AOSC 431-Atmospheric Physics and Thermodynamics, Fall 2016, Dr. Kleist Homework #2 (Points) – DUE: FRIDAY 23 September 2016 (5 PM) Each question is worth 5 points. All work needs to be shown for full credit.

 Using the table below, compute the apparent molecular weight (M_d) of dry air on Venus and Mars. Using this information, compute the gas constant for 1 kg of the Venusian and Martian atmospheres, respectively.

Gas	Atomic Weight	Venus	Mars
Carbon Dioxide	44 g/mole	96.4%	95.5%
Nitrogen	28 g/mole	3.5%	2.7%
Argon	40 g/mole	70 ppmv	1.6%
Oxygen	32 g/mole	N/A	0.2%

- 2. A previously evacuated tank with a capacity of 0.5 m³ is pressurized with 2 kg each of helium (molar mass 4.0) and nitrogen (molar mass 28.0) at room temperature (20° C). What is the final pressure of the mixture?
- 3. If water vapor comprises 2% of the volume of the air (as in it accounts for 2% of the molecules in the air), what is the virtual temperature correction? Using specific humidity (q) instead, what is the virtual temperature correction for a tropical air mass (~20 g/kg water vapor) versus arctic air mass (~3 g/kg water vapor)?
- 4. If the specific humidity (q) in a sample of air is 15 g/kg at 25° C:
 - a. Find the virtual temperature (Tv) expressed in both Kelvins and degrees Celcius.
 - b. If the pressure is 1012 hPa, find the density (ρ).
 - c. By what percentage is the above density greater or less than that for dry air at the same pressure and temperature?
- 5. What is the air pressure for dry air given T=70° F and ρ =1.15 kg m⁻³? Give two combinations of pressure and density for dry air that has a temperature of 0° C. Finally, how might one determine the density of air without a "density meter"?
- 6. Describe why the gas constant for moist air is greater than that for dry air.
- 7. Typical hot air balloons used on sightseeing flights attain volumes of 3000 m³. A typical gross weight (balloon, basket, fuel and passengers, but not the air in the balloon) on such a balloon flight is 600 kg. If the ground temperature is 20°C, the lapse rate is zero, and the balloon is in hydrostatic equilibrium at a cruising altitude of 850 hPa, determine the temperature of air inside the balloon.
- 8. The lowest point on Earth, the Dead Sea, is 420m below sea level.
 - a. If the lapse rate in the lowest few hundred meters is 8 °C/km, the *surface pressure* (p_s) at the Dead Sea is 1060 mb, and the surface temperature (T_s) is 32 °C, find a reasonable estimate for the mean temperature between the surface and sea level. Ignore any effects from humidity.
 - b. Find the pressure at sea level (p_0) under the above conditions.
 - c. By how many millibars would your answer to (b) be in error if you made a one degree error in the layer mean temperature?