AOSC 470/600 EXAM #1 Potential Topics (FALL 2016)

- 1. Observations
 - a. In-situ versus remotely sensed (and examples of each)
 - b. Satellite imagery
 - i. Vis/IR/WV how/when to use
- 2. NWP/DA/Ensembles (general, short answer type questions)
 - a. What is a NWP model? What is meant by discretization?
 - b. Spectral versus grid point? Differences/advantages/disadvantages?
 - c. Global versus limited area?
 - i. When used? Advantages of each? Disadvantages?
 - d. What is meant by "parameterization"
 - i. What processes are typically parameterized?
 - e. Available operational NWP models
 - i. What models (especially US)? When available? When to use?
 - f. What is data assimilation?
 - g. Ensemble versus deterministic? What do "ensembles" provide?
 - h. What are Model Output Statistics? How are they generated?

3. Dynamics/Fundamentals (Martin Chs 1-5)

- a. Eulerian v. Lagrangian
- b. Fundamental Equations
- c. Advection
- d. Force Balances
- e. Balance Conditions (geostrophic, hydrostatic)
- f. Scale Analysis
- g. Geostrophy, Rossby Number
 - i. Demonstrate geostrophic wind is non-divergent on an f-plane
- h. Curvature
 - i. Gradient Wind Balance
 - ii. Super/Sub-geostrophy in troughs and ridges
- i. Mass continuity, relating divergence to vertical derivatives of vertical motion
- j. Thickness/Hypsometric equation
- k. Thermal Wind
 - i. What is it?
 - ii. Relating temperature gradients to jets
 - iii. Veering/Backing : Temperature advection
- 1. 2D kinematics
 - i. vorticity, divergence, shearing deformation, stretching deformation
- m. Vorticity
 - i. What is it? Curvature/Shear
 - ii. Relation to Circulation
 - iii. How did we get vorticity equation?
 - iv. What is meant by absolute vorticity conservation (frictionless, barotropic flow)