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What is Entropy?
Entropy is a measure of disorder.

In a thermodynamic context, it measures 
the disorder of energy:



What is Entropy 
Production ?

Entropy production is a measure of how 
quickly energy is degraded. 



Thermodynamics 101

First law: You can’t win.
Second law: You can’t break even.

(Carnot 1824, Clausius 1850)



Thermodynamics 101

(Prigogine 1962)



Maximum Entropy 
Production

Fourth “rule”: You are going broke as fast as possible. 

“complex dissipative systems in steady-state 
produce entropy at maximum possible rate”

(Dewar 2003, 2004,2005)



Example for the 
meteorologists ...

(Paltridge 1975, 1978; Lorenz et al. 2001)



MEP is a general and powerfully predictive.

MEP is not very skilled at explanation.

(Lorenz et al. 2001)
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Higher resolution 
= more degrees of freedom
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Entropy production: = Q GPP (1/T S - 1/T SUN )

Q GPP

Water
Cycling

Q RES

absorption of
solar radiation

heat release
by respiration

Carbon
Cycling

Biomass

MEP max.  QGPP

(Pavlick and Kleidon 2006)



energy balance

constraint

water balance
constraint

Q SW - Q LW - Q SH - Q LH = 0

carbon balance

constraint

(Kleidon and Pavlick 2005)
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(Kleidon and Pavlick 2005)



“Control”
Climate

BIOME model

(Prentice et al. 1992)
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(Kleidon and Pavlick 2005)
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How is this important?

(Kleidon 2005)



MEP and Biotic Enhancement of 
Rock Weathering



MEP and Glacial-
Interglacial Cycles



Conclusions
Complex systems produce entropy at 
maximum possible rate given constraints.

Vegetation adds many degrees of freedom to 
the climate system allowing for many 
possible steady states.

The most likely state is the one at which 
productivity and thus entropy production 
are maximized.
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