Vorticity Equation (AOSC470/600, Prof. Kleist)
Starting with the notion that we have an expression for the relative vorticity:
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We need to take the x derivative of the meridional momentum equation and y derivative of the
zonal momentum equation (Martin 5.31a and 5.31b) to try and get terms that look like relative

vorticity, i.e.:
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To compute the derivatives, all of the terms (except d/dt in each) require the use of the product
rule for differentiation (quotient rule for last term of each expression). Doing so results in the
following expanded derivatives of the momentum equations:
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We can eliminate the term that involves a zonal derivative of Coriolis, and then combine the two
equations into a single expression (boxes will now be used in grouping terms together):
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We can eliminate the second derivative pressure terms on the RHS (red boxes above). We will
also combine the Eulerian u/v tendency terms (and switch the order of differentiation, green
boxes) and combine the u, v, and w terms (purple) to get:
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Next, pull out the d/dt in the first term, d/dx in the second term, d/dy in the third term, and d/dz
in the fourth term, and bring out the Coriolis parameter in the term in the second row (blue):
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For the first four terms, we will replace (dv/dx-du/dy) with zeta/relative vorticity, and rewrite the
first term of the second row in terms of relative vorticity times divergence:
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To get to:
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We can define the Lagrangian derivative of Coriolis as:
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But we can take advantage of the fact that the only non-zero term is the term that contains the
meridional derivative and rewrite this as:
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We combine the Eulerian and advective derivatives for relative vorticity (green and purple) into
the total derviative, and replace the v(df/dy) term, we can condense the previous expression as:
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Combining the relative vorticity and Coriolis into a single total derivative and combining the
terms that contain a multiplication of the divergence:
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Finally, we move everything to the RHS to come up with the vorticity equation!
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This is the vorticity equation in height coordinates (Martin 5.33). This equation states that the
Lagrangian tendency (time rate of change following the flow) of the absolute vorticity consists of
a divergence term (orange), tilting term (green), and solenoid term (yellow). See Martin Figures
5.11, 5.12, and 5.13 for schematic examples.

This same procedure can be repeated to derive a vorticity equation in isobaric (pressure)
coordinates. Starting with:
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Which eventually leads to:
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In isobaric coordinates, we lose the solenoidal term. We can finally rewrite this as the isobaric
vorticity equation:
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