Data assimilation in the ocean




'{" Outline of lecture

e Applications of ocean data assimilation

e Ocean DA versus Atmosphere DA

e The ocean observing system
e An example of Ocean DA: NEMOVAR

» Background co-variances

> Balance relationships: temperature, salinity, sea level and velocity
> Altimeter assimilation

» Bias correction

» Ocean reanalysis

e Evaluation Metrics

e Strengths and weakness

e Future directions
» Coupled data assimilation.
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'{" OCEAN DA: components

1. The blue ocean: ocean dynamics.

» Primary variables: potential temperature (T), salinity
(S) current (U,V) and sea surface height (SSH).

» Density is a function of T and S though the equation
of state.

2. The white ocean: sea-ice. Not covered here

» Sea ice concentration and thickness. Very few
thickness obs

» Non gaussian errors. Unknown balance relationships

1. The green ocean: biogeochemistry. Not
covered
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‘{i Why do we do ocean DA?

o Initialization of coupled models

» NWP, monthly, seasonal, decadal.
» Different depths of the ocean are involved at different time scales

» Climate resolution (global ~1x1 to 1/4x1/4 degrees)

e To reconstruct and monitor the history of the
ocean (re-analysis)

e To detect and forecast the ocean mesoscale

» High resolution ocean analysis (regional, ~1/3-1/9-1/12 degrees)

» Defence, commercial applications (oil rigs ...), safety and rescue,
environmental (algii blooms, spills)
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'{“End-To-End Coupled Forecasting System
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'{*Calibration and Reforecasts:

=Correcting model error
-Extreme Events

-Tailored products (health, energy, agriculture)

Ocean/Atmosphere Real time Probabilistic
reanalyses Coupled Forecast
time ---------------- —
000000 > 0000O00> oooooo> ooooooo> """>

Hindcasts, needed to estimate climatological PDF, require a
historical ocean and atmospheric reanalyses

Consistency between historical and
real-time initial conditions is
required.

Hindcasts are also needed for skill estimation
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Ocean Reanalysis for

Seasonal Decadal Forecasts
Forecasts of SST Central Pacific SST Correlation (MPI)
Anomaly Correlatl_pn _CORSSTNCEPoy2
T e Ry 4 T s e
IR w4 NoAssim |~
09 by T T
®o8 S W {;};“‘&
o w = W s
So7- A 3 i 2
> A
‘© ot 3 .
Eos el L~
g' - B2
< N
05 >
04 : : : : o
5

o e © © 'Climate Studies

- - 20 ! T )
= ORAS4 OHC 10%)J
NoAssim is [ dper
Upper 700n
Ocean model . Towi Depth.

1997-98El Nifio

simulation with
SST constrain

T 1T

- [
0.9-08-07-0.6-05-04-0.3-0.2-0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.7 08 0.9

From Polhmann et al

ECWMF ORAS4: Ocean
Reanalysis System 4
Balmaseda et al, 2013, QJ
Balmaseda, Trenberth and
Kallen, GRL 2013

Ocean Heat Content from ORAS4
EEE! zi I E:] i Training Course 2014- NWP-DA: <Ocean Data Assimilation> 7




'{i Ocean versus Atmosphere: some facts

o Spatial/time scales The radius of deformation in the ocean is small
(~30km) compared to the atmosphere (~3000km).

Radius of deformation =c/f where c= speed of gravity waves. In the ocean c~<3m/s
for baroclinic processes.

Smaller spatial scales and Longer time scales

e The ocean is strongly stratified in the vertical, although deep convection
also occurs

Density is determined by Temperature and Salinity

e The ocean is forced at the surface by the wind/waves, by heating/cooling,
and by fresh-water fluxes.

For modelling this means that uncertainty in forcing fluxes contributes to uncertainty in
model results.

e The electromagnetic radiation does not penetrate into the ocean,
which makes the deep ocean difficult to observe from satellites.

The surface of the ocean can however be observed from space

e The ocean has continental boundaries; dealing with them is not trivial in
data assimilation
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Blended 12-hourly Winds: 6AM, 1 Aptril 2004
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Atmospheric wind speed (12h) Ocean current speed (model simulation, 5 day mean)
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Basis for extended range forecasts: monthly,
seasonal, decadal

The forecast horizon for weather forecasting is a few days.
Sometimes it is longer e.qg. in blocking situations 5-10 days.

Sometimes there might be predictability even longer as in the intra-
seasonal oscillation or Madden Julian Oscillation.

But how can you predict seasons, years or decades ahead?

The feature that gives longer potential predictability is forcing given
by slow changes on boundary conditions, especially to the Sea
Surface Temperature (SST)

» Atmospheric responds to SST anomalies, especially large scale tropical anomalies

» El Nino/Southern Oscillation is the main mode for controlling the predictability of the
interannual variability.
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'{" Ocean Circulation
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‘{i The Ocean Observing system
XBT (eXpandable
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‘{i Time evolution of the Ocean Observing System
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'{" Changes to the T/S obs. network
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* Very uneven distribution of observations.
« Southern ocean poorly observed until ARGO period.
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Number of observations per month (1000)

all

Temperature measurements in the EN3 dataset

X8T

cTD ——— Wioarings

ARGO Seals

LA AANN
A

A AT Y
—

r o v owea wms ey mm o own WA w

800

700

No. of S obs. as
function of time

Number of observations per month {1000}

200 -

100

0

No. of T obs. as
function of time

Salinity measurements in the EN3 dataset

X8T

et ——— Moorings

ARGO

500 -{

500 |

400 -

300

(Y “‘ (i

1 Wy
Il i
e

[l f"‘.i'
‘.‘ ll’ \ l‘ ”

il
!

Magesss 280

R

terminus - na1 - Thu A 20 10:22:33 2010

Training Course 2014- NWP-DA: <Ocean Data Assimilation>

®o  mor mey mes aw s

15



What about altimetry?

Vertical Stratification and Satellite altimetry

e The density of the second layer is only a little greater than that
of the upper layer.

Typically g’'~g/300

e A 10cm displacement of the top surface is associated with a
30m displacement of the interface (the thermocline).

If we observe sea level, one can infer information on the vertical density
structure
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'{" Sea Level Anomaly from Altimetry
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'{" SSH observational coverage 20060101
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'{" Ocean assimilation systems

e DA systems based on optimum interpolation (OI), variational techniques
(e.g. 3D/4D-Var) or various ensemble Kalman filter based methods.

» Or various hybrid combinations, just like for the atmospheric systems.

e First guess given by an ocean model forced by atmospheric fluxes.

e Usually observations are used to modify Temperature (T), Salinity (S), SSH.
Velocities are derived via balance relationships.

e How to deal with coast lines is not trivial.

» E.g. we don’t want increments (result of analysis) from the Pacific to
propagate to the Atlantic across Panama.

e To avoid initialization shock increments are typically applied via Incremental
Analysis Update (IAU) which applies the increments as a forcing term over a
period of time.

e Bias correction is very important is very important for reanalyses
applications
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' Example of ocean DA:NEMOVAR

Variational DA system for the NEMO ocean model

e Collaborative project CERFACS, ECMWF, INRIA and the Met
Office.

e Solves a linearized version of the full non-linear cost function.

e Incremental 3D-Var FGAT running operationally at ECMWF and
Metoffice.

e 4D-Var working on research model

e Uses diffusion operators for background correlation model (not
discussed here, quite expensive).

e Uses partition into balance and unbalance components
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- Weaver et al 2003,2005
NEMOVAR algorithm
Mogensen et al 2012

Balmaseda et al 2013

1 1
JI5w] = =8w'B~'sw + E{Gﬁw—d}TR_I{GSw—d}

i

Yy ={u' - GD ) — 4D observation array
wP = K 1{xP ()}
. 1

Sw=w—w" —> W is the control vector \/ :
. AT
d = v° — G(wP) — s Departure vector (T, Sus ny> s vy e (T 8,1, ,9)
G[:“}: G;‘(“"} = HI-HVI{I':', i-L|:|'}I{JK{‘*""T‘:I]]

Solution
In w space, B is block diagonal, representing the ,
spatial covariance model. The variables are linearly sSw® =~ BGT (GB G+ R)_ d
independent.
Question: how to specify the spatial covariances?. ix? = K(wb + Sw"') — K(wt’) ~ Kéw"
In the current version of NEMOVAR, this is done by
diffusion operator (Weaver and Courtier 2001
P ( ) x(t;) = Mg, fg_l}[xﬂ{f;'_ﬂ,. F;'SXR]

\%

IAU,Bloom et al 1996

!
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'{" Background errors for ocean assim B.

Length scales for a typical climate model:

» ~2 degree at mid latitudes
» ~15-20 degrees along the eq.

« The background error correlation scales are highly non i1sotropic to reflect the nature
of equatorial waves- Equatorial Kelvin waves which travel rapidly along the equator

~2m/s but have only a limited meridional scale as they are trapped to the equator.

* Complex structures an smaller length scales near coastlines are usually ignored.

* Background errors are correlated between different variables (multivariate

formulation) through balance relations (next slides).
» E.g. an temperature observation gives rise to an increment in salinity.

* The background errors can be flow dependent.
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‘{iLinearized balance operator

Define the balance operator symbolically by the sequence of equations

Temperature

Salinity

SSH

u-velocity

v-velocity

Density

Pressure

6T" = 6T" = 6T"
88" = K&, 8T" +8S) = 8S; + S,
6n* =K, '6p" +ng = ony + ony
su* = KY 15p +6u;, = duy + ou
' =K 15p + 6V, = vy +\ov,

op* =K, '6T" + K '85"
k k k
op- =K op" +K,  on
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mutually
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(Weaver et al., 2005, QJRMS)
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%‘Components of the balance operator

Salinity bal v k-1(pS oz .
(aapp?ro))/(. '?—gnc?:nservation) SSB =7 ( 8Z)S:Sk1( AT)T:T’” ol

0 0
k k ’ /
S5 balance (V-HV)éns ==V [ [(Vép*(2)/ p,)dz'dz
z=—Hz'=z
k
u-velocity balance 5%; — _ 1 [Wf _I_WB lﬁjlagﬁ
trophy with
Eﬂg-?)?asngogpgrox. near eq.) Po f ﬁ a 6@ a 8€D
w k
v-velocity 5\/‘2 — 1 / 1 85]3
(geostrophy, zero at eq.) Po f acos @ oA
Density Sp* = (_ k=1 STk k—l(5Sk 5S* ))
(linearized eq. of state) P = P\ & + ﬂ B + U
0
55'(2) = [8p*(z)gdz + poglons +omf)
(hydrostatic approx.) s
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T/S/SSH balance: effective vertical
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'{" Horizontal correlation of T at 100m

e From single observation
of temperature
experiment.

e Wider longitudinal length
scales at equator.

e At 50 N the coast line
comes into play.

Training Course 2014- NWP-DA: <Ocean Data Assimilation> 26



'{" Horiz. cross correlation of T at 100m
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e From single observation of temperature experiment.

e The specific background determines the shape due to the
balance relations.

e S, U, V, SSH increments are from balance with T only.
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'{" Assimilation of altimeter data

Instantaneous
Sea surface

Mean Sea
| surface

Geoid

Reference
ellipsoid

Altimeter measures SSH (respect reference ellipsoide)
Model represents n (ssh referred to the Geoid)

SSH-Geoid= n
Geoid was poorly known (not any longer, but inertia...) and changes in time (*)
Alternative: Assimilate Sea Level Anomalies (SLA) respect a time mean
Obs: SSH anomalies = SSH-MSSH = Obs SLA
Mod: n anomalies =n- MDT = Mod SLA

Where: MSSH= Mean SSH ; MDT= Mean Dynamic Topography
MSSH - Geoid = MDT
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28



'{" Assimilation of altimeter data

Observed SLA (Sea Level Anomaly) from T/P+ERS+GFO
Respect to 7 year mean of measurements. Provided

n'mod :77 _ﬁ

n A Mean Sea Level or MDT respect a similar period

Ingredients: T]' l
alt

The choice of MDT for of the reference global mean is not trivial and the system
can be quite sensitive to this choice. Active area of research.

e The GLOBAL mean sea level (GMSL) needs to be removed prior to
Assimilation

» Ocean models are volume preserving, and can not represent changes in GLOBAL
sea level due to density changes (thermal expansion, ....).

e GMSL can be assimilated separately: The difference between
Altimeter GMSL and Model Steric Height is added to the model as
a fresh water flux.
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'{" Other SLA issues:

e The SLA along track data has very high spatial resolution for the 1 degree “class”
of ocean assimilation systems.

» Features in the data which the model can not represent.

e This can be dealt with in different ways:

» Inflate the observation error to account for non representativeness of the “real” world
in the assimilation system.

» Construction of “superobs” by averaging.

» Thinning
Obs SLA 10 days _ Model (1 deg) SLA in 10 days

Feedback data. Total numb
Min= -0.9080000 Max= 0.8390000 Mean= -1.0817485E-02 Feedback data. Total number : 227233
Min = -0.8452972 Max= 1414139 Mean = -9.2192274E-03
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‘{i Bias Correction Scheme

Why a bias correction scheme?

Models/forcing have systematic error (correlated in time)

Changes in the observing system can be damaging for the
representation of the inter-annual variability.

Part of the error may be induced by the assimilation process.

What kind of bias correction scheme?

Multivariate, so it allows to make adiabatic corrections (Bell et al
2004)

First guess + adaptive component.

Generalized Dee and Da Silva bias correction scheme

Balmaseda et al 2007
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‘{i Impact of data assimilation on the mean

EQATL Depth of the 20 degrees isotherm
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‘{i The systematic error may be the result of the assimilation
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ias Correction Algorithm bfk — bk +

Number of Temperature Observations Depth= 500.0 meters / \
T T T T T =]
AT 3
TD i

Seasonal term, Slow varying term,
estimated offline estimated online from
from Argo Period assimilation increments

dx

Bias online: Time evolution

b, =ab,_, +A(y)Bd,

WN% Need to determine:
L e o ine bias correction
g Offline b t
] . . . .
: . eTime evolution of on-line bias: a
ogs e : _ ' (memory) and B (updating factor)
L | eA(y): Partition of bias into T/S and
e o pressure gradient.
(C/h): Min=-1.2e-03, Max= 7.5e-04, Int=4.0e-05
T e I Function of latitude. At the equator the
20004 S12e0s 40005 40005 12004 20004 bias correction is mainly adiabatic
The offline bias correction is estimated from Argo period. (pressure gradient)
The correction is applied since 1957-00-01 to present.
A . . . . Refinement of Balmaseda et al 2007, Dee 2005, Bell et al 2002
It is a way of extrapolating Argo information into the past.
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‘{i Effect of bias correction on the time-evolution

EQATL Depth of the 20 degrees |sotherm
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'{Qa)lmpact of Balance in Bias

Experiment EO

No bias correction

Assim incr (C.I=0.05 C/10 days)
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'{*b)lmpact of Balance in Bias

Vertical velocity (C.I=0.5m/day)
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pressure gradient e q:i
Experiment ET oo ﬂfli
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Correcting bias in = '
Temperature S0 1
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ORAS4: 5 ens members 195709 to

present

rorcing iiclids

195709 ERA40 198901 ERA-Interim 201001 ECMWF OPS
SST and ice product
195709 ERA40 198112 Reynolds 201001 OSTIA

Observational data

195709 EN3 T/S

201001 GTS T/S

R

199210 SLA-UPD

200910 SLA-NRT

vy V9

Main Ingredients

Ocean Model: NEMO. Approx resolution 1x1 deg, 42 levels
Multivariate Data Assimilation: NEMOVAR (3Dvar FGAT)

Data: EN3-XBT corrected. Altimeter, SST as in figure. GTS after 2010
Bias Correction: estimated from Argo period

Forcing: ERA40/ERA-INTERIM/OPS

Ensemble Generation: wind perturbations, observation coverage, deep
ocean

Assimilation cycle: 10 days, IAU

Training Course 2014- NWP-DA: <Ocean Data Assimilation>
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Initialization of coupled

forecasts

Historical reanalysis

brought up-to-date
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‘{iAssessment of ORAS4

‘Reference CNTL experiment: Equivalent Ocean Model Simulation with
SST/FreshWater corrections. No NEMOVAR nor bias. 5 ens

Fit to assimilated data
«Comparison with independent data

« ADCP Current meters from moorings. Sea Level
Gauges. GRACE Bottom Pressure. WOCE transports.

« RAPID AMOC.
« Comparison with other estimates
« SL altimeter, OSCAR currents, Heat Content

-Impact on Seasonal Forecasts

Sensitivity Experiments and Observing System

Experiments
Balmaseda et al QJ, 2013
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[ Fit to obs: FG MIN and AN (IAU)

GLOBAL RMSE Temperature
0 T ' =

RMSE AN
RMSE FG
RMSE MIN

-200 —

-400 — —

Depth (m)

0.4 0.6 0.8 1.0 1.2

— Reduction of Error by direct initialization: Assim Incr
— IAU approximation
— Effective error reduction (or error growth)
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'{" Fit to Observations

(a) AN-OBS at 250 m: T (C) (b) AN-OBC at 250 m: S (psu)
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‘{* Time correlation with altimeter SL product
CNTL: NoObs NEMOVAR T+S

LalHhude
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ORAS4 (mean 0.72). 1960-2009

—-0.95 -0.76 —-0.57 —0.38 -0.19 0.00

Correl ORAS4 - Correl CNTL

0.19 0.38 0.57

Time Correlation
Sea Level from Tide
Gauges.
Independent data

Overall improvement,
problems at some
locations

(usually in rich data areas, possibly
related to the treatment of coastal
observations)

Data courtesy of Anny Cazenave's group

e = T, | .
SR v N
TN - e
SRR | |
g TR |
| T | (K:
[________ |

—1.00-0.30-0.26-0.22-0.18-0.14-0.10-0.06-0.02 0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30 1.00
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Depth (m)

Depth (m)

Comparison with ADCP currents from

Moorings
0 TAO / TRITON equator 164°E (b) TAQ / TRITON equator 170°W
[ \ [ [ I [ |
-100 - — — —100 —
E
2
[
200 4 @ 200 -
-300 ' ' ~300 | |
-05 0 0.5 1 -0.5 0 0.5 1
Zonal current (ms™) Zonal current (ms~1)
TAQO / TRITON equator 140°W (d) PIRATA equator 23°W
0 0 I | I
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—100 —_
E
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—150 | NoBias_crh
ADCP
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s

Anomaly correlation

Anomaly correlation

Central equatorial Pacific

Central equatorial Atlantic

Impact on ECMWF-54 SST Seasonal
Forecast Skill

Equatorial Indian

0.9 + 0.9+ 0.9

0.8 - 0.8 4 0.8 1

0.7 1 0.7 1 0.7 1

0.6 0.6 - 0.6 1

——— NEMOVAR

0.59 —— NEMO NoObs 0.5 - 0.5

0.4 T 1 T T 1 I 0'4 T T T T I/I\ 0.4 1 I T 1 T 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Forecast time (months) Forecast time (months) Forecast time (months)
Northern sub tropical Pacific Northern sub tropical Atlantic Southern sub tropical Atlantic
1 1

0.9 - 0.9 4 0.9 1

0.8 0.8 1 0.8

0.7 1 0.7 1 0.7 1

0.6 0.6 ~ 0.6

0.5 - 0.5 4 0.5 1

0-4 T T T T T T 04 T T T T T T 0-4 T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Forecast time (months) Forecast time (months) Forecast time (months)
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'{* Ocean Re-analysis heat content:
comparlson W|th obs- onIy estlmates
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'{* Room for improvements

Choice of control variable

« Separate assimilation of T and S can be
problematic.

« Use density instead?

Difficult to parameterize covariance
structure. Flow dependence

« Coordinate transformation (isopycnal diffusion)
 Hybrid methods (ens + var)

Different spatial/time scales
Include bias as control vector (weak constrain)

What if error is in the forcing fields?
 Coupled data assimilation?
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'{" Motivations for coupled data assimilation

e Basically:

» Ocean models need improved surface fluxes
» Atmospheric models need improved sea surface temperature

e Coupled data assimilation should:

» improve the use of near-surface observation data

» improve the ocean/atmosphere balance

» improve the prediction of extreme air-sea flux events
» reduce coupling shocks in coupled forecasts
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'{" Coupled assimilation schemes

e Fully coupled assimilation

» coupled model for the nonlinear trajectories
o balanced fields
» one analysis calculated by one minimization process
o balanced analysis
o coupled adjoint for a 4D-VAR approach
o modelisation of covariances between atmosphere and ocean

o Weakly coupled assimilation

» coupled model for the nonlinear trajectories
o balanced fields

> two analysis computed in parallel by two minimization

Processes

o avoid the development of new adjoint codes
0 covariances between atmosphere and ocean are not required
o possible information exchange during the minimizations
o potentially unbalanced analysis
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'{" The CERA system

Weakly coupled data
assimilation system initially

intended for the reanalysis.

The atmosphere (IFS) runs
coupled to the ocean (NEMO)

in the “outer” loops (trajX).

The minimization of the cost
function is done separately for
the ocean and the

atmosphere.

EEEi zi I E:] i Training Course 2014- NWP-DA: <
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‘{i Slower Error growth in tropics

RMSE of the SST forecast in the Tropics for September 2010
OSTIA used as reference

D s s e st e S S S S AL

1

0.9+

0.8

0.7

0.6

=

0.5

04

03

02

Forecast Day

Climatology
Operational-like IFS system
CERA Courtesy of Patrick Laloyaux
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'{" summary

e Data assimilation in the ocean serves a variety of purposes, from climate
monitoring to initialization of coupled model forecasts and ocean mesoscale
prediction.

e This lecture dealt mainly with ocean DA for initialization of coupled forecasts and
reanalyses. Global Climate resolution. NEMOVAR as an example.

e Compared to the atmosphere, ocean observations are scarce. The main source of
information are temperature and salinity profiles (ARGO/moorings/XBTs), sea level
from altimeter, SST from satellite/ships and geoid from gravity missions.

e Assimilation of ocean observations reduces the large uncertainty(error) due to the
forcing fluxes. It also improves the initialization of seasonal forecasts and decadal
forecasts and it can provide useful reconstructions of the ocean climate.

e Data assimilation changes the ocean mean state. Therefore, consistent ocean
reanalysis requires an explicit treatment of the bias. More generally, we need a
methodology that allows the assimilation of different time scales.

e The separate initialization of the ocean and atmosphere systems can lead to
initialization shock during the forecasts. A more balance “coupled” initialization is
desirable, but it remains challenging.
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‘{i Some references related to ocean data assimilation at ECMWF

e Evaluation of the ECMWF ocean reanalysis system ORAS4, Balmaseda, M. A,,
Mogensen, K. and Weaver, A. T. (2012),. Q.J.R. Meteorol. Soc.. doi:
10.1002/qj.2063

e The NEMOVAR ocean data assimilation system as implemented in the ECMWF
ocean analysis for System 4, Mogensen et al 2012. ECMWF Tech-Memo 668.

e The ECMWF System 3 ocean analysis system, Balmaseda et al 2008. MWR.
See also ECMWF Tech-Memo 508.

e Three and four dimensional variational assimilation with a general circulation
model of the tropical Pacific. Weaver, Vialard, Anderson and Delecluse.
ECMWF Tech Memo 365 March 2002. See also Monthly Weather Review 2003,
131, 1360-1378 and MWR 2003, 131, 1378-1395.

e NEMOVAR: A variational data assimilation system for the NEMO ocean model.
Mogensen et al. ECMWF newsletter No. 120 Summer 2009.

e Balanced ocean data assimilation near the equator. Burgers et al. J Phys
Ocean, 32, 2509-25109.

e Salinity adjustments in the presence of temperature adjustments. Troccoli et
al., MWR..

e Comparison of the ECMWF seasonal forecast Systems 1 and 2. Anderson et al
ECMWF Tech Memo 404.
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‘{i Some references related to ocean data assimilation at ECMWF 2

e Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Alves,
Balmaseda, Anderson and Stockdale. Tech Memo 369. Quarterly Journal Roy
Met Soc. 2004. February 2004

e A Multivariate Treatment of Bias for Sequential Data Assimilation: Application
to the Tropical Oceans. Q. J. R. Meteorol. Soc., 2007. Balmaseda et al.

e A multivariate balance operator for variational ocean data assimilation.
Q.J.R.M.S, 2006, Weaver et al.

e Salinity assimilation using S(T) relationships. K Haines et al Tech Memo 458.
MWR, 2006.

e Impact of Ocean Observing Systems on the ocean analysis and seasonal
forecasts, MWR. 2007, Vidard et al.

e Impact of ARGO data in global analyses of the ocean, GRL,2007. Balmaseda
et al.

e Historical reconstruction of the Atlantic Meridional Overturning Circulation
from the ECMWF ocean reanalysis. GRL 2007. Balmaseda et al.
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