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Abstract. We describe the performance of a Spectral Element Atmospheric Model
(SEAM) on the HP Exemplar SPP2000. SEAM uses spectral elements in the hori-
zontal directions and sigma coordinates in the vertical. The model is both spectrally
accurate, as demonstrated by a variety of test cases, and is well suited for modern
distributed-shared memory computers, as demonstrated by the fact that we achieve
24 GFlops on a 240 processor HP Exemplar. More important to climate modelers,
a 64 processor Exemplar can integrate a 20 level, 160 km resolution SEAM dynam-
ical core at a rate of 3.6 wall clock hours per model year. SEAM is portable and is
implemented in FORTRAN 77 with message passing calls.

1. Introduction

We have recently completed the development a Spectral Element Atmospheric
Model (SEAM). SEAM is a dry, three-dimensional general circulation model (GCM)
dynamical core. It uses a spectral element discretization of the surface of the
sphere taken from the shallow water model described in [13]. The spectral element
method is a �nite element method in which a high degree spectral method is used
within each element. The method provides spectral accuracy while retaining both
parallel e�ciency and the geometric 
exibility of unstructured �nite elements grids.
In the vertical direction, SEAM makes use of a sigma coordinate �nite di�erence
discretization strategy taken from NCAR's Community Climate Model Version 3
(CCM3) [9].

Spectral elements have several advantages for global climate modeling. First
of all, handling the spherical geometry presents no problem since the sphere can
be tiled with quadrilateral elements of approximately the same size, thus avoiding
clustering points at the poles. Secondly, by using a local coordinate system within
each element, the singularities associated with spherical coordinates can also be
avoided. Additionally, the method is spectrally accurate. This has been shown even
for di�cult nonlinear problems in spherical geometry [13]. From a computational
point of view, the method enjoys several advantages on parallel computers based on
RISC microprocessors, for example distributed-shared memory (DSM) computers
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like the HP Exemplar. The spectral transforms within elements are localized in
memory, so they �t well into microprocessor cache, and consist of numerically
intensive matrix multiply operations. The ratio of communication between the
element's surfaces to the amount of computations within the element's volume is
small for the spectral method degree typically used (8-16). These properties of the
spectral element method allow SEAM to sustain over 100 MFlops per processor for
320 km, 160 km, and 80 km resolutions on up to 240 processors of the HP Exemplar
SPP2000.

The performance of SEAM on a DSM computer will be the focus of this paper,
but we will �rst describe the spectral element method and go into detail about why
it should perform well on DSMs. Then we give some details of the SEAM code,
along with a brief description of the Held-Suarez benchmark. This benchmark is
used to judge both the accuracy and performance of SEAM as a possible GCM
dynamical core.

2. The Spectral Element Method

In this section we give a brief summary of the spectral element discretization. For
a more thorough review of this material, see [10]. The spectral element discretiza-
tion used for this work is the one described in [7]. The only di�erences arise from the
complications of spherical geometry and in the treatment of the di�usion term. In
the spectral element discretization, the computational domain is decomposed into
rectangular regions called elements. Within each of these elements all variables are
approximated by polynomial expansions. The discrete equations are derived by
using a Galerkin or integral form of the equations to be solved in conjunction with
a suitable set of test functions and quadrature formula.

The spectral element discretization is particularly simple because of a clever
combination of an integral form of the equations, the family of test functions used,
and the quadrature formula chosen to approximate the integrals. This leads to
two signi�cant advantages over more conventional �nite element methods: �rst, for
time marching problems such as the shallow water and primitive equations, the
mass matrix is diagonal. Thus if an explicit time stepping routine is used, the
complete calculation is also fully explicit! The second advantage is that spectral
elements allow for arbitrarily high degree spectral expansions to be used within
each element, without creating any additional coupling at the element boundaries.
This is demonstrated in [13], where we show spectral convergence up to degree 56
on a now standard set of shallow water test cases on the sphere [14]. These test
cases include both problems with analytical solutions and di�cult fully nonlinear
problems where extremely high resolution runs are used for the \exact" solution.
In practice one must strike a balance between accuracy and computational cost by
adjusting the polynomial degree and the number of elements. For the test cases in
[14] the most e�cient con�guration is to �x the polynomial degree between degree
8 and 16 and then determine the number of element to obtain the desired resolution
[13].

The procedure to derive the spectral element discretization is as follows. First an
integral form of the equations is chosen. To do this, both sides of the equations are
multiplied by a test function and integrated over the entire computational domain
(in our case, the surface of the sphere). The sphere is then tiled with rectangular
elements and the integrals are written as the sum of integrals over each element.
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The element integrals are then approximated by Gauss-Lobatto quadrature [3].
Within each element we represent all dependent variables as tensor products of
polynomials. Although the actual basis functions used for this representation turn
out to be irrelevant, it is convenient to use the Gauss-Lobatto Cardinal functions
[7, 2] as basis functions for this polynomial space. These basis functions are uniquely
determined by the requirement that each function has the value 1 at one Gauss-
Lobatto quadrature point and 0 at the remaining quadrature points.

Finally, the global test functions must be chosen. These are also constructed
out of the Gauss-Lobatto Cardinal functions. We choose one test function for each
grid point. For grid points in the interior of an element, we set the global test
function to be equal to the Cardinal function associated with that grid point inside
the element. This function is then extended continuously to a global function by
taking it to be zero in all other elements. For grid points on element boundaries,
which are shared by several elements, the global test function is built out of several
Cardinal functions. Within each element containing the grid point, we set the
global test function equal to the Cardinal function associated with that grid point.
For all other elements, we set the global test function to zero. This process also
generates a continuous test function.

Combined with a time stepping scheme, the procedure above generates a set of
integral equations which completely specify how the equations are to be solved.
Remarkably, this leads us to a simple Legendre spectral transform method within
each element. Derivatives are calculated with Legendre transforms on the Gauss-
Lobatto grid. Because of this grid and the associated Cardinal functions, the only
communication between elements occurs at the element boundaries, where neigh-
boring elements share common points. At these points the terms appearing in the
equations are multiple valued and the required area weighted averaging is speci�ed
by the discretized form of the equations. This averaging is independent of the 
ow,
and thus does not result in any type of up-winding.

For time stepping, we use the standard second-order leapfrog scheme with a 2�t
Robert �lter of strength .05 [12].

3. Spectral Elements on the Sphere

The �rst step in applying the spectral element method to spherical geometry is
to tile the sphere with rectangular elements, or regions that can be easily mapped
to rectangles. This tiling is most readily accomplished by inscribing a regular
polyhedron with rectangular faces inside the sphere, and then using the gnomonic
projection (project from the center of the sphere) to map the surface of the poly-
hedron to the surface of the sphere. The most elementary such polyhedron is the
cube, which creates 6 large elements. One can then further divide each of these
elements into smaller elements, and the projection onto the sphere of such a con-
�guration is shown in Figure 1. Each of the 6 faces of the cube has been divided
into an 8� 8 array of elements.

The only other complication coming from spherical geometry is the choice of
coordinate system. Spherical coordinates are a particularly poor choice since the
coordinates are discontinuous at the poles. When vector �elds are represented in
spherical coordinates, their components are discontinuous and contain large varia-
tions at the poles. This will create large errors in the derivative calculations. To
avoid this problem we again make use of the cube and the gnomonic projection:
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each element is mapped back to the surface of the inscribed cube, where we can
make use of the natural Cartesian coordinate system on each face of the cube. One
minor drawback of this projection is that it is not orthogonal. This makes di�er-
ential operators slightly more complicated. The formulas for the divergence, curl
and gradient operations in this cube coordinate system are given in [13]. These
three di�erential operators are all that are needed to solve either the shallow water
equations or primitive equations, and all the coordinate mappings are completely
isolated to these three routines.

4. Spectral Elements for DSMs

Spectral element methods are well suited to modern RISC based parallel com-
puters for two reasons. First, the basic data structure in the method, the spectral
element, is naturally cache blocked. Secondly, due to the O(N3) cost of the spectral
transforms, the method has a very low ratio of communication to computation.

4.1 Cache Blocking.

The elements in the spectral element method provide a natural way to cache
block the SEAM code. The 64 bit data storage requirement for a typical 8 � 8
element with 20 vertical levels requires only 10 Kbytes of cache. One hundred such
3-d variables will �t into the 1 Mbyte data cache of the HP PA8000. If the data is
stored in memory so as to avoid cache con
icts, then all the computations performed
within an element can be done entirely in cache. This blocking is independent of
resolution since we can increase the resolution by simply using more elements. This
situation is unlike spherical harmonic spectral methods where the natural block
size and data access patterns grow with resolution. Thus a spectral element model
maintains good performance even at high resolutions where one can expect global
spectral models start to experience cache \thrashing".

4.2 The time stepping bottleneck.

The performance bottle neck of the spectral element method on the HP Exemplar
is the time stepping routine. In this routine one must do a simple mult-add over
the entire data set, with no chance of any type of data reuse. When the working
set size on a processor is much larger than the processor's cache the time stepping
loop derives almost no bene�t from the cache and the performance of this loop is
limited by the bandwidth between the processor and DRAM.

4.3 Domain decomposition.

The most natural way to parallelize the spectral element method is to simply
assign several elements to each processor. Each element only needs information
from adjacent elements, so the domain decomposition reduces to a standard graph
partitioning problem. To solve this problem, we use the METIS software pack-
age written by G. Karypis and V. Kumar [8]. Once the domain decomposition
is computed, we must schedule in which order the domains will send and receive
messages to neighboring domains. This scheduling is computed by a simple greedy
edge coloring algorithm.

The resulting communication patterns are similar to �nite di�erence/�nite ele-
ment methods which parallelize with the same type of domain decomposition. Thus
the parallel e�ciency of this method would be similar to these other methods, ex-
cept for the fact that the spectral element method involves computing high order
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derivatives using spectral transforms instead of low order stencils. These computa-
tionally intensive transforms are performed within each element and are localized
to each processor thus requiring no communication.

The resulting communication costs as a percentage of the total wall clock time
are minimal. For a wide range of problem sizes, number of processors, and computer
architecture, the communication is never more than 10%. In extreme cases, when
the number of elements per processor is less than 3 or for very large numbers of
processors, the communication costs can rise to 20%. (These results for the HP
Exemplar will be presented in Section 6.) Because of these small percentages, we
have not yet spent time optimizing our domain decomposition or message scheduling
algorithms.

5. SEAM: A Spectral Element Atmospheric Model

The ideas outlined in the previous sections have been combined into a Spectral
Element Atmospheric Model, or SEAM. SEAM is closely related to SEOM, the
Spectral Element Ocean Model being developed at Rutgers [5]. SEAM and SEOM
are both based on the 2D shallow water ocean model described in [7], and both
models now solve the full three dimensional primitive equations, although with
equations of state and vertical coordinates appropriate for either the atmosphere
or the ocean. Another di�erence between the two models is how they di�erence
the vertical coordinate. SEOM uses a fully three dimensional spectral element dis-
cretization, where the elements are topologically cubes rather than squares. SEAM
uses spectral elements only for the horizontal directions, and uses the �nite dif-
ference formulation from [9] in the vertical direction. Thus each element contains
many vertical levels and �nite di�erences are used to compute vertical derivatives.

SEAM is written in standard FORTRAN 77 and is very portable. It can be run
on a single processor or on multiple processors using either PVM or MPI. SEAM
can solve either the 2D shallow water equations [14] or the primitive equations given
in [9].

5.1 Shallow water version of SEAM.
We have made extensive use of the shallow water test cases [14] to establish sev-

eral points about SEAM (running in shallow water mode). As already mentioned,
these test cases verify that the spectral element method does converge exponentially
fast to the exact solution and that the method has no problems with spherical ge-
ometry. The test cases prescribe several forms of error measures so that any method
can be compared objectively to several other methods by simply consulting the lit-
erature. The results of this comparison were as expected: on a per grid point basis,
the method achieves error levels similar to that of the computationally more ex-
pensive spherical harmonic spectral methods, and signi�cantly more accurate than
�nite di�erence methods. These results are described in [13, 5].

5.2 Primitive equation version of SEAM.
The success of SEAM with the shallow water equations prompted us to extend

the model to the three dimensional primitive equations. As stated above, we did
this by retaining the spectral element discretization over the surface of the sphere
and allowing for an arbitrary number of vertical levels within each element. We
use the sigma coordinate �nite di�erence discretization from NCAR's CCM3 [9].
CCM3 allows for a sigma-pressure hybrid coordinate system. However, at present
SEAM only allows for the pure sigma version of this coordinate system.
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When the vertical coordinate is treated as described above, it is relatively sim-
ple to adapt a shallow water model to a full three dimensional primitive equation
model. In addition to the horizontal components of velocity, we add a third prog-
nostic variable (temperature) and replace the surface height variable by surface
pressure. There are additional terms coming from the diagnosed vertical velocity
and geopotential, and we must also add thermodynamics. All of these equations
are taken from [9]. The result is a complete dry dynamical core of an atmospheric
general circulation model. To validate this model and to compare it with other
GCM dynamical cores, we have made use of the Held-Suarez dynamical core test
case, which we describe in Section 6.

At present we have only implemented an explicit time stepping routine in SEAM.
This results in a time step which is eight times smaller than that typically used in a
model at a comparable resolution which compute derivatives using global spherical
harmonic transforms. However, for the reasons sited in Section 4.1, we expect
SEAM to achieve computational rates several times larger than spherical harmonic
models on DSMs. Further, the inferior computational scaling properties of spherical
harmonic transforms lead us to believe that an explicit spectral element method will
be more e�cient than a semi-implicit spectral method at resolutions at or above
160 km. This crossover point is an area that needs further investigation.

6. The Held-Suarez Benchmark

The shallow water equations have many of the di�culties associated with the
dynamical aspects of climate modeling and any potential climate model should
perform well on the shallow water test cases described above. However, these
tests are mainly useful for comparing the accuracy of numerical methods and their
ability to handle spherical geometry. Since the longest test case is only 15 days, the
tests measure forecast accuracy rather than the ability to accurately generate long
term climate statistics. A more ambitious climate comparison project is AMIP,
the Atmospheric Model Intercomparison Project [4, 1]. This project compares
the climate simulations of many atmospheric GCMs using realistic forcing and
boundary conditions. However, due to the complexity of these models, it is very
di�cult to attribute di�erences in the results to speci�c di�erences in the models.

The Held-Suarez Benchmark [6] test case falls in the middle of these two ap-
proaches. It is designed to test the dry dynamical core of a GCM. It assumes an
ideal gas atmosphere over a rotating sphere with no topography. The 
ow need not
be hydrostatic, but as mentioned above, we use the hydrostatic primitive equations
to model this 
ow. For forcing and dissipation, Held and Suarez use \simple Newto-
nian relaxation of the temperature �eld to a zonally symmetric state and Rayleigh
damping of the lower level wind to present boundary layer friction." Unlike the
shallow water tests, this benchmark tests a complete component that could appear
unmodi�ed within a GCM. And unlike the AMIP, just one component of a GCM
is tested, making it easier diagnose the causes of di�erences in model results.

The Held-Suarez forcing has the form:

@v

@t
= � � � � kv(�; �)v

@T

@t
= � � � � kT (�; �)[T � Teq(�; �)]
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Here v is the horizontal velocity, T the temperature, � is latitude and � = p=ps,
where p is pressure and ps is surface pressure. The ellipses represent unspeci�ed
expressions that model an ideal gas over a rotating sphere. The temperature is
relaxed to a prescribed \radiative equilibrium," Teq, with relaxation rate kT . There
is a simple linear damping of the velocities given by kv.

Results from the Held-Suarez benchmark are shown in Figures 2, 3 and 4. These
results are all �nal 1000 day time averages from 1200 day runs. We present these
diagnostics mainly to validate SEAM by showing it produces results almost identical
to those of a spherical harmonic spectral mode. This is not surprising since the
models use a similar vertical discretization, and the horizontal discretization have
been shown to agree to several digits in 13.

Figure 2 shows the eddy kinetic energy as a function of zonal resolution for our
spectral element model (SEAM), a grid point model, and a spherical harmonic
spectral model. For the last two models, the results were taken from [6], which also
contains a description of those two models. As the �gure shows, the two spectral
models have very similar performance.

Figure 3 shows the zonal mean wind from SEAM, and Figure 4 shows the eddy
variance of the temperature. Both of these plots are shown for the grid point model
and spectral model in [6]. Consulting that paper shows that all the models produce
similar results. The results again show the two spectral models are almost identical,
and they di�er slightly from the results of the �nite di�erence model.

7. SEAM on the HP Exemplar

We now discuss some performance results for SEAM running the Held-Suarez
benchmark on an HP Exemplar SPP2000. These results were obtained from the
64 processor Exemplar at NCAR and a similar 256 processor Exemplar system at
the California Institute of Technology. The SPP-2000 is built from 180 MHz PA-
8000 CPUs, each with a single, direct mapped 1 MByte cache. The processors are
combined into 16 processor \hypernodes", which share up to 4 Gbytes of Memory.
Larger systems are formed from a 2-d torus of hypernodes interconnected using
HP's Coherent Toroidal Interconnect (CTI).

One big advantage of the Held-Suarez benchmark over the shallow water test
cases is that it represents a complete component of a GCM. It allows us to compute
meaningful performance measures since the e�ciency of a model on this benchmark
directly impacts how e�cient it will be as a GCM. Our results are presented for
the Held-Suarez Benchmark using 20 vertical levels (denoted by L20) and three
di�erent horizontal resolutions: 96 elements, 384 elements, and 1536 elements. All
cases use an 8�8 grid within each element, corresponding to spectral representation
up to degree 7. This results in an average grid spacing at the equator of 320 km,
160 km and 80 km respectively.

In Figure 5, we present the total GFlops obtained for these resolutions on up to
240 processors. At 80 km resolution, SEAM achieves 24 GFlops on 240 processors
(7 elements per processor). At 160 km resolution, SEAM achieves 14 GFlops on
128 processors (3 elements per processor). At 320 km resolution, SEAM achieves
6.2 GFlops on 48 processors (2 elements per processor).

The scalability of the method is better illustrated in Figure 6, showing the
MFlops per processor. As can be seen in the �gure, the 320 km and 160 km
resolutions achieve good scalability all the way up to 2-3 elements per processor.
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In this range the performance 
uctuates between 110 and 130 MFlops per pro-
cessor at 320 km resolution, and between 130 and 150 MFlops per processor at
160 km resolution. At 80 km resolution, the performance is between 100 and 120
MFlops/processor, all they way up to 240 processors (6-7 elements per processor).
It seems likely that this scalability will also be maintained up to 3 elements per
processor, which would give us close to 50 GFlops on 512 node machine.

Figure 7 shows the percentage to total wall clock time spent on message passing.
As expected, this number grows steadily as we keep the problem size �xed while
using more and more processors. The fact that this growth does not impact the
scalability must be due to the fact that as we add more processors the problem size
per processor decreases leading to better cache utilization.

More important than MFlops is the actual time to solution. These numbers are
given in the following table:

GFlops Wall clock hours
Method Resolution (64 processors) per model year

SEAM 320km/L20 6.3 1.3
SEAM 160km/L20 9.1 3.6
SEAM 80km/L20 7.3 34

8. Conclusion

The new code SEAM (Spectral Element Atmospheric Model) solves the three
dimensional primitive equations in spherical geometry. SEAM uses �nite di�erences
in the vertical direction and a spectral element discretization in the horizontal
directions. SEAM is based on an extensively tested shallow water model which was
extended to a full GCM dynamical core. SEAM has been validated by making use
of the Held-Suarez benchmark. Our results are practically identical to the Held-
Suarez results from their spherical harmonic spectral model. SEAM also performs
well on DSMs. On the HP Exemplar, SEAM achieves between 100 and 150 MFlops
per processor on up to 240 processors and over a wide range of model resolutions.
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Figure 1. The cube projected onto the sphere. Each of the 6 faces of the cube has been divided into an
8� 8 array of elements. Within each element we would typically use an 8� 8 Gaussian grid and 20 vertical
levels. This results in approximately 160 km horizontal resolution.
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Figure 2. Eddy kinetic energy as a function of zonal resolution. Values for a grid point model (triangles)
and a spherical harmonic spectral model (squares) are taken from [6]. Results from SEAM (circles) are in
close agreement with the spherical harmonic spectral mode.
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Figure 3. The zonal mean wind. The mean is computed from the last 1000 days of a 1200 day run of SEAM
at 160 km resolution with 20 levels. The forcing is symmetric about the equator so di�erence between the
hemispheres are indicative of the variability of the mean.
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Figure 4. The zonal mean of the eddy variance of the temperature. The mean is computed from the last
1000 days of a 1200 day run of SEAM at 160 km resolution with 20 levels.
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Figure 5. GFLOPS achieved by SEAM for three di�erent model resolutions and up to 240 processors.
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Figure 6. MFLOPS per processor achieved by SEAM at three di�erent model resolutions and up to 240
processors.
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Figure 7. Percentage of the total run time spent message passing.


