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Automatic Detection of Fire Smoke Using Artificial
Neural Networks and Threshold Approaches Applied
to AVHRR Imagery

Zhanging Li, Alexandre Khananian, Robert H. Fraser, and Josef Cihlar

Abstract—in this study, satellite-based remote sensing tech- boreal forests in Canada, China, and Siberia. It was found that,
niques were developed for identifying smoke from forest fires. without considering the directinfluence of the fires, temperature
Both artificial neural networks (NN) and multithreshold tech- prediction in a nearby region tends to be overestimated by 1.5—7

'r&ugyaescgjer\z/eerixﬂ%rﬁ dRézglﬁﬁggcgﬁoxnvg?er'T:gﬁgR;r°£O$3 °Cduetothecoolingeffectofsmoke. Toalesserextent,smoke can

NOAA satellites. The NN was designed such that it does not only have animpact that extends far beyond the region of fire activity.
classify a scene into smoke, cloud, or clear background, but also Smoke plumes may travel over hundreds, or even thousands of
generates continuous outputs representing the mixture portions of kjlometers horizontallyand reach uptothe stratosphere under cer-
these objects. While the NN approach offers many advantages, itis 14y aimospheric circulation conditions [9]. A major fire episode

time consuming for application over large areas. A multithreshold . . . .
algorithm was thus developed as well. The two approaches may " northwestern Canada was found to influence significantly air

be employed separately or in combination depending on the size quality in the southeastern U.S. and eastern seaboard [39].
of an image and smoke conditions. The methods were evaluatedin  The climatic impact of smoke is twofold: cooling due to

terms of Euclidean distance between the outputs of the NN classi- smoke particles and warming due to greenhouse gases. Smoke
fication, using error matrices, visual inspection, and comparisons pal’ticles scatter and absorb incoming solar radiation, thereby

of classified smoke images with fire hot spots. They were applied to havi l ffect at th f but . ffect
process daily AVHRR images acquired across Canada. The results aving a cooling etect at the surface, but warming efiect on

obtained in the 1998 fire season were analyzed and compared with the atmosphere [23]. Since the magnitude of the scattering
fire hot spots and TOMS-based aerosol index data. Reasonable effect outweighs that of absorption, smoke has a net cooling
correspondence was found, but the signals of smoke detected byeffect at the top of the atmosphere-surface system [14]. Smoke
TOMS and AVHRR are quite different but complementary to each 5, a150 modify the short wave reflective properties of clouds
other. In general, AVHRR is most sensitive to low, dense smoke . . . ..
plumes located near fires, whereas smoke detected by TOMS isby acting as cloud condel_ﬂsatlon nuclei [31]. Under g "m'tefj
dispersed, thin, elevated, and further away from fires. supply of water vapor, an increased number of nuclei result in
smaller cloud droplets that have higher reflectivity than larger
cloud droplets [18]. The cooling due both to the direct and
indirect effects of smoke could potentially offset the warming
effect of increasing C@content [28], but they act on different

. INTRODUCTION temporal and spatial scales. The latter has a much longer

IOMASS burning emits alarge amount of greenhouse gag'ggtime and covers larger areas. Understanding such numerous
B and aerosols into the atmosphere. Approximate estimati®fd complex effects of smoke on weather and climate requires
showed that the annual amount of €@leased into the atmos-@ 90od knowledge of the spatial and temporal variation of
phere due to biomass burning is about 114 Tg in the tropics [Z#]10ke and its optical properties, which is only feasible by
and 62.3 Tg in boreal zone [37]. Trace gases and aerosol pdRgans of satellite observation. Discrimination of smoke on
cles produced by fires play important roles in atmospheric chegdtellite imagery is a prerequisite to study and retrieve physical,
istry, cloud microphysics, temperature, and radiation balanceGhemical, and optical properties of smoke. _
the lower atmosphere. Fire can thusimpinge significantly on localldentification of smoke is by no means a trivial task using
weather and climate [7], [19]. Fire impact on weather is main@paceborne data. As is demonstrated later, there is a large
due to the attenuation of sunlight by smoke particles, which@eriap in the spectral signature of satellite measurements
usually short lived. Robock [35] attempted to relate temperatUf6tween smoke and other scene types such as clouds and
forecast errors to large fire events occurring in the world’s maj@ackground surfaces. So far, very few investigations have

focused on the identification of smoke except for some studies
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showing smoke plumes. Such an approach can hardly | 1M~ a) Land -
used for automatic processing masses of satellite imageri ] _ o x T
Another popular approach is thresholding. Christopéteal. w osd T /E_,__,: T
[4] examined various AVHRR channels and their combination & /I
for distinguishing smoke. He then applied a texture analysis 1 E Smoke
these channels and their combinations. 2 "5 A
This study developed new remote sensing methods for d = 1 1
tecting smoke. Unlike many previous studies dealing mainly wit AT 1 \\I_L«_J
tropical fires [17], [30], [4], the methods proposed here addres 1 T
smoke from boreal forest fires, although the principles of th a2d Y%  Clouds
methods are applicable to other types of biomass burning as we T I

Due to relatively poor knowledge and limited investigations or o
LA L

borealfires, more attention needsto be paidto thisbiome. We ha RT  RZ  BT3 AT¢ BTS20 @ 00 0S|
developed a suite of remote sensing techniques for systematice b)
monitoring and studying boreal forest fires, including the detec Smpke, max

tion of hot spots [22], [25], mapping of burned areas [26], [8]. ]
and identification of smoke plume (this study), retrieval of smoke 5 |
optical properties [38], and studying the radiative impact o
smoke on Earth’s radiation budget[23], [24]. The algorithms ar
designed for routine operational application to daily satellite dat
from the advanced very high resolution radiometer (AVHRR
aboard the National Oceanic and Atmospheric Administratio
(NOAA), Washington, DC, series of satellites. 02
Data used in the study are introduced in the following sectior
Section Il describes the algorithms, which employ both neuré 0.0 -
network and threshold techniques. The performance of the ¢ , r . T : r . : ;
gorithms is evaluated by various means that are also addres: RTOORZOBTIOATE BTS2 @D @ 49
in this section. Section IV presents some routine products ge ; )
erated by applying the algorithms to AVHRR data obtained il 1.0
1998. The smoke product is compared with fire hot spots ar ;
an aerosol index data set derived from the total 0zone mappil
spectrometer (TOMS) aboard on a different platform [12], [13]

Relative values

Smoke, max

Il. DATA

Relative values

This study employs AVHRR images from NOAA-14 acquired
in 1998, while the algorithms have also been used to proce 0.2
AVHRR data covering Canada in other years. NOAA-14 ha
a daytime overpass around 2-3 PM in Canada with a viewir oo
plane of 45 relative to the principal plane. After the data were ; : S r . , ; ,
received at the Prince Albert station in Saskatchewan, they we RUORRORTEOETEORTS I @m @ 6
radiometrically calibrated and geometrically referenced usin AVHRR channel and combination
the geocoding and compositing (GEOCOMP) AVHRR data
processing system [36]. The calibration for visible (ch. 1) ardy. 1. Relative variability of the spectral signals of smoke, clouds, and clear
near-IR (ch. 2) measurements was based on the method of Rad surfaces for five AVHRR channels and some of their c_ombinat'ions. (a)
and Chen [33], with their coeffcients updated from time (a1 and sandard devatons foral hnee subjecs (o) relave msimum g
time. The thermal channels (3—-5) were calibrated using onbo@sghut the shaded area represents clear land.
blackbody references. Pixel locations were first computed from
an orbit model that takes into account spacecraft orbit, velocity,
attitude and altitude, earth rotation and curvature. Daily AVHR
images composited across Canada (5%08800 pixels) were i .
used. The data contain top of atmosphere reflectance in chanrt%rlgs in all the channels and some channel combinations among

[

enes and for other scene types, most notably between cloud
and land. Fig. 1 illustrates the overlapping of spectral signa-

: : ree distinct scene types [Fig. 1(a)], namely, smoke and clouds
1, R2
g’;;g 2;;4 };n)(jg;%t))rlghtness temperatures in channels 310 ig. 1(b)], and smoke and land [Fig. 1(c)]. For different chan-

These channels exhibit some distinction in the characteristnt%IS to be comparable, relative valuéy (ar_e used that are com-
of smoke, clouds, and underlying surface, which is the basis%fted from the absolute valueg {according to
smoke identification. On the other hand, there exists a consid-
erable overlap in the magnitude of observations between smoke R=(V — Viin)/(Vinax — Vinin) (1)
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whereV,,.x andV,,;, denote the maximum and minimum ob-A. Neural Network Method
servation valuesk thus varies between 0 and 1. Fig. 1(a) shows
the mean and standard deviations, while Fig. 1(b) and (c) are thd he neural networks (NN) approach has the capability
maximum (top curves) and minimum (bottom curves) values!o learn patterns whose complexity makes them difficult to
The figure reveals the potential and limitations in separatir@@lyze using other conventional approaches [3], [10], [20],
smoke from clouds and land using AVHRR data. In generégl]. The NN is useful for smoke identification due to its abl“ty
the reflectance and brightness temperature of dense smoke fav#d and learn complex linear and nonlinear relationships in
intermediate values between those of clouds and land. The the radiometric data between smoke, clouds, and land.
flectance of smoke is usually less than that of clouds, but higherdn the present study, a commercial NN package, named Neu-
than that of the underlying surface, while the converse is true f@Solutions Professional from NeuroDimension, Inc., is used.
brightness temperature. From Fig. 1(a), it appears possibleTtoe multilayer perceptron (MLP) neural network of NeuroSo-
differentiate smoke from most clouds and land based on the fgltions package used for the image analysis is a two-layer for-
atively large difference in brightness temperatures in chann#grd feed network (FFN) with five inputs from the five channels
3-5 (BT3, BT 4, BT5). The ratio of the reflectance at channel9f AVHRR, one hidden layer with ten processing elements, and
2 and 1 22/ R1) is useful to identify smoke over land, and theone output layer. The output layer included three neurons. The
difference betwee®1'3 and BT'4 is useful to separate smokenumber of neurons in the output layer is equal to the number
from clouds. Overall, the three thermal channels are superiorabdesired parameters of the output vector, which are “smoke,”
the two shortwave channels. Although reflectance of smoke“@louds,” and “land” in this study. Individual computational el-
generally less than that of clouds, the latter has so large a raegieents of an FFN are referred to as neurons or processing el-
of variation that it is difficult to use it to discriminate smokeements (PE). Each neuron consists of a vector of modifiable
pixels from cloudy pixels. weights or connection strength. The task of a neuron is to map
In fact, it is a general problem facing any classification using given input vector into a single output that is transmitted to
AVHRR that the large ranges of variation in all AVHRR chanother neurons. Each element of an input vector is multiplied
nels cause the overlap between different scene types. This i®}-a corresponding weight and added together to produce a net
lustrated more clearly in Fig. 1(b) and Fig. 1(c), which show thgput. The neuron uses an activation function to transform the
entire ranges of variation in terms of relative maximum and mifet input into a single output. In our NN, we used two kinds of
imum values, with the curves denoting smoke and shaded arag#ivation functions. The hyperbolic tangent activation function
for clouds [Fig. 1(b)] and for land [Fig. 1(c)]. It is observed thats used for the hidden layer, and an additional softmax activa-
the reflectance and brightness temperature for smoke, cloué) function is used for output layer [29]. The softmax function
and land overlap considerably. Although the number of overlais-used to interpret the output of the NN classification in terms
ping pixels is small relative to the total number of land or cloud§f posterior probabilities whose outputs for all classes sum to
pixels, it is comparable to, or even greater than, the numberasie. Neurons are arranged in successive layers with connections
smoke pixels. The spectral overlap is due partially to turbulebetween the neurons of two layers but with no connections be-
diffusion processes associated with smoke and clouds, whigreen neurons within the same layer. In this layer arrangement,
produces large variability in the parameters and leads to fuzggta flow is unidirectional starting from the input layer. Weights
boundaries between different scene objects. are commonly computed by minimizing the difference between
The results shown in Fig. 1 were obtained by analyzinggetwork outputs, once a set of input data vectors or patterns have
AVHRR data acquired across Canada. For regional studies, Bi&en propagated through the network. The network was trained
overlap range is smaller depending on smoke amount and cldadlistinguish smoke from clouds and the underlying surfaces,
thickness, meteorological conditions, as well as the spatiafluding both land and water, with the standard backpropaga-
and temporal distributions of fires and smoke. In some speciign method.
circumstances, smoke, clouds, and land are readily separatetihe training data were selected from AVHRR images con-
by reflectance and brightness temperatures using even sirtgiaing active forest fires. Input parameters to the NN include
channel measurements, but in general this is very difficult. reflectance from channels 1 and 2, and brightness temperatures
from channels 3, 4, and 5 without considering any of their
combinations. Training pixels were obtained from representa-
tive polygons containing smoke, clouds, land cover, and water.
In order to cope with a variety of smoke conditions, the deted¢hree outputs were generated by the NN corresponding to the
tion algorithms proposed in this study are based on both artifiree types of classified objects (smoke, cloud, and land). Each
cial neural networks and multithreshold approaches. Each c@ttput is encoded to denote one classified object [27], [2]. To
sists of two major steps: identifying potential areas covered Byis end, in the training data, an input vector of a class was
smoke using the neural networks or threshold classifier, then gssigned a desirable output. To encode the outputs, a softmax
moving false-classified pixels by applying additional tests, teutput activation function was used. According to the softmax
ture analysis, and spatial filtration. The threshold and textudétivation function, the output vector for smoke, clouds, and
parameters were chosen and optimized following thorough iland categories was represented using binary encoding as
vestigations and analyses of the spectral signature and texg&t@wn in the matrix in Table I.
of smoke, clouds, and land with allowance for their spatial and To train the NN and test its performance, we employed
temporal variability. AVHRR images containing forest fires in northern Quebec in

Ill. ALGORITHM
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TABLE |
ENCODING MATRIX USED IN THE NEURAL NETWORKS CLASSIFICATION

Smoke code Cloud code Land code
Smoke 1 0 0
Cloud 0 1 0
Land 0 0 1
“Hmake’
TABLE I b

MEANS AND STANDARD DEVIATIONS OF THENN OUTPUTS FORPRESELECTED
SCENE TYPES OFSMOKE, CLOUD, AND LAND

“Smoke” “Cloud” “Land”
Output NN 0.798 (0.045) 0.040 (0.009) 0.068 (0.005)
“Smoke” !
Output NN 0.046 (0.007) 0.958 (0.009) 0.003 (0.0002)
“Cloud”
Output NN 0.156 (0.051) 0.002 (0.0007) 0.929 (0.005)
“Land”

July 1998 and in northern Saskatchewan and Manitoba in th
middle of August 1998. The training data set included dens:
and thin smoke, different types of clouds, and various lanc
cover types typical of the boreal forest zone. The total numbe
of pixels used for training and testing the NN was more thar
200 000. 30% of the pixels were randomly selected from eac
class and used for training the NN, while the remaining pixels
served as test samples. The averaged NN output values &fe?2: (Top) False color composite image of smoke, clouds, and land
. . . generated by assigning the NN outputs of smoke, clouds, and land to red,
presented in Table Il. In accordance with the softmax functigfeen, and blue colors, respectively. (Second panel) Frequency histograms
of the NN output, the values in the diagonal describe the protwrresponding to each NN output for smoke, (third panel) clouds, and (bottom
abilities of correct classification or the resemblance to a “pur&&ne land.
scene. The off-diagonal values denote the probabilities of
misclassification or deviation from a pure scene. The diagorging land surface. Reduced smoke concentration due to turbu-
values in the Table are close to unity, as the data include rathent diffusion of the smoke plume leads to gradually decreasing
pure scenes: dense smoke, thick clouds, and clear land. Invhkies of the NN output for “smoke” and increasing values of
case of optical thin smoke or cloud, the output values are mdhe2 NN output for “land.”
dispersed due to class mixing. Fig. 3 shows changes in the NN output along a transact across
Fig. 2(a) shows an output image from the NN classification @ smoke plume starting at the core of the plume and moving to-
a large smoke plume (400 100 kn?) observed on August 30, ward its edge. It illustrates gradual changes in NN outputs for
1998 in northern Saskatchewan. The image is a three-band fag®ke and land during a transition from smoke to land. The ver-
color composite based on the three NN outputs, with “smokétal lines show the range of variation. Reflectance in AVHRR
in red, “clouds” in green, and “land” in blue. Also presented ichannel 1, which is proportional to smoke concentration and
Fig. 2(b)—(d) are the frequency histograms of each output valdiee NN output for “smoke,” shows a strong correlation. The
Here they-axis shows the percentage of the number of pixelspatial variations of the NN output for smoke across a plume
and thez-axis shows the corresponding outputs of the NN (emfellows the Gaussian distribution due to turbulent diffusion [1].
coding values). They demonstrate sufficient separation in tfae visible radius of the smoke plume in the study area is ap-
NN outputs between smoke and the other two scene types. Pheximately 60 km. At this distance, smoke optical depth is re-
majority of smoke pixels have an NN output larger than 0.8uced to approximately 0.1, leading to reflectance close to that
while the outputs for land and cloud are infrequently larger thari the land background®1 = 0.07-0.08). The NN output for
0.5. The red color in the image corresponds to relatively thickmoke” also decreases to its background value around 0.1 near
smoke that dominates the image. In the yellow-green portitine boundary of the smoke. Fig. 3 also shows that the NN out-
of the image lie pixels that are attributed more to clouds. Nogaits for “smoke” and for “land” are negatively correlated with
that these clouds were probably formed inside a smoke plunascombined value near unity. Therefore, the NN approach does
The violet part of image corresponds to optically thin smokeot only identify smoke, but also provides information on its
(R1 < 0.2), which has a spectral signal influenced by the undeleading.

d
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— NN Output of "Smoke" classification separating smoke, clouds, and land. Smoke is
1.0 T E;ﬂgitf’:ﬁeof‘"l_and“ shown in yellow, clouds in pink and white, and land in green.
0.0 gt It was created by combining two NN outputs (“smoke” and
] “clouds”) in red, reflectance from channel 2 AVHRR in green,
0.8 and output NN of “cloud” alone in blue. Fire pixels, detected
g 0.7 using the algorithm of Let al.[25], [26], are shown in red. The
S color image and smoke mask illustrate the potential of the NN
E 0.6 to identify dense and thin fresh smoke located close to the fires.
2 05 In some cases, it is difficult to confirm the presence of smoke
2 ] due to the lack of independent ground-truth data. For example,
g 0.4 to the right of fresh smoke plumes there is a long stretch feature
2 0.5 also selected as smoke. Since there are no adjacent hotspots,
3 ] it is difficult to confirm these “smoke” pixels, which have the
£ 0.2+ same or similar spectral and textural properties as smoke. They
o1 may be dispersed downwind smoke, clouds mixed with smoke,
] or clouds having the same parameters as smoke. The problem
0.0 T T 7 stems partly from the use of a large training data set that covers

the whole country. Of consequence, the radiometric signatures
of the three typical scenes overlaps, rendering uncertainties in
Fig. 3. Comparison of the NN outputs and channel 1 reﬂectar?ce'glon%t%?egLajzlgcatlon' f;l—? ?OlV? th.e ptLObl(Tm, .\?./e ta.'lso used mu""l

transact between smoke and land. The bars show the range of variability. pproachtoiine tuning the classiiication on a regiona

basis, which can also be run alone for fast operational detection
of smoke from AVHRR composite image over Canada.

Distance, km

B. Noise Reduction

Although the NN is powerful enough to make optimal usg' Multithreshold Tests
of all signals pertaining smoke, its performance is inherently The multithreshold approach is based on differences in the
limited by the input satellite data as demonstrated in Fig. 1. Teflectance of AVHRR channel 1 and channel 2 and in the
reduce inevitable false classifications, additional tests are négightness temperature of channel 4. Like the NN technique,
essary to eliminate noisy pixels from the “smoke” NN outpuit involves two major steps: marking potential smoke pixels
The majority of misclassified smoke pixels are located near thed removing false pixels. Both steps are accomplished using
boundaries of relatively warm clouds over land covered by i¢breshold tests. The first employs thresholds of the ratio of
and snow such as the Rocky mountains in British Columbf/HRR channel 1 and channel 2 reflectanéél (and £2) and
and Alberta. A number of discrimination tests are employed #brightness temperature of AVHRR channeBY{):
reduce the noise levels in the “smoke” outputs. The first test
uses a median filter (& 5 or 9x 9 pixels). It computes the me- 09< R2/R1 <15 and BT4< 298 K. (2)
dian value of the output of smoke index within a rectangular
filter window surrounding each pixel. The median filter smoothBixels passing this test are considered to be either smoke or
image data, preserves the edges of a smoke plume, and remel@sd. Otherwise, they are deemed land pixels. The second test
small clusters of noisy pixels produced by small clouds ar@inploys channel 4 to further separate smoke and cloudy pixels
randomly distributed sources of underlying background. The
second test eliminates “smoke” pixels of output lower than 0.1. BT4 <280 K. 3)
The third test eliminates false smoke pixels caused by cloud
boundaries using difference in spatial variance between smdkigels passing this test are regarded as clouds as they are usually
and noise. Spatial variance is computed from the standard devgher and colder than smoke. The third test is introduced to
ation of “smoke” output values within a65 pixel neighbor- eliminate warm nonbright clouds from “smoke” pixels
hood. Since smoke is normally more homogeneous than cloud
boundaries, this test rejects false alarm pixels of the “smoke” BT4 <284 K and R12>0.35. (4)
channel with variance larger then 1.1. In addition to the above
threshold tests, one special screening is applied. It is desigiég. 5 shows a flowchart of the multithreshold tests. The
to eliminate false smoke pixels occurring over areas coveredthyeshold values were established using the training database
permanent ice and snow, reflective barren land (bare soil aindm AVHRR observation of forest fires over Canada in 1998
rock), and some individual pixels that have very low contraf25], [26]. If the threshold approach is run standalone, i.e., the
between smoke and other scene types in all AVHRR channé¥8\ approach is not run ahead, the various screening processes
This test resorts to the use of a land cover classification derivéescribed earlier ought to be applied including median spatial
from AVHRR data [6]. filtering, variance testing, and background checking using a
Fig. 4 shows a false-color composite of the image ovénd cover mask.
Canada with fires and smoke observed in Northwest TerritoriesFig. 6 (left panel) shows a smoke image produced using
on July 16, 1998. It illustrates the final results of the NNhe threshold algorithm applied to the AVHRR image across



1864 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 9, SEPTEMBER 2001

oty Tee
e

g

Fig. 4. Forest fire and smoke across Canada on July 16, 1998, identified by the neural networks. Smoke plumes, clouds, and clear land are shown in orange
white/gray, and green, respectively.

Canada on August 11, 1998. By assigning the combinethssification and the combinations of AVHRR channels used
“smoke” and “clouds” masks in red, reflectance from channei the threshold algorithms. For comparison, some selected
2 AVHRR in green, and cloud mask in blue, this createsiadividual channels are also tested, which were employed in
composite image where smoke appears orange, clouds wkitene previous studies. Since the images are linearly enhanced
and grey, and land green. Shown on the right panel is anthis study, the Euclidean distance defined in the following
image over a much smaller region encompassing most of tipeantifies the capability of separation between two subjetts (
fires occurring in Saskatchewan and Alberta on the same dagd B):
identified by the NN. There were more than a dozen of large
fires over an area of 1000 KmThe image shows notonly the D,z = \/(X.s — Xp)2 + (Y4 — YB)2 + (Z4 — Zp)2. (5)
thick smoke plumes, but also the widespread, persistent smoke
haze. Some thin smoke is not clearly seen over land, but itNgte that all the variablesX, Y, Z) are normalized to the
readily discernible over dark water bodies. The overlapp@dme scale (0-1). The distances between three pairs, namely,
clouds and smoke are also successfully separated. smoke-clouds, smoke-land, and clouds-land are computed and
shown in Fig. 7. The figure indicates that the combination of
three NN output channels produces the best visual contrast be-
Relative to the use of individual AVHRR channels and thetiveen smoke, clouds, and land. Other methods may render good
simple combinations, both the NN and multithreshold agseparation between one pair of objects but often fail for other
proaches described above have improved capability to identfsirs.
smoke plume and to produce images providing visual contrastin addition, the classification accuracy of the algorithms is as-
between smoke, clouds, and the underlying background. Jessed using an error matrix [15] which describes probabilities
demonstrate this quantitatively, the degree of separationoiseach scene type being correctly identified (diagonal elements
measured by the three-dimensional (3-D) Euclidean distarioghe matrix), and misidentified into different categories (off-di-
between each pair of scene objects. Of course, our main intergbnal elements). From this matrix, the overall accuracy and
here is the separation between smoke and cloud, and betweammission and omission errors can be computed. The overall
smoke and land, although distinctions between cloud and otlaecuracy was computed as the ratio of the sum of numbers in
two subjects are useful for other studies. Each of the objett® diagonal divided by the total number of all scenes. The com-
is designated by three variableX (Y, Z) that are assigned mission error is the ratio of the number of cases misclassified as
three basic colors (red, blue and green) to generate fatsee scene divided by the total number of this scene, while the
color images. These variables include the outputs of the Nd¥hission error is the ratio of the number of scenes misclassified

D. Performance Evaluation
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NOAA-AVHRR Raw Data IV." APPLICATION
GEOCOMP daily Canada-wide composites Smoke from forest fires is the primary disturbance to the rel-
(calibration, radiometric and geometric correction) atively low loading of background aerosols across the world’s
major boreal forests in Canada and Russia. These forests are
Algorithm applied to each pixel subject to widespread periodic burning induced primarily by
lightning. On average, tens of thousands of fires occur each year
oosR2Rsts | NO > Channel of “Land” across the boreal zone [16]. Because of the high biomass con-
BT4 <298 K ) : ;
tent, boreal forest fires tend to be more intense and last much
vY longer than tropical fires. As a result, smoke from these fires
Channel of “Smoke & Cloud” can usually travel a long distance and extend to a high altitude.
* For example, Hset al.[12] found a close linkage between fires

occurring in western Canada and the high loading of absorbing
aerosol over Greenland using aerosol index (Al) data derived
l NO from the TOMS. The Al is a measure of the wavelength-de-
Channel of “Smoke & Noiea™ pendgnt reduption of Rayleigh spattered radiance by aerosol ab-
sorption relative to pure Rayleigh atmosphere [11], [13]. The
v Al was defined such that positive values generally correspond
BTas28e K X pRNoise from warm non-brigh! to UV-absorbing aerosols situated 1.5 km above the Earth's
1205 clouds surface. TOMS is not sensitive to boundary layer absorbing
aerosols [11]. Using several spaceborne data sets such as the
Roise from the boundary of Polar Ozone and Aerosol Measurement (POAM) Ill and Strato-
Variance < 2.0 clouds spheric Aerosol and Gas Experiment (SAGE) II, Froranal.
[9] found that aerosol from large fires in Canadian and Russian
forests can travel over half the globe and extend into the strato-
others bright areas Sphere (15 km)
While both studies referred to AVHRR images, no direct
comparisons were made against either fire hot spots or smoke
plume. Since the observation principles and characteristics of
these instruments (TOMS, POAM/SAGE, AVHRR) are very
! different, comparisons of different fire smoke products provide
a means of validation and/or consistency check and more
Pure channel of “Smoke” complete information concerning the smoke. Note that the
smoke identified by AVHRR is usually fresh and located near
fire locations at relatively low altitudes, whereas that identified
by TOMS or POAM/SAGE is older and located at higher
altitude away from the fire origin. If correctly identified, smoke
into other scenes divided by the total number of this scene. Tetected with these sensors should correspond to each other
this end, 13 nationwide AVHRR images of 44R@400 pixels with lags in time and space dictated by atmospheric circulation
with significant fire activities were selected. Each of the selecteg@nditions.
images contain at least 300 fire pixels with more than 25 000We implemented the smoke detection algorithm as described
identifiable smoke pixels and 50% cloud cover. The smoke dabove to process daily AVHRR imagery across Canada during
tection algorithms were applied to these images. The resultitige entire fire season (May—October) for a few years. In this
masks of smoke, clouds, and land were compared against respdtger, only the results obtained for 1998 are analyzed. As is
obtained by a supervised classification. Table Ill is the error mshown in Fig. 8, there were two major fire episodes in 1998
trix including the statistics of the NN classification. Referencthat occurred in July and August. The one in August is rather
data given in the columns represent the real number of pixééensive and widespread, which was studied by ldtial.
belonging to each category identified by supervised classifidd2], [13] using TOMS Al data. For the sake of compar-
tion, i.e., the sums of the elements appearing in the same coluison, the same episode is investigated here. Fig. 9 presents
are deemed as true. The numbers in the rows are classificasae-by-side comparisons of AVHRR-based hot spots (left
results obtained by the NN. Also included in the table are thmnels), smoke-cloud-land composite images (middle panels),
overall classification accuracy, omission, and commission e&ard TOMS-based aerosol index images (downloaded from the
rors. Both the commission and omission errors for smoke sceMSSA/TOMS home page: http://toms.gsfc.nasa.gov). Itis seen
are in the neighborhood of 27%, which are considerably largdsat on August 3, there was widespread fire activity across
than for clouds and land. This is because the areas of cloud avestern and southern Northwest Territories and scattered fires
clear land scenes are much larger than that of smoke. It shouldb&ukon Territories, Manitoba, and Ontario. Almost all of the
noted that this accuracy assessment contains uncertainties fites detected by satellite are confirmed by Canadian forest fire
to absence of real ground truth information. agencies [26]. Smoke associated with these fires was detected

BT4<280K XP Channel of “Clouds”

NQ

Y

Noise from ice, snow, and

Landcover #

R1<0.07

NO

‘ True Smoke Pixels

Fig. 5. Flowchart of the multithreshold algorithm.
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o

Fig.6. (Left) False-color composite image of forest fires (red), smoke (orange), clouds (white and gray), and land (green) identified by teshuldtithproach
across Canada on August 11, 1998. (Right) Regional false-color image classified by the NN in northern Alberta and Saskatchewan on the same day.
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Fig. 7. Euclidean distance between smoke and clouds, smoke and land, and
clouds and land, determined by three variables (the outputs of the NN and
multithreshold algorithms, AVHRR channels and their combinations) that
characterize the three subjects.

Number of Detected Hot Spots

by both AVHRR and TOMS in northern Northwest Territories.
TOMS detected a massive smoke plume with Al more than 2.7
over a large area (length 800 km, width~ 250 km). Presum-
ably, the fires detected by AVHRR in the south are fresh and
the associated smoke is light and close to the ground, leavingi@8. Number of fire hot spots detected daily across Canada in 1998.

very weak signal to be detected by AVHRR. By contrast, the

smoke detected in the north by both AVHRR and TOMS is froim Hsuet al.[12], [13]. On this day and several days following,
older fires and has been elevated to higher altitudes. This isarhigh-pressure ridge resided in western Canada and the U.S.,
agreement with the atmospheric circulation condition as showncompanied by prevailing wind blowing northeast. As a result,
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Fig. 9. Comparisons of satellite detected fire hot spots (left) from AVHRR, (middle) smoke AVHRR, and (right) aerosol index from TOMS on a serges of day
in August 1998.

two days later (August 5), smoke extended to eastern Can&isy and across the northern Atlantic with higher values of Al.
according to AVHRR. TOMS detected smoke around Hudsdrhis may be attributable to increasing altitude of smoke as it
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Fig. 9. (Continued) Comparisons of satellite detected fire hot spots (left) from AVHRR, (middle) smoke AVHRR, and (right) aerosol index from TOMS on a
series of days in August 1998.

travels eastward, as implied by the atmospheric circulatitimere have been few studies dedicated to the identification of
condition [12], [13]. However, such a signal is not detectesinoke using satellite imagery data with automatic procedures.
using AVHRR due both to reduced smoke density and to anThis study developed satellite-based classification algorithms
extensive large cloud cover. On August 7, AVHRR detectexhd used them to automatically process large volumes of daily
several low and dense smoke plumes, whereas TOMS misg®HRR imagery data acquired across Canada during several
almost all of them. On August 10, the smoke is widespredide seasons. The spectral characteristics of smoke relative to
in northern Saskatchewan as revealed by AVHRR-based latther major scene types (clouds and land background) were
spots and smoke, which is also captured by TOMS. On Augusst investigated. While both the AVHRR visible and infrared
11, the smoke intensified and moved to the northeast. It deannels convey certain information pertaining to smoke, they
interesting to note that TOMS detects smoke with strongare not distinct enough from nonsmoke scenes due to large
signals downstream, whereas AVHRR is easier to identifyerlaps of signals, although a combination of the channels
smoke near the fire origin. may work under certain conditions over a small region. To
The above analyses demonstrate the feasibility of smoke ddleviate these difficulties, both neural networks (NN) and
tection using both AVHRR and TOMS. More importantly, thenultithreshold approaches were explored. The NN approach
two sensors and methods have very different sensitivities amals the capability of learning from training data sets and
response to smoke located in different layers. It is fortunate thandling complex relationships between various channels in
the two methods complement each other. The linkage of smdkear or nonlinear forms. Moreover, it provides quantitative
detected by the two sensors may be better established usirand continuous indices of smoke as well as other objects. The
chemical transport model coupled with an atmospheric circulsmoke index provides a measure of both the concentration of
tion model that can trace the movement of smoke species. smoke and the mixing with other scene types (i.e., smoke/cloud,
smoke/land, and smoke/land/cloud). The main disadvantage of
the NN approach is that it is time consuming to process large
images like those covering entire Canada (it should be noted
Smoke from wildfires is an important source of atmosphertbat training is most time consuming. Once trained, the network
aerosols and chemicals, especially in the boreal forest envir@an classify scenes relatively quickly). In addition, when
ment. Smoke aerosol has a significant impact on atmosphegioployed over such a large area, misclassification is inevitable.
chemistry, weather and climate. To better understand thesemultithreshold approach was thus also introduced that
impacts requires a good knowledge of smoke distribution ahds certain advantages (quick processing) and disadvantages
temporal variation. On regional or global scales, this may on{gategorized output) relative to the NN. Both approaches suffer
be achieved using satellite remote sensing techniques. So fiamn limitations inherent in the characteristics of the input

V. SUMMARY
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satellite data. They also have greater difficulty in identifying[14]
thin dispersed smoke compared to fresh dense smoke. For
handling large data volume, an effective approach is to applml
the threshold method to identify dense smoke and then to
apply the NN to deal with thin smoke. The performance ofl16]
the algorithms was evaluated in terms of Euclidean distance
between the output channels using error matrices and visugl7]
inspection and comparisons of classified smoke images witﬂsl
fire hot spots detected using independent algorithms.

The algorithm has been applied to process daily, Canada-wide
AVHRR data. The output smoke images for 1998 were assessétf!
with reference to AVHRR-based hot spots, and TOMS-basegb,
aerosol index images. Overall, the three types of images show
areasonable correspondence. Both AVHRR and TOMS can de-
tect smoke downwind of fires but have rather different responsg,
and capability. AVHRR-based detection is more sensitive to the
density of smoke, while TOMS is also affected by the altitude of22]
smoke. AVHRR can detect most smoke near the origin of a fire,
which is often missed by TOMS unless the smoke is dense ards]
widespread. However, AVHRR is not effective for monitoring

older, highly diffuse smoke distant from a fire source. [24]
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