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Implications for 
Predictability

Basis for extended range 
prediction

Simple conceptual 
models to understand 

predictability

Magdalena A. Balmaseda

Data assimilation in the ocean
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• Applications of ocean data assimilation

• Ocean DA versus Atmosphere DA

• The ocean observing system

• An example of Ocean DA: NEMOVAR 
 Background co-variances
 Balance relationships: temperature, salinity, sea level and velocity
 Altimeter assimilation
 Bias correction
 Ocean reanalysis

• Evaluation Metrics

• Strengths and weakness 

• Future directions
 Coupled data assimilation.

Outline of lecture
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1. The blue ocean: ocean dynamics.

 Primary variables: potential temperature (T), salinity 
(S) current (U,V) and sea surface height (SSH).

 Density is a function of T and S though the equation 
of state.

2. The white ocean: sea-ice. Not covered here

 Sea ice concentration and thickness. Very few 
thickness obs

 Non gaussian errors. Unknown balance relationships

1. The green ocean: biogeochemistry. Not 

covered

OCEAN DA: components
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Why do we do ocean DA?

• Initialization of coupled models 

 NWP, monthly, seasonal, decadal. 

 Different depths of the ocean are involved at different time scales

 Climate resolution (global ~1x1 to 1/4x1/4 degrees)

• To reconstruct and monitor the history of the 

ocean (re-analysis)

• To detect and forecast the ocean mesoscale

 High resolution ocean analysis (regional, ~1/3-1/9-1/12 degrees)

 Defence, commercial applications (oil rigs …), safety and rescue, 
environmental (algii blooms, spills)
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End-To-End Coupled Forecasting System
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Calibration and Reforecasts:

-Correcting model error

-Extreme Events

-Tailored products (health, energy, agriculture)

Ocean/Atmosphere 
reanalyses

Hindcasts, needed to estimate climatological PDF, require a 
historical ocean and atmospheric reanalyses

Real time Probabilistic 
Coupled Forecast

time

Consistency between historical and 
real-time initial conditions is 

required.

Hindcasts are also needed for skill estimation



Training Course 2014– NWP-DA: <Ocean Data Assimilation> 7

Ocean Reanalysis for
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Ocean versus Atmosphere: some facts

• Spatial/time scales The radius of deformation in the ocean is small 
(~30km) compared to the atmosphere (~3000km). 

Radius of deformation =c/f where c= speed of gravity waves.  In the ocean c~<3m/s 
for baroclinic processes. 

Smaller spatial scales and Longer time scales

• The ocean is strongly stratified in the vertical, although deep convection 
also occurs

Density is determined by Temperature and Salinity

• The ocean is forced at the surface by the wind/waves, by heating/cooling, 
and by fresh-water fluxes. 

For modelling this means that uncertainty in forcing fluxes contributes to uncertainty in 
model results. 

• The electromagnetic radiation does not penetrate into the ocean, 

which makes the deep ocean difficult to observe from satellites.
The surface of the ocean can however be observed from space

• The ocean has continental boundaries; dealing with them is not trivial in 
data assimilation
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Ocean current speed (model simulation, 5 day mean) Atmospheric wind speed  (12h) 

(Zhang et al., )

2 - Ocean Weather 
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Basis for extended range forecasts: monthly, 

seasonal, decadal

• The forecast horizon for weather forecasting is a few days. 
Sometimes it is longer e.g. in blocking situations 5-10 days.

• Sometimes there might be predictability even longer as in the intra-
seasonal oscillation or Madden Julian Oscillation.

• But how can you predict seasons, years or decades ahead? 

• The feature that gives longer potential predictability is forcing given 
by slow changes on boundary conditions, especially to the Sea 
Surface Temperature (SST)

 Atmospheric responds to SST anomalies, especially large scale tropical anomalies

 El Nino/Southern Oscillation is the main mode for controlling the predictability of the 
interannual variability.
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Ocean Circulation

Density Driven: 

Thermohaline Circulation

Wind Driven: Gyres, Western 

Boundary Currents, Upwelling 

regions (coastal, equatorial), 

Ekman pumping  and subduction

Interannual and Decadal
variability: Adjustment processes 

Equatorial Kelvin waves (c ~2-3m/s)  
(months). ENSO
Planetary Rossby waves (months to 
decades)

Zonal wind Thermocline Depth SST
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The Ocean Observing system
XBT (eXpandable
BathiThermograph)

Moorings

Satellite

SST

Sea 
Level

ARGO floats

Elephant seals
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Time evolution of the Ocean Observing System

XBT’s 60’s      Satellite SST  Moorings/Altimeter ARGO 

1982 1993 2001

1998-1999 
PIRATA

TRITON

Gravity info: 

GRACE

GOCE

2008

SSS info: 

Aquarius

SMOS
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Changes to the T/S obs. network 

• Very uneven distribution of observations.
• Southern ocean poorly observed until ARGO period.
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No. of T obs. as 

function of time

No. of S obs. as 

function of time
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• The density of the second layer is only a little greater than that 

of the upper layer.

Typically g’~g/300

• A 10cm displacement of the top surface is associated with a 

30m displacement of the interface (the thermocline).

What about altimetry?
Vertical Stratification and Satellite altimetry

10cm

30 m

If we observe sea level, one can infer information on the vertical density 
structure
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Sea Level Anomaly from Altimetry

El Nino 
1997/98

Sea Level anomaly

Equatorial Temperature anomaly
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SSH observational coverage 20060101
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Ocean assimilation systems

• DA systems based on optimum interpolation (OI), variational techniques 
(e.g. 3D/4D-Var) or various ensemble Kalman filter based methods.

 Or various hybrid combinations, just like for the atmospheric systems.

• First guess given by an ocean model forced by atmospheric fluxes.

• Usually observations are used to modify Temperature (T), Salinity (S), SSH. 
Velocities are derived via balance relationships.

• How to deal with coast lines is not trivial.

 E.g. we don’t want increments (result of analysis) from the Pacific to 
propagate to the Atlantic across Panama.

• To avoid initialization shock increments are typically applied via Incremental 

Analysis Update (IAU) which applies the increments as a forcing term over a 

period of time.

• Bias correction is very important is very important for reanalyses 

applications
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Example of ocean DA:NEMOVAR

Variational DA system for the NEMO ocean model

• Collaborative project CERFACS, ECMWF, INRIA and the Met 

Office.

• Solves a linearized version of the full non-linear cost function.

• Incremental 3D-Var FGAT running operationally at ECMWF and 

Metoffice.

• 4D-Var working on research model

• Uses diffusion operators  for background correlation model (not 

discussed here, quite expensive).

• Uses partition into balance and unbalance components 
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NEMOVAR algorithm

4D observation array

w is the control vector  

Departure vector  

In w space, B is block diagonal, representing  the 
spatial covariance model. The variables are linearly 

independent.

Question: how to specify the spatial covariances?. 
In the current version of NEMOVAR, this is done by  
diffusion operator (Weaver and Courtier 2001)

Weaver et al 2003,2005
Daget et al 2009
Mogensen et al 2012
Balmaseda et al 2013

Solution

IAU,Bloom et al 1996
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Background errors for ocean assim B.

• Length scales for a typical climate model:

 ~2 degree at mid latitudes

 ~15-20 degrees along the eq. 

• The background error correlation scales are  highly non isotropic to reflect the nature 

of equatorial waves- Equatorial Kelvin waves which travel rapidly along the equator 

~2m/s but have only a limited meridional scale as they are trapped to the equator.

• Complex structures an smaller length scales near coastlines are usually ignored.

• Background errors are correlated between different variables (multivariate 

formulation) through balance relations (next slides).

 E.g. an temperature observation gives rise to an increment in salinity.

• The background errors can be flow dependent.
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Linearized balance operator 

• Define the balance operator symbolically by the sequence of equations
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Components of the balance operator
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T/S/SSH balance: effective vertical 
displacement

S

A) Lifting 
of the 
profile

Tanal

Tmodel

B) 
Applying 
salinity 
Increments

Sanal

Smodel
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Horizontal correlation of T at 100m

• From single observation 

of temperature 

experiment.

• Wider longitudinal length 

scales at equator.

• At 50 N the coast line 

comes into play.
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Horiz. cross correlation of T at 100m

• From single observation of temperature experiment.

• The specific background determines the shape due to the 

balance relations.

• S, U, V, SSH increments are from balance with T only.

T S

U V

SSH



Training Course 2014– NWP-DA: <Ocean Data Assimilation> 28

Assimilation of altimeter data

Altimeter measures SSH (respect reference ellipsoide)
Model represents η (ssh referred to the Geoid)

SSH-Geoid= η

Geoid was poorly known (not any longer, but inertia…) and changes in time (*)

Alternative: Assimilate Sea Level Anomalies (SLA) respect a time mean
Obs: SSH anomalies = SSH-MSSH = Obs SLA
Mod:   η anomalies   = η – MDT     = Mod SLA

Where:   MSSH= Mean SSH ;  MDT= Mean Dynamic Topography
MSSH – Geoid = MDT
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Assimilation of altimeter data

Ingredients:

The choice of MDT for  of the reference global mean is not trivial and the system 
can be quite sensitive to this choice. Active area of research.

• The GLOBAL mean sea level (GMSL) needs to be removed prior to 

Assimilation

 Ocean models are volume preserving, and can not represent changes in GLOBAL 
sea level due to density changes (thermal expansion, ….).

• GMSL can be assimilated separately: The difference between 

Altimeter GMSL and Model Steric Height is added to the model as 

a fresh water flux.

alt
'



Observed SLA (Sea Level Anomaly) from T/P+ERS+GFO
Respect to 7 year mean of measurements. Provided

A Mean Sea Level or MDT respect a similar period

mod'   
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Obs SLA 10 days Model (1 deg)  SLA in 10 days

Other SLA issues: 

• The SLA along track data has very high spatial resolution for the 1 degree “class” 
of ocean assimilation systems.

 Features in the data which the model can not represent.

• This can be dealt with in different ways:

 Inflate the observation error to account for non representativeness of the “real” world 
in the assimilation system.

 Construction of “superobs” by averaging.

 Thinning
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Why a bias correction scheme?

• Models/forcing have systematic  error (correlated in time)

• Changes in the observing system can be damaging for the 

representation of the inter-annual variability.

• Part of the error may be induced by the assimilation process.

What kind of bias correction scheme?

• Multivariate, so it  allows to make adiabatic corrections  (Bell et al 

2004)

• First guess + adaptive component. 

• Generalized Dee and Da Silva bias correction scheme

Balmaseda et al 2007

Bias Correction Scheme
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Impact of data assimilation on the mean

Assim of mooring data

CTL=No data

Large impact of data in the mean state: Shallower thermocline

PIRATA

  EQATL Depth of the 20 degrees isotherm 

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Time

-95

-90

-85

-80

-75

-70

ega8 omona.assim_an0
edp1 omona.assim_an0
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The systematic error may be the result of the assimilation 

T-Assim incr (C.I=0.05 C/10 days)

Vertical velocity  (C.I=0.5m/day)

control 

assim
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Bias Correction Algorithm
f f

k k k
 b b b

' '
1 ( )k k ky  b b A d

Bias online: Time evolution  

Need to determine:

•Offline bias correction

•Time evolution of on-line bias: 
(memory) and  (updating factor)

•A(y): Partition of bias into T/S  and 
pressure gradient.  

Function of latitude.  At the equator the 
bias correction is mainly adiabatic 

(pressure gradient)

Refinement of  Balmaseda et al 2007, Dee 2005, Bell et al 2002

Seasonal term, 
estimated offline 
from Argo Period

Slow varying term, 
estimated online from 

assimilation increments   
dk

Temperature Bias Estimation from Argo: 300m-700mTemperature Bias Estimation from Argo: 300m-700m

(C/h): Min= -1.2e-03, Max= 7.5e-04, Int= 4.0e-05

100E 160W 60W
Longitude

50S
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-2.0e-04 -1.2e-04 -4.0e-05 4.0e-05 1.2e-04 2.0e-04

The offline bias correction is estimated from Argo period.

The correction is applied  since 1957-00-01 to present. 

It is a way of extrapolating Argo information into the past.

Number of Temperature Observations  Depth=  500.0 meters

1960 1970 1980 1990 2000
Time

0

2*104

4*104

6*104

8*104

ALL
XBT
CTD
MOOR
ARGO
ALL assimilated
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Effect of bias correction on the time-evolution

Assim of mooring data
CTL=No data
Bias corrected Assim

  EQATL Depth of the 20 degrees isotherm 

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Time

-95

-90

-85

-80

-75

-70

-65 ega819930101 omona.assim_an0
edp119930101 omona.assim_an0
000119590101 omona.assim_an0
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0TL

Assim incr (C.I=0.05 C/10 days)

Experiment EP

Correcting bias in 
pressure gradient

Experiment E0

No bias correction

Experiment ET

Correcting bias in 
Temperature

a)Impact of Balance in Bias 



Training Course 2014– NWP-DA: <Ocean Data Assimilation> 37

Vertical velocity  (C.I=0.5m/day)

b)Impact of Balance in Bias

Experiment EP

Correcting bias in 
pressure gradient

Experiment E0

No bias correction

Experiment ET

Correcting bias in 
Temperature
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ORAS4: 5 ens members 195709 to 
present

Ocean Model: NEMO. Approx resolution 1x1 deg, 42 levels

Multivariate Data Assimilation: NEMOVAR (3Dvar FGAT)

Data: EN3-XBT corrected.  Altimeter, SST as in figure. GTS after 2010

Bias Correction: estimated from Argo period

Forcing: ERA40/ERA-INTERIM/OPS

Ensemble Generation: wind perturbations, observation coverage, deep 
ocean

Assimilation cycle: 10 days, IAU

Main Ingredients

Initialization of coupled 

forecasts

Historical reanalysis 

brought up-to-date
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Assessment of ORAS4

•Reference CNTL experiment: Equivalent Ocean Model Simulation with 

SST/FreshWater corrections. No NEMOVAR nor bias. 5 ens

•Fit to assimilated data

•Comparison with independent data

• ADCP Current meters from moorings. Sea Level 
Gauges. GRACE Bottom Pressure. WOCE transports.  

• RAPID AMOC. 

• Comparison with other estimates

• SL altimeter, OSCAR currents, Heat Content

•Impact on Seasonal Forecasts

•Sensitivity Experiments and Observing System 
Experiments

Balmaseda et al QJ, 2013
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Fit to obs: FG  MIN  and AN (IAU)

Reduction of Error by direct initialization: Assim Incr

IAU approximation

Effective error reduction  (or error growth)
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Fit to Observations
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Time correlation with altimeter SL product

 correl (1): fe5x sossheig  ( 1993-2008 )  correl (1): fe5x sossheig  ( 1993-2008 ) 

(ndim): Min= -0.37, Max= 1.00, Int= 0.02
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ORAS4 (mean 0.72). 1960-2009

Time Correlation 

Sea Level from Tide 

Gauges. 

Independent data 

Correl ORAS4 – Correl CNTL

Overall improvement, 
problems at some  

locations 

(usually in rich data areas, possibly 
related to the treatment of coastal 

observations)

Data courtesy of Anny Cazenave’s  group
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Comparison with ADCP currents from 
Moorings
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Impact on ECMWF-S4 SST Seasonal 
Forecast Skill 
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Ocean Re-analysis heat content: 
comparison with obs-only estimates
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Global Ocean Heat ContentGlobal Ocean Heat Content

Balmaseda, Trenberth and Källén 2013 
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Room for improvements

• Choice of control variable
• Separate assimilation of T and S can be 

problematic.
• Use density instead?

• Difficult to parameterize covariance 
structure. Flow dependence
• Coordinate transformation (isopycnal diffusion)
• Hybrid methods (ens + var)

• Different spatial/time scales
Include bias as control vector (weak constrain)

• What if error is in the forcing fields?
• Coupled data assimilation?
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• Basically:

 Ocean models need improved surface fluxes

 Atmospheric models need improved sea surface temperature

• Coupled data assimilation should:

 improve the use of near-surface observation data

 improve the ocean/atmosphere balance

 improve the prediction of extreme air-sea flux events

 reduce coupling shocks in coupled forecasts

Motivations for coupled data assimilation
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• Fully coupled assimilation

 coupled model for the nonlinear trajectories
o balanced fields

 one analysis calculated by one minimization process
o balanced analysis
o coupled adjoint for a 4D-VAR approach
o modelisation of covariances between atmosphere and ocean

• Weakly coupled assimilation

 coupled model for the nonlinear trajectories
o balanced fields

 two analysis computed in parallel by two minimization 
processes

o avoid the development of new adjoint codes
o covariances between atmosphere and ocean are not required
o possible information exchange during the minimizations
o potentially unbalanced analysis

Coupled assimilation schemes
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The CERA system

• Weakly coupled data 

assimilation system initially 

intended for the reanalysis.

• The atmosphere (IFS) runs 

coupled to the ocean (NEMO) 

in the “outer” loops (trajX).

• The minimization of the cost 

function is done separately for 

the ocean and the 

atmosphere.
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Slower Error growth in tropics

Courtesy of Patrick Laloyaux
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Summary

• Data assimilation in the ocean serves a variety of purposes, from climate 

monitoring to initialization of coupled model forecasts and ocean mesoscale

prediction. 

• This lecture dealt  mainly with ocean DA for initialization of coupled forecasts and 

reanalyses. Global Climate resolution. NEMOVAR as an example.

• Compared to the atmosphere, ocean observations are scarce. The main source of 

information are temperature and salinity profiles (ARGO/moorings/XBTs), sea level 

from altimeter, SST from satellite/ships and geoid from gravity missions.

• Assimilation of ocean observations reduces the large uncertainty(error) due to the 

forcing fluxes. It also improves the initialization of seasonal forecasts and decadal 

forecasts and it can provide useful reconstructions of the ocean climate.

• Data assimilation changes the ocean mean state. Therefore, consistent ocean 

reanalysis requires an explicit treatment of the bias. More generally, we need a 

methodology that allows the assimilation of different time scales. 

• The separate initialization of the ocean and atmosphere systems can lead to 

initialization shock during the forecasts. A more balance “coupled” initialization is 

desirable, but it remains challenging.
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Some references related to ocean data assimilation at ECMWF

• Evaluation of the ECMWF ocean reanalysis system ORAS4, Balmaseda, M. A., 
Mogensen, K. and Weaver, A. T. (2012),. Q.J.R. Meteorol. Soc.. doi: 
10.1002/qj.2063

• The NEMOVAR ocean data assimilation system as implemented in the ECMWF 
ocean analysis for System 4, Mogensen et al 2012. ECMWF Tech-Memo 668.

• The ECMWF System 3 ocean analysis system, Balmaseda et al 2008. MWR. 
See also ECMWF Tech-Memo 508.

• Three and four dimensional variational assimilation with a general circulation 
model of the tropical Pacific.  Weaver, Vialard, Anderson and Delecluse. 
ECMWF Tech Memo 365 March 2002. See also Monthly Weather Review 2003, 
131, 1360-1378 and MWR 2003, 131, 1378-1395.

• NEMOVAR: A variational data assimilation system for the NEMO ocean model. 
Mogensen et al. ECMWF newsletter No. 120 Summer 2009.

• Balanced ocean data assimilation near the equator.  Burgers et al. J Phys 
Ocean, 32, 2509-2519.

• Salinity adjustments in the presence of temperature adjustments. Troccoli et 
al., MWR..

• Comparison of the ECMWF seasonal forecast Systems 1 and 2. Anderson et al 
ECMWF Tech Memo 404.
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Some references related to ocean data assimilation at ECMWF 2

• Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Alves, 
Balmaseda, Anderson and Stockdale.  Tech Memo 369. Quarterly Journal Roy 
Met Soc. 2004. February 2004

• A Multivariate Treatment of Bias for Sequential Data Assimilation: Application 
to the Tropical Oceans. Q. J. R. Meteorol. Soc., 2007. Balmaseda et al.

• A multivariate balance operator for variational ocean data assimilation. 
Q.J.R.M.S, 2006, Weaver et al.

• Salinity assimilation using S(T) relationships. K Haines et al Tech Memo 458. 
MWR, 2006.

• Impact of Ocean Observing Systems on the ocean analysis and seasonal 
forecasts, MWR. 2007, Vidard et al.

• Impact of ARGO data in global analyses of the ocean, GRL,2007. Balmaseda
et al.

• Historical reconstruction of the Atlantic Meridional Overturning Circulation 
from the ECMWF ocean reanalysis. GRL 2007. Balmaseda et al.
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