Some background physical oceanography you need to know

Mean Temperature at 0m

Longitude

Stephens et al., NOAA, 2002

World Ocean Atlas 2001 Ocean Climate Laboratory/NODC

Nearsurface structure of Temp

NIGHT

(a) Night time situation, light wind

SST spatial and temporal variability

Ocean salinity

Remote Sensing; passive ocean u/doee/science/physical/salt5.gif

Mean Salinity at ~ 0m

World Ocean Atlas 2001 Ocean Climate Laboratory/NODC

Coccolithophores

Biomass of the oceans

http://www.coa.edu/faculty/webpages/stodd/oceanweb/oceanography/Oceanlectures02/Lecture12/sld016.htm Remote Sensing: passive ocean

*Behrenfeld et al. Limnol. Oceanogr. 42, 1–20 (1997)

Some history

1975: GEOS (Geodynamics Experimental Ocean Satellite) 3 (lasted 3.5 years) (NASA)

radar altimeter (sea level) and laser tracking

1978: Seasat (lasted 110 days) (NASA)

radar altimeter (sea level)

Scanning Multichannel Microwave Radiometer (rain)

Synthetic Aperture Radar (surface, internal waves)

Scatterometer System (surface winds)

Visible and Infrared Radiometer (SST, ocean color)

1978: Advanced Very High Resolution Radiometer (AVHRR) aboard TIROS-N (later versions still in orbit)

Visible and Infrared Radiometer (SST)

1978: CZCS aboard Nimbus-7 (lasted 9years)

ocean color

1985: GeoSat (4 years) (US Navy)

Radar altimeter (sea level)

1990s: NSCAT, TOPEX/POSEIDON, TRMM, ERS1/2,...

Science of ocean remote sensing

Locations: science.nasa.gov/realtime/jtrack/Spacecraft.html, www.n2yo.co

- Absorption, reflectance and emission
- SST
 - Infrared and microwave sensing
- SSS
- Color
 - Chlorophyll
 - Ocean fronts
 - Blooms
 - Sediment transport

(I may cover remote sensing of gravity)

Absorption with wavelength (clear water)

John Wiley & Sons, Inc.

Transmission

Clear water in the oligotrophic subtropics

Polarization of reflectance

Chl-a dependence of scattering

Photosynthetic pigments

- Chlorophyll a
 - Contained in all photosynthetic plants. Absorbs strongly at 0.675 microns (red) and 0.440 microns (blue)
- Chlorophyll b
- Chlorophyll c

Accessory pigments

- Caratenoids
 - e.g. beta-carotene which is in all phytoplankton. Is yellowish to redish.
- Biliproteins
 - Found in some blue-green and red algae

÷

Brightness temperature and emissivity

- Brightness temperature: temperature at which a black body in thermal equilibrium with its surroundings would have to be to duplicate the observed intensity of a grey body at a frequency v
- **Emissivity**: ratio of energy radiated by a particular material to energy radiated by a black body at the same temperature.

Emissivity with wavelength

 $I_e = \epsilon I_b (Temp) + R I_s$

microwave (0.1 cm $<\lambda <$ 100 cm),

Brightness temperature vs frequency and SST

http://ceos.cnes.fr:8100/cdrom-00/ceos1/science/platt/pages/platt5.htm

brightness temperature vs salinity

L-band

Aquarius will exploit this dependence to obtain an SSS measurement with an expected ~0.2PSU accuracy at monthly timescales.

bassive ocean

Lagerloef et al., 2007:

Emissivity polarization as a function of incidence angle

lambda = 1.55cm and T = 300 K

Emissivity-dependence on Windinduced surface roughness

WINDSAT exploits these dependences to determine wind stress.

The satellites

Satellite detection of SST

- Infrared (near 3.7 µm for night, near 10 µm for day)
 - Advanced Very High Resolution Radiometer (AVHRR)
 - Along-Track Scanning Radiometer (ATSR [ERS series])
 - Geostationary Operational Environmental Satellite (GOES) Imager
 - Moderate Resolution Imaging Spectro-radiometer (MODIS)
- Microwave (7-10 GHz or 3cm)
 - Scanning Multichannel Microwave Radiometer (SMMR)
 - TRMM Microwave Imager (TMI)
 - Advanced Microwave Scanning Radiometer (AMSR)

John Maurer, UC Boulder http://cires.colorado.edu/~maurerj/class/SST_presentation.htm Remote Sensing: passive ocean

Infrared band: AVHRR

Advanced Very High Resolution Radiometer

Characteristics

Orbit: 2399 km wide swath, 833 km altitude. 14 orbits/dy Sensor: 4-channel radiometer, first carried on TIROS-N (1978). latest version is AVHRR/3, with 6 channels, (1998)

Cloud Detection

- *Maximum Temperature* Compare obs in a small surface area over a relatively short period of time. *poor for persistent, thin clouds.*
- *Two Wavelength infrared* -- 3.7 μm and 10.5 μm. If different, small, undetected clouds in the scene.

spatial Variability -- temperatures of clouds assumed more variable than SST *Two Wavelength Visible-Infrared* -- use reflected sunlight to detect clouds

Water vapor Correction

- **Single-Wavelength Corrections**--many instruments use only a single IR wavelength, usually 10.5 µm. If so, use climatological estimates of water vapor or regional radiosonde observations.
- Two-Wavelength Corrections--10.5 μm is much more sensitive to water vapor
than radiation at 3.7 μm. Difference in temperature is used to correct for water
vapor.vapor.Remote Sensing: passive ocean

Typical AVHRR coverage

Remote Sensing: passive ocean

http://edc.usgs.gov/glis/graphics/guide/avhrr/figure1.gif

AMSRE: passive microwave radiometer

AMSR-E on the Aqua

- Scanning radiometer (40 rpm).
- Altitude: 705 km, swath width:1445 km
- 6 frequencies ranging from 6.9 to 89.0 GHz measuring both horizontally and vertically polarized radiation
- Spatial res: 25km-50km

Comparison of Infrared vs microwave coverage

TMI SST February 1-5, 2000

John Maurer, UC Boulder http://cires.colorado.edu/~maurerj/class/SST_presentation.htm

Comparison of Infrared vs microwave accuracy

John Maurer, UC Boulder http://cires.colorado.edu/~maurerj/class/SST_presentation.htm

Satellite detection of Chl-a

•SeaWiFS (1997-):

8 spectral bands. Resolution LAC: 1.1km, GAC: 4km

1/412 nm (violet): Gelbstoffe

2/443 (blue): Chlorophyll

3/490 (blue-green): Pigment absorption (Case 2), K(490)

4/510 (blue-green): Chlorophyll

5/ 555 (green): Pigments, sediments

6/670 (red): Atmospheric correction

7/765 (near IR): Atmospheric correction, aerosol radiance

8/865 (near IR): Atmospheric correction, aerosol radianceMODIS (on Aqua 1999- and Terra 2001-):

36 spectral bands

Remote Sensing: passive ocean

a Lec13.pdf Source unknown

Relationship between passive radiance and Chl-a concentration

A picture showing MODIS 8-dy average

Ocean color

Annual mean plankton distribution

Remote Sensing: passive ocean

http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/OCDST/what_is_ocean_color.html

Coccolithophore bloom

Coccolithophores

Coccolithophores live on the surface in still, nutrient-poor water such as subpolar regions Their CaCO3 shells stain the water a milky white. Empirical detection algorithms depend on excess nadir water-leaving radiance at e.g. 550nm.

Bloom of CCs

Emiliania huxleyi

http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/OCDST/what_is_ocean_color.html

Cyanobacteria bloom in the Baltic Sea in July 2008

Cyanobacteria blooms in the Baltic in recent summers appear to result from high nutrient runoff. They are responsible for the development of anoxic dead zones as a result of phytoplankton decay.

River delta sediment

Remote Sensing: passive ocean

http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/OCDST/what_is_ocean_color.html

H_2SO_4 off Namibia

•Caused by decaying diatoms

•Forms granular white sulfur, which tints the water bright green.

•Kills fish

"lobsters walk out of the ocean gasping for breath," much to the delight of the local residents and the seabirds who snatch them up for food"
killed two billion young Cape Hake fishes in 1992 to 1993.

Ocean salinity

LBand: 1.4GHz

According tracks are priorited couthoast to porthwart

Earth gravity

Earth's geoid

Deviation of the Geoid from the idealized figure of the Earth

(difference between the EGM96 geoid and the WGS84 reference ellipsoid)

Red areas are above the idealized ellipsoid; blue areas are below.

Time-dependent Gravity

GRACE (Gravity Recovery and Climate Experiment)

500km orbit.

Distance accurate to 10µm

Remote Sensing: passive ocean

http://www.csr.utexas.edu/grace/gravity/

Geoid trend

References

- NASA tutorial: http://rst.gsfc.nasa.gov/Front/tofc.html
- UIUC tutorial: http://ww2010.atmos.uiuc.edu/(Gh)/guides/rs/home.rxml
- Lillesand, T.M., and R.W. Kiefer, *Remote Sensing and Image Interpretation*, 724 pp., John Wiley and Sons, Inc., New York, 2000.

Ban dno.	Centre Waveleng th (nm)	Band width (nm)	NESR (Wm ⁻² sr ⁻ ¹ μm ⁻¹)	Applications potential
1	412	10	0.025	Yellow substance absorption
2	443	10	0.025	Suitable for low chlorophyll , yellow substance
3	490	10	0.022	Suitable for moderate chlorophyll, yellow substance, phycoerithrin
4	510	10	0.018	For high chlor., chlor species, TSM, phycoerithrin, algal blooms
5	555	10	0.015	For high chlor., chlor species, TSM, algal blooms
6	620	10	0.014	TSM, algal blooms
7	670	10	0.012	Algal blooms, base line for chlor. fluorescence
8	681	7.5	0.010	Chlor. Fluorescence for high concentrations
9	710	10	0.010	NIR band, extrapolation to VIS bands better, base line for chlor. fluorescence
10	780	10	0.010	Atmos. correction, avoids $O_2 A$ abs. band in
11	870	<20	0.010	Atmos. correction, good separation from the previous bands, better for coastal waters
12	1010	www.i	occg.org/s	ensing: passive oceand for coastal waters, ensors/ocm2/navak.pot useful for aerosol and & foam discrimination