. Since the data
acquisition geometry was very different for
the NOAA-11 AVHRR data compared to
other years (with mean solar zenith angle
SZA>55o for all compositing periods), both
bidirectional corrections (i.e., normalization
to SZA=45o) and atmospheric corrections
(which loose accuracy above solar zenith of
60o and view zenith of 50o; Rahman and
Dedieu, 1994) could introduce bias into the
corrected data. Cihlar et al. (1998) found
that the mean NDVI values for vegetated
pixels had consistently higher NDVI values
in 1994 compared to other years. This
explanation is supported by the higher
MCFCO results for the 93data/94RZ
combination. However, the effect could not
be traced directly to a particular threshold
because of the self-normalization nature of
CECANT (Eq.[1]-[3]). In fact, the 1994
thresholds did not consistently deviate from
the other years. The difference in the
contamination masks is thus introduced
mostly through the NDVIa and possibly
through M (Eq.[1],[2]). - On the other hand,
the random fluctuations in the summer
(e.g., Period 13) are probably due to the
differences between the respective RZ
threshold values and the relatively small
number of contaminated pixels involved.

When the mean RZm set was applied to
each of the four years the range of values
among the years at any period t was
reduced substantially (Figure 1c). The
deviation was largest for 1994 which was
not included in computing the RZm. The
direct identification accuracy also
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increased. The average MCFCO value for the four years (heavy line in Figure 1c) varied between
76% and 97% depending on the period, the range being slightly higher (79%-97%) if only the 3
years used in deriving the RZm values were considered. The annual average MCFCO ranged from
78% (1994) to 91% (1995). The increase between Figure 1a-1b and 1c indicates that when data
from several years are combined the thresholds and representative limiting values (Eq.[1],[2]) are
less susceptible to specific effects that may play a role in individual years.

Figure 2 shows an example of the masks produced by RZsy and RZm thresholds for Period 10 in
1995 when most land pixels (70.9%) were clear. The MCFCO was 92.5% for RZm, i.e. only 7.5%
pixels identified as contaminated using RZsy were missed by RZm. Figure 2c shows the difference
between the two masks. The variations in the spatial distribution are typical of other cases found
in the study. They tended to occur in patterns, indicating regional concentrations of mismatches.
Since three thresholds, derived with the assistance of three NDVI trajectory-related parameters
(NDVImax, NDVIa, M), are involved in the determination of a contaminated pixel there is no
single explanation for these patterns. In general, as the reference set changes it brings about
differences due to the changing pixel-specific trajectory (Eq. [1],[2]) as well as the period-
specific thresholds (Eq. [3]-[5]). Small shifts in these could result in appreciable differences in
contaminated pixels identification, especially for Rmin and Zmax because of the skewness of the
distribution near the thresholds (Cihlar, 1996).

The fraction of undetected contaminated pixels OCFCL is illustrated in Figure 3a-3b and 3c. In
most cases, OCFCL was <25% (Figure 3a-3b) with RZoy although occasional larger anomalies
occurred. They showed a tendency to increase near the end-periods but since these are outside
the growing season the increase is not a serious problem. The OCFCL errors were much reduced
with RZm  (Figure 3c), averaging about 10% among the four years. Consistently with the MCFCO

results, the largest OCFCL values were found for 1994.

The proportion of erroneously included pixels (CCFCL) was consistently greater than the OCFCL

(Figure 3c, 3f). Although most were <40%, significant outliers occurred during the growing
season for some combinations when most data year/RZ year combinations had high CCFCL

errors. The three worst combinations involve RZ94, supporting the explanation that the higher
overall NDVI in 1994 was the main reason since this would increase NDVIa, thus causing Rmin

values to be too high. The values were also high for Period 1 but since this occurs in the dormant
stage, the errors are not critical. The average CCFCL values for the combined RZm were also high
due to the 1994 data, about 30% (Figure 3f). Without the 1994 data the CCFCL would be around
20% in the May - August period, i.e. most of the growing season.
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Figure 3. Incorrectly identified pixels for two error measures and different combinations of reference data and test
data. Figure 3a-3b: Undetected contaminated fraction OCFCL for RZ thresholds from year x applied to data from
year y, y≠x. Figure 3c: OCFCL for RZ thresholds from three years of combined data (93,95,96) applied to
individual years. Figure 3d-3e: Committed Contaminated Fraction CCFCL for RZ thresholds from year x applied to
data from year y, y≠x. Figure 3f: CCFCL for RZ thresholds from three years of combined data (93,95,96) applied to
individual years.



12

The varying accuracy in Fig. 1-3 is related to differences in the data sets among years. The
accuracy can be expected to be high when the data set used to derive the coefficients has �similar
characteristics� as the one to be screened. �Similar� means that the clear-sky NDVI(i,j,t) values
have not changed significantly enough to modify NDVIa,, NDVImax or M, and secondly that the
overall pixel contamination in the region of interest has not changed. While the second
assumption is sound for a large region such as Canada, the changes in the measured NDVI can be
caused by various factors. The main one is interannual land cover change but this occurs only in
a small proportion of the total area. Surface changes which reduce NDVI (e.g., drought) are also
likely to cause errors since they are spectrally indistinguishable from the effect of atmospheric
contamination. Other causes are measurement effects: changes in sensor calibration, viewing
geometry, or data processing (atmospheric and SZA corrections). Careful processing can mitigate
the impact of these effects but as the 1994 data shows they cannot be assumed to removed
entirely, given the present state of knowledge. It should be noted that none of these factors cause
problems when the CECANT coefficients are derived from the data set to be screened.

2. Effect of relaxing Rmin

Among the R and Z thresholds Rmin has the strongest effect on the selection of contaminated
pixels. A test was therefore undertaken to determine if a relaxation of Rmin would improve the
identification of contaminated pixels. Using the 3-year averaged data set, the new Rmin was
computed as

R Rmeanmin . .= − 2 0                                                                               [9]

C1, Rmax and Zmax were not changed.

Figure 4 compares the accuracies for the two sets of RZm, as an average for the four years. Each
curve represents the overall range of values obtained. For example, the top curve in Figure 4a
shows the difference between the highest and the lowest MCFCO value obtained among the
various RZoy values over the four years. As noted above, the fluctuation was quite high for
individual RZoy vs. data year combinations, the difference in MCFCO ranging from 17 to 53%
depending on the compositing period. With RZm  the fluctuation decreased significantly, to 1-
30% in most cases. After relaxing Rmin the overall range did not change substantially (Figure 4a).
A similar trend was found for the omitted and committed contaminated fractions (not shown)
where the range also decreased significantly only between RZoy and RZm.

While the modified Rmin did not change the range of differences in MCFCO, it improved the
balance between omitted and committed pixels. Figure 4b shows these for the two Rmin values
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and the difference between them. It is evident that the OCFCL and CCFCL became more nearly
balanced, the average difference decreasing from 19.2% (RZm with Rmin) to 9.1% (RZm with
modified Rmin). However, the improvement came partly at the expense of the direct identification
of the contaminated pixels. A comparsion the mean MFCCO values for the two Rmin values and 4
years (Figure 6a) shows that MCFCO decreased somewhat for the modified set, from 87% to
81.1%. This also points to the interannual and spatial variability of quantities used to compute R
and Z as the reasons for the residual errors in detecting contaminated pixels.

Fig. 4a: MCF maximum range 
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Fig. 4b: OCF and CCF for two Rmin
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Figure 4. The overall range of accuracy values for three sets of RZ thresholds: from
individual other years RZoy, as mean over three years RZm (93, 95, 96), and modified
from data over three years (RZm mod). Figure 4a: Matching Contaminated Fraction
MCFCO. Figure 4b: Comparison of OCFCL and CCFCL for two sets of Rmin coefficients
based on Eq.[3] and [9], respectively.
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3. Adjusted CECANT

The above results indicate that changing Rmin had some effect but the imbalance of commissions
and omissions persisted. After examining reasons for these inclusions we concluded that the
interannual differences in the NDVI trajectories play an important role. We therefore devised a
way of adjusting the target year statistics to the multiyear ones. This is accomplished by
modifying Eq. (1) and (2) as follows:
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The impact of A and B is to reconcile the difference (if any) between the two sets, the multiyear
reference data set (data for all compositing periods available) and the current year (only data for
periods <1,t> available). Once the R and Z values are recomputed for all pixels, the adjusted
thresholds are calculated from Eq. [3]-[5]. Only pixels with NDVI>0 and C1<0.3 are included in
calculating the thresholds.

Using data from all four years, Figure 5 compares the performance of the modified approach
(CECANT Mean-Adjusted, CMA) with RZm and the modified Rmin. The MCFCO values (Figure
5a) decreased compared to RZm but are somewhat higher (overall mean value 82.3%) than for
modified Rmin (81.1%). The reason for the lower MCFCO  (compared to RZm) are the larger
commission errors in the latter. That is, too many pixels were labeled as contaminated, thus
increasing the MCFCO values. The CMA errors of omission and commission again varied
between 5-15% (OCFCL, Figure 5b) and 10-30% (CCFCL, 5c) in most cases. However, overall the
mean errors decreased, by 27% for OCFCL (17.1 to 12.4%) and by 16% for CCFCL (25.1 to
21.4%). The improved stability of the estimates in individual years and reduced interannual
variability indicated by all three measures in Figure 5 is important.  Based on the four years of
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data, Figure 6a shows that the mean values of MCFCO varied much less in case of CMA than for
either RZm or modified Rmin. Similarly, the OCFCL and CCFCL values fluctuated much less for
CMA than for the other two methods (Figure 6b). The interannual stability is an important
consideration because it ensures more consistent performance when applied to a new data set.
The comparable performance in MCFCO and large improvements in OCFCL and CCFCL show that
the CMA approach performs the best among the options tested.

J. Straby
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3. Comparison with a threshold-based cloud screening scheme

To obtain an independent assessment of the CECANT results when applied to other years we
have used part of a fixed threshold-based cloud detection scheme of Wu et al. (1995), hereafter
FTM. They developed a method for single-date images of sites with homogenous land cover
using: a) thresholds applied to several channels following the work of Gutman et al. (1987) and
Gutman (1992); and b) context analysis based on the assumption of local surface homogeneity.
Since no contextual information is available in composite images and since land surfaces in
general are not homogenous we only employed the initial, pixel-based thresholds. As stipulated
by Wu et al. (1995) these were applied to top-of-the-atmosphere reflectance and temperature data
(before atmospheric corrections). The method uses three thresholds to identify clear pixels as
those for which {(R1+R2)/2<0.35 and R2/R1>1.3 and T4>280}, where R1 and R2 are top-of-the-
atmosphere (TOA) reflectances (dimensionless) in AVHRR channels 1 and 2, and T4 is
brightness temperature in AVHRR channel 4 (oK). The same thresholds were employed for all
compositing periods over the four years. The resulting masks were then compared to those
produced by CECANT for the same period, again taking the latter as an accurate reference
because of its sensitivity to subpixel contamination (Cihlar, 1996).

Figure 5. The accuracy of correct identification of contaminated pixels
using RZ coefficients adjusted for the difference between reference and
current year data sets (CMA approach) and all four years. Figure 5a:
Matching Contaminated Fraction MCFCO. Figure 5b: Omitted
Contaminated Fraction OCFCL. Figure 5c: Committed Contaminated
Fraction CCFCL.
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Figure 6. A  comparison of the MCFCO and the range of MCFCO values for the
four years, using three approaches: average RZ (RZm), modified RZm (Eq. [9]),
and CMA (Eq. [10]-[11]). Figure 6a: Matching Contaminated Fraction MCFCO

values and their range over the four years. Figure 6b: Omitted and committed
contaminated fractions (OCFCL, CCFCL).
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Figure 7. Comparison of the contaminated pixels detected by a fixed
threshold method (FTM) and by CECANT. Figure 7a: Matching
Contaminated Fraction MCFCO; Figure 7b: Undetected contaminated
fraction, OCFCL; Figure 7c: Committed Contaminated Fraction CCFCL.
The curve CECANT-FTM shows the difference between the two masks
(CMA version).
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Figure 7 shows the result of this comparison. Overall, the direct identification accuracy (MCFCO)
of the FTM was below that of CECANT, by 28.7% on average. The two approaches yielded
closer results early and late in the season, when the identification is based mostly on surface
albedo. During the growing season the discrepancy was above 25%. A relatively small
proportion of the contaminated pixels (OCFCL) were missed, between 10 and 15% on average
during the growing season (Figure 7b) and less outside of it. The proportion of clear-sky pixels
erroneously included in the contaminated mask (CCFCL) was much higher, from 20-30% in the
summer to >70% outside the growing season. The seasonal trend in CCFCL is mostly due to the
varying number of clear pixels; the actual number of CCFCL pixels fluctuated much less (between
30000 and 80000) with a minimum in mid-summer. The lower MFCCO and higher CCFCL values
suggest that compared with CECANT the FTM tended to identify as contaminated pixels other
than those identified by CECANT. Since the FTM thresholds correspond to AVHRR channel 1
of about 0.3 (at TOA) part of the explanation is in the difference between the channel 1
thresholds. In addition, the condition that channel 2 be 1.3 times higher than channel 1 is not met
for many northern barren areas, thus labeling as contaminated clear-sky pixels in the north.
Furthermore, FTM relies on the context criteria b) to detect partly contaminated pixels. The
results do show, however, better performance by CECANT when applied to composite images.
While it should be possible to adjust the FTM thresholds the latitudinal variability in vegetation
suggests that the thresholds might have to depend on land cover.

It is worth noting that the OCFCL and CCFCL values for the FTM were as low or lower than those
for CECANT (Figure 3c vs. 7b, 3f vs. 7c). Also, the year-to-year variability was significantly
reduced, especially for CCFCL (Figure 7c). This indicates that the FTM method is less sensitive to
the changes in the characteristics of the satellite data set in a particular year, but at the expense of
lower MCFCO values.

Summary

When processing optical satellite data over land, the ultimate approach will likely consist of
screening out fully or partly contaminated pixels from single-date input images, and then
retaining the remaining pixels for a comprehensive analysis of the clear-sky measurements.
However, most satellite sensors do not provide sufficient spectral and radiometric information to
perform such screening accurately and reliably. This is why maximum-value compositing has
been widely used. Nevertheless, even with this approach some contamination remains since only
the least contaminated pixel is retained for each compositing period. Yet, the detection of such
pixels is essential for quantitative applications.

In this paper, we have examined the feasibility of using the CECANT method, previously
developed for post-season analysis, in a �forward� mode. Since the method is applied to
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composites, it reduces the data processing burden compared to single image-based procedures, a
particular advantage for near-real time operations. However, its use implies that the thresholds
characterizing contaminated pixels must be based on previous data over a reference period. Thus,
they may not be representative of the pixel in the current year. We have examined the impact of
using thresholds derived for other periods and, using data sets over Canadian landmass from four
years and contamination masks obtained with optimized coefficients, we found that:

1. The absolute accuracy of identifying contaminated pixels ranged from 60 to 100% (Figure
1a-1b), depending on the time in the growing season and the reference year used. When the
RZ thresholds were derived from a data set averaged over several years, the accuracy
increased to >76% on the average per period and 87% for the year (Figure 1c). Values for
individual years/compositing periods could be higher or lower. The relatively high values are
partly due to commission errors.

2. When RZ thresholds are applied to another year, the commission errors exceeded errors of
omission by about 20% on the average compared to the number of clear-sky pixels (Figure
3). This imbalance can be adjusted by modifying the calculation of Rmin, so that the two
errors are more nearly equal, within approximately 10% on average (Figure 4b), partly at the
expense of reduced direct identification accuracy (from 87% to 81.1% on average).

3. The best results were achieved using a modified approach (CMA, Figure 5,6) in which the
thresholds are computed after the current year data are adjusted with respect to the seasonal
trajectories of the reference data set. As a result, the commission and omission errors were
more nearly equal and more consistent among years, while the matching accuracy was
comparable to or better than for the other approaches.

4. Based on four years of data (including 1994 with different data set characteristics), the mean
contaminated fraction could be estimated using CMA with an accuracy of 82.3%, with errors
of omission (commission) 12.4% (21.4) on the average. These values are based on the use of
Eq.(10) and (11). The interannual stability was very good, with a range of <20% in most
cases. The discrepancies in identifying contaminated pixels result from differences between
the reference and current year data sets, particularly as regards the NDVI values. Both
surface changes and measurement/data processing factors are potential reasons for incorrect
identification of contaminated pixels.

5. Using a same-year mask as a reference, the results with the CECANT approach were better
by about 20-30% than those obtained with fixed thresholds based on AVHRR channels 1, 2
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and 4. The misidentification errors were comparable, especially during the growing season,
and they were as or more stable between years than for CECANT.

We conclude that the modified CECANT approach (Eq. (10, (11)) is suitable for the
identification of contaminated pixels over land in near-real time processing of AVHRR
composite data. However, the identification errors appear sufficiently high to justify reprocessing
after the growing season, using the entire data set to optimize the threshold coefficients.
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