
Abstract
To map wildland fires for emission estimation in California,
this paper presents an integrated approach to wildfire
mapping using daily data of the Advanced Very High
Resolution Radiometer (AVHRR) on board a National Oceanic
and Atmospheric Administration’s (NOAA) satellite. The
approach consists of two parts: active fire detection and
burnt area mapping. In active fire detection, we combined
the strengths of a fixed multi-channel threshold algorithm
and an adaptive-threshold contextual algorithm and modi-
fied the fire detection algorithm developed by the Canada
Center for Remote Sensing (CCRS) for fire detection in boreal
forest ecosystems. We added a contextual test, which
considers the radiometric difference between a fire pixel and
its surrounding pixels, and a sun glint elimination test to
the CCRS algorithm. This can effectively remove false alarms
caused by highly reflective clouds and surfaces and by warm
backgrounds. In burnt area mapping, we adopted and
modified the Hotspot and NDVI Differencing Synergy (HANDS)
algorithm, which combines the strengths of hotspot detection
and multi-temporal NDVI differencing. We modified the
HANDS procedure in three ways: normalizing post-fire NDVI
to pre-fire NDVI by multiplying an NDVI ratio coefficient,
calculating mean and standard deviation of NDVI decrease of
land-cover types separately, and adding a new iteration
procedure for confirming potential burnt pixels. When the
integrated method was applied to the mapping of wildland
fires in California during the 1999 fire season, it produced
comparable results. Most of the wildfires mapped were
found to be correct, especially for those in forested ecosys-
tems. Validation was based both on limited ground truth
from the California Department of Forestry and Fire Protec-
tion and on interpreted burnt areas from Landsat 7 TM
scenes.
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Introduction
Wildfires and prescribed burning occur frequently in
California. They produce hazardous emissions leading to
episodic increases in particulate matter (PM2.5) and visibility
reducing particles. Smoke from such burning, if not properly
managed, can have significant health impacts on exposed
populations. A reliable estimation of burnt areas caused by
biomass burning in California, therefore, is a key for emis-
sion estimation. Ground-based measurements of fire perim-
eters after-fire events or regular overpasses for fire mapping
during the burning using an airplane with an onboard
sensor may not meet the requirement for emission estima-
tion at a regional or continental scale. Remote sensing is the
most efficient and economic means for monitoring fires over
large areas on a routine basis despite its various limitations
(Li et al., 2000a, b; Justice et al., 1993). The type of sensor
most widely used for long-term, large-scale fire monitoring
is the Advanced Very High Resolution Radiometer (AVHRR)
on board the National Oceanic and Atmospheric Administra-
tion’s (NOAA) polar orbiting satellites (Stroppiana et al.,
2000; Li et al., 1997; Justice et al., 1996; Kennedy et al.,
1994; Kaufman et al., 1990; Flannigan and Vonder Haar,
1986).

AVHRR (onboard the NOAA-14 satellite and earlier) data
are available at a nominal spatial resolution of 1.1 km in
five channels: the visible, near-infrared (IR), mid-IR, and two
thermal-IR portions of the spectrum. Such spectral resolution
offers considerable benefits to fire monitoring (Harris, 1996).
Channels 1 and 2 provide data capable of detecting, moni-
toring, and measuring smoke emissions (Khazenie and
Richardson, 1993; Kaufman et al., 1990), but contain no
thermal information. Channel 3 is extremely sensitive to
sub-pixel hot spots, making it the most important channel
for fire detection (Rauste et al., 1997; Pozo et al., 1997;
Franca et al., 1995; Setzer and Pereira, 1991; Muirhead and
Cracknell, 1985) though it has a low temperature saturation
point (�321 k) (most existing algorithms concentrate on
the third channel, hoping to overcome this disadvantage).
Channels 4 and 5 are far less sensitive to sub-pixel hotspots,
but they can frequently help detect fires when combined
with other channels (Flasse and Ceccato, 1996; Justice et al.,
1996). In addition, the AVHRR onboard post-NOAA-14 satel-
lites also include a 1.65 �m short wave infrared (SWIR)
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channel. The SWIR channel has been proven highly effective
in discriminating burned boreal forest (e.g., Fraser and Li,
2002).

Wildfire mapping using NOAA/AVHRR data involves
active fire detection, as well as burn scar mapping. Exist-
ing AVHRR-based fire detection algorithms can be grouped
into two broad categories: (a) fixed threshold algorithms;
and (b) adaptive threshold contextual algorithms (Giglio
et al., 1999). Fixed threshold algorithms apply empirically-
determined thresholds to discriminate fire pixels from
their non-burning surroundings or from clouds (Boles and
Verbyla, 2000). Threshold values are defined and fixed for
given regions and seasons. Flannigan and Vonder Haar
(1986) first used the fixed threshold method to identify fire
pixels. If the temperature for both channel 3 and channel 4
exceeded the mean background temperature, and if channel
3 was greater than channel 4 by a critical threshold, fire was
assumed to exist. They detected 80 percent of unobstructed
fires. Kaufman et al. (1990) used a threshold-based fire
detection method in an assessment of trace gases and par-
ticulate emission from fires in Brazil. They found that lower
threshold values resulted in an increased number of false
fire detections caused by warm surface areas. Kennedy et al.
(1994) modified the threshold set by Kaufman et al. (1990)
using AVHRR data for West Africa and improved fire detec-
tion effectiveness. Li et al. (1997; 2000a), Rauste et al.
(1997), Pozo et al. (1997), and Arino and Melinotte (1998)
employed fixed multiple thresholds applied to multiple
channels to detect active fires in the Canadian boreal forests,
Spain and Africa, respectively. The fire detection studies
cited above achieved varying degrees of success. The advan-
tages of this category of algorithms for active fire detection
are simplicity and reduction of computation time. The
limitation of this method is that the fixed thresholds are
only applicable at local to regional scales during a short
fire season.

Instead of using fixed threshold values throughout an
area, a category of contextual algorithms using adaptive
thresholds was proposed. The algorithms compute variable,
pixel-specific thresholds based on the pixels surrounding a
potential fire pixel. Flexible threshold algorithms identify a
fire pixel based on the level of contrast between the poten-
tial fire pixel and its “background” pixels (the definition
of background varies with kernel size; Boles and Verbyla,
2000). Contextual algorithms are designed to be flexible, and
effective under different environmental conditions (Flasse
and Ceccato, 1996). Lee and Tag (1990) proposed one of the
first contextual fire detection algorithms in their analysis of
gas waste flares from AVHRR nocturnal data. A contextual
algorithm adapted from Flasse and Ceccato (1996) was used
for the International Geosphere Biosphere Program, Data and
Information Systems (IGBP-DIS) fire product (Stroppiana et al.,
2000; Dwyer et al., 1998; Malingreau and Justice, 1997;
Justice and Dowty, 1994). Contextual methods have also
been used for regional fire monitoring, such as over central
Africa (Eva and Flasse, 1996). In principle, contextual
methods are more versatile, being able to handle a wider
range of conditions than the fixed threshold approaches. It
should be noted that if a set of thresholds were set too high
to distinguish between potential fire pixels and background
non-fire pixels, a large omission error would occur. Since
the fire confirmation tests employed in subsequent contex-
tual algorithms work only on potential fire pixels so identi-
fied, the omission error problem could then only get worse
(Li and Giglio, 1999). Therefore, when a contextual algo-
rithm is employed, it is necessary to pay close attention to
setting initial thresholds for identifying potential fire pixels.

Active fire detection as described above covers only a
portion of a region’s total burnt area in any given season,

due to clouds and limitation in satellite over-pass frequency
(Li et al., 2000b; Eva and Lambin, 1998a). Burn scar map-
ping overcomes this problem, providing complete map-
ping and statistics on burnt areas. Extraction of burnt land
information from AVHRR data can be done using any of the
following three approaches: (a) application of multiple tests
on spectral values or on derived indices based on single
date data; (b) temporal analysis; and (c) classical image
segmentation techniques with single date or multi-temporal
data (Arino et al., 1999). All approaches require a post-fire
image. In the first approach, burn scars can be detected
based on the spectral difference between burnt and un-burnt
areas in individual channels and/or in a combination of
channels (e.g., NDVI; Pereira, 1999; Razafimpanilo et al.,
1995). In the second approach, changes caused by fire
activity are tracked for burn scar mapping. For example,
Kasischke and French (1995) used AVHRR data taken before
and after a large forest fire in Alaska to map burn scars
based on a post-fire decrease in NDVI. Fernandez et al. (1997)
and Martin and Chuvieco (1995) also applied pre- and post-
fire NDVI differences to map burn scars. It has been demon-
strated that this method is more effective than methods
using only a single post-fire image, since the second method
minimizes potential confusion with permanent land cover
types, some of which have spectral patterns similar to
fire scars (Pereira et al., 1997). The third type of method
involves image classification and post-classification compari-
son. Recently, a new type of burn-scar mapping algorithm
has been proposed that combines an active-fire detection
algorithm with NDVI and/or other vegetation index differenc-
ing (Pereira 1999). For example, one technique, known as
Hotspot and NDVI Differencing Synergy (HANDS), combines
the strengths of its two constituent techniques while avoid-
ing their limitations (Fraser et al. 2000).

Recently, the Moderate Resolution Imaging Spectrora-
diometer (MODIS), onboard EOS series satellites) imagery has
become another source of data of appropriate spatial and
temporal resolution to be used for global studies of biomass
burning (Kaufman et al. 1998a). These active-fire detection
and burnt scar mapping algorithms, briefly reviewed above,
can be modified and applied to MODIS data.

In this study, the CCRS active fire detection algorithm (Li
et al., 2000a) was modified with additional contextual and
sun glint tests, and used to detect daily hotspots in Califor-
nia using NOAA/AVHRR data. Then, the HANDS procedure
(Fraser et al., 2000) was modified and used for mapping
burn scars in California, using NDVI differencing and a
hotspot mask covering an interesting time period. Therefore,
to obtain a reliable estimation of burn scars covering a
variety of fuel types in California, we propose in this study
an integrated approach for mapping wildfires with the
NOAA/AVHRR data. The objectives in this study are to inte-
grate the use of contextual information into the multi-
channel fixed threshold algorithm (Li et al., 2000a) for
hotspot detection, and to adopt and modify the HANDS
algorithm (Fraser et al., 2000) for burn scar mapping.

Data Sources
Daily High Resolution Picture Transmission format (AVHRR-
HRPT) images (1.1 km resolution at nadir) from 01 May
to 31 October 1999 were acquired on board the NOAA-14
satellite during its daytime passes. The local passing time of
NOAA-14 over California varied from 1400 to 1600 hours
(local time). Due to excessive cloudiness and a data acquisi-
tion problem, a total of only 148 daily images were available
for this analysis (missing nine days in May, ten days in
June, eight days in July, four days in August, one day in
September, and four days in October). In order to generate
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ten-day maximum value composite, NDVI � (Ch2 � Ch1)/
(Ch2 � Ch1) (MVC-NDVI) composite images for October 1998,
an additional ten daily of AVHRR-HRPT images acquired from
21 to 31 October 1998 were used. The daily NOAA/AVHRR
data used in this study were downloaded from NOAA Satel-
lite Active Archive Data Center (http://www.saa.noaa.gov).
In this study, previously mapped land cover types of
California were used to eliminate non-wildland cover types
and to calculate NDVI difference statistics within each cover
type, needed for hotspot detection and burn scar mapping.
The Gap Analysis Project (GAP) vegetation data set (Holland,
1986; Anderson et al., 1976) was used as our land-cover
type map. It was compiled from multiple sources, relying
primarily on 1990 Landsat TM data, for evaluation of habitat
and land conservation. The land-cover types used for fire
detection and mapping consist of scrub and chaparral,
grassland, marsh, riparian forest and scrub, woodland and
rangeland, forests, and fell-field.

Three Landsat-7 TM scenes (path45/row32, path44/row32,
and path44/row33) were acquired on 03 November, 12
November, and 12 November 1999, respectively. And a
partial data set of fire polygons collected by the California
Department of Forestry and Fire Protection (CDF) through
ground survey was used to validate our results.

Methods
AVHRR Data Preparation
The PACE AVHRR Orbital Navigation Package (PCI Geomatics
Company, Canada, 1997), a module specially designed for
pre-processing NOAA/AVHRR data, was used to perform AVHRR
data preparation using calibration and orbit information and
extracted ground control points from the AVHRR data file.
Geometric correction and registration were accomplished.
The entire data preparation involved five steps:

1. Data Download and Import. The AVHRR data format used in
this analysis is HRPT. The data were downloaded directly
from http://www.saa.noaa.gov. Normally, all five AVHRR
channels were read in.

2. Radiometric Correction. The scan angle of the AVHRR sensor
is large (approximately 110.8 degrees), so there is a range
of solar zenith angles along any given scanline. Therefore,
different parts of an AVHRR image receive differing amounts
of solar radiation. The imbalance can be removed by per-
forming a radiometric (solar zenith angle) correction (Di and
Rundquist, 1994). This correction was performed on AVHRR
channels 1 and 2.

3. Radiometric Calibration. Digital numbers (DN) of AVHRR
data must be converted to standard physical units. The
outputs are expressed as percent reflectance from the top
of the atmosphere (TOA) for Channels 1 and 2, and as
brightness temperature in K from the TOA for the thermal
channels.

4. Geometric Correction. All five AVHRR channels were geo-
corrected. The correction procedure applies the information
extracted from the raw AVHRR data file during the data
import process to automatically rectify all five calibrated
AVHRR channels. The resulting pixel size is 1 km. The
georeferencing error of an image after this step may be
greater than two pixels.

5. High Precision Geometric Correction and Registration. This
was achieved using six to ten manually collected ground
control points (GCPs). The georeferencing error at this stage
was less than 1 km.

Hotspot Detection Algorithm
The active fire detection algorithm is based on the algorithm
of Li et al. (2000a, hereafter called the CCRS algorithm) with
a modification for California. This algorithm was chosen
based on the comparison of results from five fire detection

algorithms (Li et al. 2001). The five algorithms under study
include four designed for global applications and one
designed specifically for boreal forests. The global algo-
rithms include one used in generating the IGBP-DIS fire
product (Malingreau and Justice, 1997), one designed for the
MODIS (Kaufman et al., 1998a; 1998b), one employed at the
European Space Agency (ESA) (Arino et al., 1998), and one
proposed by Giglio et al. (1999). The regional algorithm
was developed and first operated at the Canada Center for
Remote Sensing (CCRS) (Li et al., 2000a). Two of the algo-
rithms use fixed thresholds (CCRS and ESA) and three use
contextual methods with variable thresholds (IGBP, MODIS,
and Giglio et al., 1999). The comparison result indicates that
the CCRS algorithm is best for large area fire detection over
Canada’s boreal forest (Li et al., 2001). However, since
the CCRS algorithm was originally designed for boreal forests
and temperate areas, with fixed threshold tests built in
to the algorithm, we added some new tests to deal with
the diversity of environments in California. The tests are
divided into two major stages: identifying potential fire
pixels and eliminating false fires. At the second stage,
eliminating false fires, we added a function for false alarm
removal that considers background effects. As in the CCRS
algorithm, thresholds of all tests were optimized for real fire
detection by eliminating as many false fires as possible. The
threshold values were chosen following a trial-and-error
approach based on the fire training data sets from CDF fire
polygons. The schematic representation (Figure 1) of the
spectral correspondence of several known land-cover types,
particularly hotspot and burn scar, helped us in the thresh-
old determination. From Figure 1, it is easy to see that
hotspot and burn scar types have a certain level of intersec-
tion in the spectral space, and also that they overlap with
other land-cover types to a certain degree. Identification
of fire pixels is difficult if only a few tests are done. The
multi-channel threshold algorithm that considers surround-
ing pixel effects is summarized in a flowchart (Figure 2).

In Figure 2 (note that brightness temperature channels 3,
4, and 5 are hereafter denoted as T3, T4, and T5, and
reflectance channels 1 and 2 are, hereafter, denoted as R1
and R2), as in most previous work (Li et al., 2000a; Li and
Giglio, 1999; Arino and Melinotte, 1998; Justice et al., 1996;
Franca et al., 1995; Kennedy et al., 1994), AVHRR T3 (cen-
tered around 3.7 �m), which catches all potential fire pixels,
is used first. The threshold for T3 was selected based on the
assumption that fires at sub-pixel levels will generate a
temperature that approaches the channel saturation point
(�320K, in this study, it is 322K). Since the middle-infrared
channel is very sensitive to thermal radiation, this assump-
tion is reasonable given the low saturation point (Justice
et al., 1996). Most wildfires have a large range of burning
temperatures, from approximately 500K for smoldering fires
to over 1,000K for flaming fires, with a variable fraction of
the burning area being within any given pixel (Kaufman
et al., 1998). However, since the AVHRR sensor was not
designed for fire detection, it loses sensitivity at such high
temperatures. Nevertheless, because the brightness tempera-
ture for most fire-free pixels is usually significantly lower, it
still proves to be the most useful channel for fire detection.
For potential fire identification, Li et al. (2000a) used a
threshold of 315K in boreal forests and Kaufman et al.
(1990) used 316K in tropical forests. We chose 315K in this
study.

At the second stage, all tests are for removing false fires
after the initial potential fire detection. The thresholds
chosen for tests 2, 3, 5, 6, and 9 were kept the same or
close to the corresponding tests in the CCRS algorithm (Li
et al., 2000a). The threshold of test 2 (T3-T4), for testing the
brightness-temperature difference between AVHRR channels 3
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(a)

(b)

Figure 1. Schematic representation of the spectral
correspondences of several land cover types (each
approximately within a dotline ellipsis). (a) Distribution
of reflectance values from the top of atmosphere (TOA)
for channels 1 and 2; (b) distribution of reflectance
from the TOA in channel 2 and brightness temperature in
channel 3; and (c) distribution of brightness tempera-
ture for channels 3 and 4.

(c)

Figure 2. A flowchart of hotspot detection using NOAA-
14/AVHRR data presents a process-chain to produce an
active fire.

is known that in the case of biomass burning, the value of
T3-T4 is high (Li et al., 2000a; Kennedy et al., 1994). Test 3
(set T4 �� 260K) eliminates those pixels containing highly
reflective clouds. Although test 1 (T3 � 315K) can filter out
heavily clouded pixels, many bright or highly reflective
cloud pixels may be missed. The purpose of test 5 is to
focus hotspot detection on wilderness areas. Test 6 elimi-
nates false fire pixels caused by thin cirrus clouds and
removes the false fires caused by warm backgrounds passing
previous tests. The ninth test limits confirmed fire pixels
not surrounded by another fire pixel within a 3 � 3 win-
dow. It is assumed that in most cases single fire pixels are
caused by sub-pixel contamination and other noise, such as
a forest pixel containing a fraction of water body with an
insufficient amount of sun glint to be eliminated by test 8.

Despite our attempts to adjust thresholds for various
tests in the CCRS algorithm based on the limited data set of
fire polygon data (CDF), there remained many false alarms. In
consideration of the difference between the relatively “cold
background” of the Canadian boreal forests, the relatively
“warm background” of northern California, and the “hot
background” of southern California brush land, and consid-
ering as well the sun glint problem caused by the coastline
and many inner lakes of California, we added three more
tests to remove the remaining false fires. Tests 4, 7, and 8
were added to the CCRS algorithm. In addition to the R2 � 22
percent threshold, effects of surrounding pixels on the

and 4, was set at 14K. Its function is to eliminate false fires
caused by warm backgrounds such as bare soils, because
these types of warm backgrounds can saturate channel 3. It
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TABLE 1. COMPARISON OF ALGORITHMS USED FOR HOTSPOT DETECTION

BY OURS AND CCRS

CCRS (NOAA-14) Ours (NOAA-14)

T3 � 315 K T3 � 315 K
T3 � T4 � 14 K T3 � T4 �� 14 K
T4 � 260 K T4 �� 260 K
R2 � 22% R2 �� 22%
n/a If 22% � R2 �� 30% and R2

� (mean of 8 neighbor pixels �1),
then  fire; if R3 � (mean of 8 
neighbor pixels �5), then fire.

Eliminate cropland, Eliminate water bodies, urban,
grassland and water bodies agricultural area dune and desert.

T4 � T5 � 4.1K and T4 � T5 � 4K and 
T3 � T4 �� 19K T3 � T4 �� 19K

n/a R1 � R2 �� 75%
n/a 0R1�R2 0 � 1%
Eliminate single pixel fires Eliminate single pixel fires

central pixel in AVHRR channels 2 and 3 (R2 and T3) were
taken into consideration. Test 4 for R2 involves the follow-
ing assessment: if R2 � 22 percent, then the subtest is
passed; if R2 � 30 percent then there is no fire; if R2 is
between 22 percent and 30 percent, and R2 � the mean of
its eight surrounding pixels minus 1.0 percent, then the
subtest is passed. When R2 is between 22 to 30 percent,
there are two possible scenarios for the vegetated pixel.
The first is partial burning within a pixel at the canopy or
ground level. In this case, it is likely that the NIR reflectance,
R2, of that pixel does not drop to below 22 percent. Never-
theless, R2 is dramatically lower than the R2 of surrounding
pixels (e.g., most normal forest vegetation has greater than
30 percent reflectance for R2). In the second scenario, non-
fire pixels may fall into the range of 22 to 30 percent, but
their R2s are equal or close to those of their surrounding
pixels. Therefore, the subtest can retain a fire pixel and
remove a false alarm. Test 4 for T3 is as following: if T3 is
greater than the mean of its eight surrounding pixels �5K,
then the subtest is passed. If a pixel is composed of varied
proportions of “warm” and “cold” components (e.g., bare
soil and water body), it is possible for the pixel to pass
Test 2 (Li et al., 2001). However, if the T3 value of the pixel
is similar to the values of its surrounding pixels, then the
pixel is considered a false fire, and removed. In the above
test, if any one of the eight surrounding pixels is a potential
fire pixel, it will be temporarily replaced by the average
pixel value of the land cover type to which it would have
belonged before the fire. Test 4 can effectively remove false
fires caused by highly reflective clouds, bright surfaces and
warm backgrounds. The newly added test 7 is designed to
further eliminate highly reflective clouds and bright sur-
faces. At particular sun-earth-satellite geometric configura-
tions, sun glint on water causes the algorithm to falsely
detect fire. This problem is common along coastlines, but
also among inland water-logged areas such as irrigated
regions, marshes, and lakes of various sizes (Malingreau and
Justice, 1997). Such land types are common in California.
Although such land types are masked out by test 5, registra-
tion error (usually subpixel error) still can cause such a sun-
glint problem. Since the values of R1 and R2 are very close
to each other over a sun glint pixel, test 8 was designed to
remove sun glint pixels.

Table 1 provides a complete comparison of all tests for
the two algorithms designed by CCRS and us. Although the
original CCRS algorithm already had steps for dealing with
most of the effects of surrounding pixels, sun glint, and
highly reflective clouds and surfaces on a potential fire, they

did not work well in the wide variety of temperate biomes
in California. Therefore, we added into the algorithm the
three tests described above.

Burnt Area Mapping
To assess burnt areas during a fire season in California, a
multi-temporal NDVI differencing technique was selected. We
adopted the rationale of the HANDS procedure (Fraser et al.,
2000) for mapping burnt areas in California and modified it.
The three major modifications to the HANDS algorithm
(Fraser et al., 2000) are described in the following.

NDVI Composite Normalization (Step 1 in Table 2)
To compensate for any systematic NDVI variation unrelated
to fire, post-fire NDVI (NDVIPOST) composites were normalized
to the pre-fire NDVI (NDVIPRE) composite. This was done by
calculating a ratio, Ratio_C,

Ratio_C = Average of NDVIPRE/Average of NDVIPOST. (1)

Hotspot pixels were excluded from the calculation. NDVIPOST
is then rescaled by Ratio_C:

NDVINORM-POST(i,j) = Ratio_C * NDVIPOST(i,j). (2)

NDVI variation is associated with seasonal or inter-
annual variation of vegetation phenology, depending on the
time interval between NDVI composites (Kasischke and
French, 1997). The differences between NDVIPRE (NDVI MVC of
21–31 October 1998) and NDVIPOST (NDVI MVC of 21–31
October 1999) of seven land cover types demonstrate this

TABLE 2. A SUMMARY OF THE MODIFIED HANDS ALGORITHM

Step Description

Step 0 AVHRR data preparation: two NDVI composites of an 
interesting interval, one corresponding hotspot 

composite (fire mask)
Step 1 Normalize NDVIPOST to NDVIPRE: means of NDVIS

calculated only with interested land covers

, normalized 

NDVIPOST � Ratio.C * NDVIPOST, not hotspot 
pixels used for calculation of NDVI mean.

Step 2 Calculate NDVI difference: normalized 
NDVIPOST – NDVIPRE, burn scar expected to have 
a negative value in the NDVI difference image.

Step 3 Confirm hotspot pixels (CBP) using NDVI difference: 
a CBP is assumed to have a negative NDVI difference,
otherwise the hotspot pixel is considered as a false fire.

Step 4 Calculate NDVI difference statistics (mean, standard 
deviation, SD) of NDVI decrease for all CBPs for each 
land cover type, different land covers expected to 
have a different mean and SD.

Step 5 Select potential burn scar pixels (BSPs): NDVI difference 
of a potential BSP � (mean � 0.5SD), the potential 
BSPs selected for different land cover types with the 
mean and SD from Step 4.

Step 6 Apply a sieve filter to the selected BSPs: filter out a 
burnt patch of �3 pixels, a burn patch less than 
3 pixels is considered to be caused by noise.

Step 7 Confirm a BSP with a neighbor CBP and later on up to 
four neighbor confirmed BSPs to create connected 
burn patches, 1st iteration with a neighbor CBP, 
2nd iteration with a neighbor CBP or a conformed BSP
(CBSP), 3rd to 5th iteration with 2 to 4 CBSPs, after 5th

iteration using 4 CBSPs only.
Step 8 Filter out a BSP patch of �3 pixels: the patch of 

�3 CBSPs is considered to be a false burnt patch, 
caused by noise.

Step 9 Output a burnt area mask (in TIFF format).

Ratio C �
mean of NDVIPRE

mean of NDVIPOST
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TABLE 3. STATISTICS OF PRE-FIRE NDVI MVC AND POST-FIRE NDVI MVC AS WELL AS NDVI DECREASES ACROSS SEVEN LAND-COVER TYPES RELATED

TO WILDLAND FIRES

Means (/SD)

Scrub, Riparian, Forest, Woodland,
Item Total Mean/SD Chaparral Grassland Marsh Scrub Rangeland Forests Fell-Field

NDVIPRE 166.587/21.064 152.92 158.16 165.22 147.48 169.37 189.24 151.01
NDVIPOST 164.495/21.665 150.36 154.46 161.56 145.75 167.10 188.45 148.98
NDVIPOST*Ratio_C 166.587/22.087 152.27 156.42 163.61 147.60 169.23 190.85 150.87
NDVIPOST � Difference 166.495/21.665 152.36 156.46 163.56 147.75 169.10 190.45 150.98
NDVIDECREASE 123.327/4.444 123.95/3.75 122.46/3.72 120.73/5.04 124.45/3.55 123.04/4.39 122.49/5.94 123.43/3.43

Note: a) Ratio_C � Mean(NDVIPRE)/Mean(NDVIPOST) � 1.0127; Difference � Mean(NDVIPRE) – Mean(NDVIPOST) � 2.092.
b) A real NDVI value � (value in the table – 127.5)/127.5.
c) NDVIPRE and NDVIPOST are NDVI MVC of 21–31 October 1998 and 1999, respectively.

variation (Table 3). Therefore, it is necessary to conduct
such normalization before analyzing NDVI change related to
biomass burning. Fraser et al. (2000) calculated the differ-
ence between the two averages of NDVI composites, and then
added the difference to the post-fire NDVI. This method
ensures that both NDVI composites have the same average.
We multiplied a ratio by the NDVI value for each post-fire
pixel. This allowed us to realize the normalization of the
post-fire NDVI composite. This multiplicative factor thus
ensures that the rescaled values are proportionally adjusted.

Calculate NDVIDIFF Statistics (Step 4 in Table 2)
The mean and standard deviation (SD) of NDVI decreases for
all confirmed burning pixels (CBPs) were calculated sepa-
rately for each land-cover type. Unlike the boreal forests
addressed by Fraser et al. (2000), who did not separately
calculate the mean and SD for each land cover type, our
dataset demonstrates that the magnitude of NDVI change
varies with different types of land cover in California (see
NDVIDECREASE in Table 3). For example, NDVI decreases are
very different between forest types (mean � 122.49/SD
� 5.94) and marsh types (mean � 120.73/SD � 5.04). Note
that the values in Table 3 have been scaled from NDVI [�1,
1] to NDVI [0,255] for display purposes. Therefore, separately
calculating the mean and SD of NDVI decreases may be
expected to increase burn scar mapping accuracy.

Confirm a Potential BSP (Burn Scar Pixel) (Step 7 
in Table 2)
Potential BSPs are confirmed iteratively. A BSP is confirmed
by a neighbor CBP or later on by one to four previously
confirmed neighbor BSPs. The first iteration is executed by a
neighbor CBP; the second iteration by a neighbor CBP or a
confirmed BSP; the third to fifth iteration by two to four
confirmed BSPs; and after the fifth iteration by four con-
firmed BSPs only. This modification is not only for easily
realizing the iteration process, but also is expected to grow
boundaries of burn scars more smoothly.

The processing chain, presented above and summarized
in Table 2, is fully automated using a script in EASI® pro-
gramming (PCI Geomatics Company, Canada, 1997). The
results from critical steps are illustrated in Figure 3 and will
be analyzed in the following section. If the goal is to map
cumulative burnt area during a fire season, the time span is
first divided into several periods each corresponding to an
available hotspot composite mask. Steps 1 through 9 can
then be repeated to create a burnt area map for each period.
Finally, results in each period can be overlaid together to
derive a burnt area map for the fire season. In this study, we
used the entire fire season of 1999 in California as one time
interval corresponding to 01 May through 31 October 1999.

Validation
The ground truth data for the 1999 fire season from CDF
were incomplete for California. In the data set, the accu-
racy of fire polygon locations varied. Some polygons were
missing data for the date of fire emergence and for fire
acreage. Therefore, three Landsat-7 TM scenes acquired
in early November of 1999 were used to delineate some
obvious burnt patches to help validate the burn scar map-
ping results derived from AVHRR data. We simply compared
burnt areas from AVHRR mapping results with those delin-
eated by TM scenes and provided by CDF.

Results and Analysis
Hotspot Detection
The hotspot detection algorithm was applied to detect
hotspot pixels using a total of 148 daily AVHRR images,
covering six months and the entire state of California. A
monthly fire mask was composed of daily hotspot masks for
each month. Plate 1 shows a sub-area of the four-month
fire mask composite for northern California. Plate 1a shows
three active fires, occurring on 02 September 1999 in north-
ern California. The fires are marked in red circles, with a
background of the AVHRR composite image (R2/R2/R1 versus
RGB). Comparing the results (Plate 1b) produced by the CCRS
algorithm with those (Plate 1c) produced by our modified
algorithm, we see that the CCRS algorithm generated many
“salt and pepper” hot spots, which are obviously false
alarms. During the four-month period spanning almost an
entire fire season of 1999 in California, the CCRS algorithm
produced 14,281 active fire pixels, while the modified
algorithm generated only 1,124. The result obtained from the
modified algorithm looks reasonable compared with an
independent burnt area estimation of 3,500 to 4,000 km2 in
California in 1999 (refer to an incomplete fire polygon data
set (3,205 km2) from CDF in 1999). Fires can be identified
visually by co-locating hot spots on the channel 3 image
with the associated smoke plume patterns on channel 1
(Li et al., 1997; Setzer and Malingreau, 1996). On a compos-
ite image (R2/R2/R1 versus RGB, see Plate 1a), a smoke plume
accompanying a fire usually exhibits a conical or bending
shape with a vortex over its origin (Li et al., 2000a). Visual
inspections indicated that most of the fires detected by our
algorithm were correctly identified. An inspection of
available fire polygons provided by CDF also indicated that
most of the hot spots were located in those fire polygons,
though there were a few hot spots located outside. The
CCRS algorithm, applied in California, generated many false
fires. This may be explained by two factors. First, the CCRS
algorithm was designed for fire detection in boreal forests
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with a “cold background”, while Californian forests have a
“warm background.” Therefore, if the CCRS algorithm is
simply applied to California with no modifications, false
fires caused by warm backgrounds, such as bare soil, are
inevitable. Secondly, the CCRS algorithm does not consider
the effects of sun glint on fire detection. Sun glint may not
be a problem for boreal forests at higher latitudes, but for
California it becomes a problem because California has a
longer coastline and inner lakes that frequently cause sun
glint, especially when the sensor viewing zenith is close to
the solar zenith (Rauste et al., 1997).

Burnt Area Mapping
After hotspots (monthly fire composites, color-coded in
Plate 1c) were obtained, burn scars could be mapped. Two
ten-day NDVI composites were calculated before running
the modified HANDS procedure for mapping burn scars (in

Table 2) with data from the 1999 fire season in California:
Pre-fire and post-fire NDVI MVCs were calculated with the
period of 21–31 October 1998 and 1999, respectively.

To demonstrate the effectiveness of the modified HANDS
procedure for the detection of burn scars, Figure 3 presents
the mapped results from September 1999, using pre-fire
NDVI MVC (01–10 September) and post-fire NDVI MVC (01–10
October) and the hotspot composite for September. Figure 3a
shows a part of the NDVI difference image set in between
the normalized post-fire and the pre-fire NDVI composites.
On this image, burn scars were assumed to have an NDVI
decrease. At the upper left of the image, a light patch caused
by a plume of burning smoke occurred nearly every day
during 01–10 September, while the burning stopped almost
completely during the period of 01–10 October. A dark gray
area at the central bottom of the image is agricultural land,
which yields low NDVI composite values and is excluded

(a)

(b)

(c)

Plate 1. NOAA-14/AVHRR false color composite image (a)
(R2/R2/R1 versus RGB) with several active fires occurring
on 02 September 1999, marked in red circles, and
hotspot detection results generated by (b) CCRS algorithm
(July � red, August � pink, September � green, October
� blue), and (c) the integrated algorithm (July � red,
August � pink, September � green, October � blue). The
region shown is located in northern California. Hot spots
(b and c) are colored in red for July, pink for August,
green for September and blue for October.
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from the wildfire map. Figure 3b is the confirmed burning
pixel (CBP) map on which the CBP was determined using the
assumption that a real burning pixel has to be accompanied
by an NDVI decrease. Most CBPs at the upper left of the image
are located in the anterior sections of smoke areas shown in
Figure 3a (upper left). There are a large number of potential
burn scar pixels (BSPs) in Figure 3c. Among them, only a
small portion is actually due to fires. The solar-elevation
change and phenological changes between early September
and early October may be responsible for the large number
of false alarms. Figure 3d shows the effectiveness of filtering
for removal of burnt patches smaller than two pixels. Figure
3e illustrates the usefulness of a confirmation approach with
various numbers of confirmed neighbor BSPs and a neighbor
CBP. Only a small number of burn scars remain after using
the confirmation approach. Figure 3f shows the same effect
as Figure 3d.

Figure 4 presents a section of burn scar mapping after
application of the modified HANDS algorithm. The map (total
3,473 km2) covers the 1999 fire season in California using
a hotspot composite of 01 May to 31 October and two NDVI
MVCs of 21–31 October 1998 and 1999, respectively. In gen-
eral, the distribution and magnitude of burn scars mapped by
the algorithm are seen to be reasonable when compared to an

incomplete CDF data set and TM interpretation results, espe-
cially for major fire events in forest ecosystems. In order to
evaluate and gain insight into the burn scars detected by the
algorithm, we selected four major burnt areas, each one
representative of a major fuel type (ecosystem) of California.
The fire polygons of the four burnt areas were available
from CDF data set. The black lines in Figure 5 represent fire
polygon boundaries and the light shadow areas inside and
outside the polygons are burnt areas detected by the algo-
rithm. The region mapped in Figure 5a was located in north-
ern California where major fuel types are mixed conifer
forests with dominant species of ponderosa pine (Pinus
ponderosa), Douglas fir (Pseudotsuga menziesii), and western
hemlock (Tsuga heterophylla). The loading of the fuel types
is heavier than that of other fuel types in California. At this
fire polygon, the modified HANDS did an excellent job and the
burnt area detected by it matched the CDF fire polygon almost
exactly. The region mapped in Figure 5b was also located in
northern California and contained another major fuel type,
deciduous forests consisting of some oak woodland species
(genus Quercus). From the overlaid result in Figure 5b, we
see that the algorithm can detect the burnt area but fails to
completely match the CDF fire polygon. This may lack a
significant NDVI decrease, caused by the slight difference of

(a) (b) (c)

(d) (e) (f)

Figure 3. Results derived from key steps (Table 2) of the modified HANDS burn scar-mapping algorithm.
The region shown is the same as in Plate 1. (a) Steps 1 and 2, NDVI difference calculation between
the normalized post-fire and the pre-fire NDVI composites; (b) Step 3, confirmed hotspots (CBP) using
NDVI decrease; (c) Steps 4 and 5, calculation of potential burn scar pixels (BSPs) for each land cover
type based on 0.5 SD added to the mean NDVI decrease of CBPs; (d) Step 6, filtering of burnt patches
smaller than two pixels; (e) Step 7, confirmed potential BSPs burnt patch generation; and (f) Step 8,
filtering confirmed burnt patches smaller than two pixels based on results presented in (e).
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Figure 4. Burn scar map generated by the modified
HANDS procedure for the 1999 fire season (May through
October) in California. The region shown is the same as
in Plate 1.

NDVI between burnt area and the phenological phase of
senescence occurring in late fall for some deciduous species
in California. Figure 5c represents a fuel type characterized
by chaparral and Monterey pine (Pinus radiata), and was
located near Monterey Bay, California. It also has greater
biomass and fuel loading than fuel types represented in
Figure 5b and 5d (scrub and grassland). The HANDS algorithm
detected burned area not only over the CDF fire polygons, but
linking neighboring polygons together as well. For the scrub
and grassland fuel types (Figure 5d), the algorithm did its
worst job, mapping approximately half the burnt area com-
pared to the CDF polygon. This can be attributed to character-
istics of the scrub and grassland ecosystems. If the scene is
captured only at the end of the fire season, NDVI decrease may
be insignificant due to the vegetation recovering fully or
partially and burn scar detection can be constrained by this
rapid re-vegetation (Eva and Lambin, 1998b). It is hoped that
utilizing the iterative strategy (e.g., processing composites on
a monthly basis) will help overcome the vegetation recovery
problem (Fraser et al., 2000).

Preliminary Validation
Only a small number of fire detection algorithms have been
rigorously validated, due to the lack of ground truth data in
most regions. In most cases, only cursory validations were
conducted by comparing against fire smoke plumes (Li and
Giglio, 1999). Therefore, validation of fire detection algo-
rithms remains an outstanding issue. Since we did not have
a complete set of ground truth data for validation, a prelimi-
nary validation was first carried out through human inspec-
tion of satellite composite images. Due to the sensitivity
of channels 1 and 2 to fire smoke plume reflection, it is
possible to use the composite image to visually inspect fires
by their smoke. Comparing hotspot results detected by our

method with their accompanying smoke plumes, we found
that most hotspots detected had accompanying smoke
plumes. This visual validation indicates that the modified
fire detection algorithm is feasible.

Then, we conducted a simple statistical comparison
between the results mapped with AVHRR data and CDF fire
polygons. The AVHRR mapped burnt areas matching the
CDF fire polygons were defined as follows. The area of all
mapped fire polygons that intersect CDF polygons is calcu-
lated as the “matched” area. There is no minimum amount
that polygons must intersect to be considered as matching.
In this way, the statistical results were calculated and
summarized in Table 4. Considering the high burnt area
mapping rate and relative low commission and omission
rates, the integrated approach is effective for mapping
wildland fires in California. In addition, a more detailed
validation of the burn scar maps with limited, comparable
CDF fire polygons and TM interpreted polygon data was also
carried out. For this case, twenty-seven fire polygons with
recorded fire start date and acreages for 1999, provided
by CDF and covering locations comparable to burnt areas
detected by the modified HANDS algorithm were collected.
TM images were first enhanced with traditional approaches,
then, a standard false color composite image was made.
Finally, eight corresponding and easily identified burnt
areas were delineated from the three TM scenes. The fire
polygons were compared with the burn scar map produced
for the fire season by the modified HANDS procedure. The
correspondence of burnt areas mapped with AVHRR data to
the reference fire data is presented in Figure 6. The two sets
of detected burnt areas are highly correlated (R2 � 0.83). The
overall agreement of burnt areas is 90.31 percent and the
weighted average relative error is 37.42 percent (�wi 0ei 0
� 37.42 percent, where wi is area weight of ith fire patch:
the ratio between the area of the ith fire patch and the total
of all 35 fire polygons, ei is the relative error of the ith fire
patch). This indicates that the results mapped by AVHRR are
not ideal. However, if the reference data points are separated
into CDF and TM groups, it is obvious that a better correla-
tion can be found with the TM group (R2 � 0.97, n � 8, solid
line) than that from CDF group (R2 � 0.71, n � 27, dashed
line). The solid line associated with the TM group indicates
that the burn scars detected with AVHRR are reliable, because
the linear regression line is located near the diagonal line.
This also implies that the CDF fire polygon data may not be
as reliable as the TM data, although the number of inter-
preted burn scars from TM scenes is too small to enable a
full comparison. From the thirty-five validated burnt areas,
then, wildland fire seems detectable and able to be mapped,
especially in forest ecosystems. Since the number of fire
patches used for this validation is small, our preliminary
results do not allow a full evaluation of the strength of the
modified HANDS algorithm. A complete set of ground truth
data, allowing independent validation among disparate
fuel types (vegetation regions) is needed to evaluate these
algorithms. Additional research is needed for analyzing
burnt areas, mapped with remote sensing method, across
eco-regional and eco-systematic boundaries and elucidating
differences in the way fires are detected and mapped in
different natural landscapes. The fire mapping results were
described not only in terms of overall accuracy, but also in
terms of divergent detection rates as they relate to on the
ground differences in vegetation and land cover (Clinton
et al., 2004).

Conclusions
In order to map burnt areas in California for emission
estimation, in this study, the Canadian Center for Remote
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from 01 May to 31 October 1999. Finally, the HANDS proce-
dure (Fraser et al., 2000) was modified and applied to
mapping burn scars in California with NDVI differencing and
a hotspot mask covering a meaningful time period. The
modifications to the HANDS algorithm include normalizing
post-fire NDVI to pre-fire NDVI by multiplying an NDVI ratio
coefficient, calculating the mean and SD of NDVI decrease of
land cover types separately, and a new iteration procedure
of confirming potential burnt pixels.

With this integrated hot spot detection and fire scar
mapping technique and AVHRR data, wildland fires in
California during the fire season between May and October
in 1999 were mapped. Visual inspection of satellite compos-
ite images, validation with limited ground truth data from
the California Department of Forestry and Fire Protection
and the interpreted burnt areas from TM imagery revealed
that most wildfires were correctly mapped, especially those

TABLE 4. A PRELIMINARY COMPARISON OF AVHRR MAPPED RESULT

WITH CDF DATASET

Item Burnt Area or Rate

AVHRR total burnt area mapped 3473 km2

CDF fire polygons total burnt area 3204 km2

AVHRR result matches CDF fire polygons 2502 km2

AVHRR burnt area mapped rate 2502/3204 � 78.1%
Commission error rate (3473–2502)/3204 � 30.3%
Omission error rate (3204–2502)/3204 � 21.9%

Figure 5. Using four major fuel types (ecosystems) in California to gain an insight into the burn scars
detected by the modified HANDS algorithm. (a) Location in northern California with distribution of mixed
conifer forests, fire mapped successfully; (b) location in northern California with deciduous forests,
failed to match CDF fire polygon completely; (c) location near Monterey Bay and representing a fuel
type with major species of chaparral and Monterey pine (Pinus radiata), fire over-detected; and (d)
location in southern California with scrub and grassland ecosystems, fire much under-detected. The
black lines in the figure represent fire polygon boundaries and the light shadow areas both inside and
outside the polygons are burnt areas detected by the algorithm.

Sensing (CCRS) active fire detection algorithm (Li et al.,
2000a) was first modified with the described additional
contextual and sun glint tests, then applied to detecting
daily hotspots in California using NOAA/AVHRR data acquired
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in forest ecosystems. The extra tests added to the CCRS fire
detection algorithm can effectively eliminate false fires
caused by highly reflective clouds, sun glint, and warm
backgrounds. Separating land-cover types, for the mean and
standard deviation calculation of NDVI decreases in different
vegetation types, allows us to discern burn scars from un-
burnt areas when they all have a temporal decrease in NDVI.
In this experiment, the integrated method failed to map
burnt areas with deciduous woodland, grass and shrub land
ecosystems. To improve the effectiveness of fire detection
over those ecosystems, a relatively short interesting time
period for calculating NDVI difference is necessary to help
overcome the vegetation recovery problem. For hotspot
detection over grass and shrub lands, increasing frequency
of satellite over-passes is needed.

The burnt areas (fire polygons) mapped with the
integrated method using NOAA/AVHRR data were imported
into an emission estimation system, designed specially for
California (Scarborough et al., 2001) and their outputs were
evaluated. The integrated method of using remote sensing
data for mapping burnt areas is promising for pollutant
emission estimation at local to regional scales in terms of
our preliminary test result by running the system.
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