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Introduction 

• 4D-Var is based on minimization of a cost function which measures the distance 
between the model with respect to the observations and with respect to the 
background state 

• The cost function and its gradient are needed in the minimization.  

• The tangent linear model provides a computationally efficient (although 
approximate) way to calculate the model trajectory, and from it the cost function. 
The adjoint model is a very efficient tool to compute the gradient of the cost 
function.  

• Overview: 

– Brief introduction to 4D-Var with focus on TL/AD aspects 

– General definitions of Tangent Linear and Adjoint models and why they are 
extremely useful in variational assimilation 

–  Writing TL and AD models and testing them 

– Brief mention of automatic differentiation software 
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4D-Var 

In 4D-Var the cost function can be expressed as follows: 

B background error covariance matrix, 
R observation error covariance matrix (instrumental + interpolation +   
    observation operator error), 
M forward nonlinear forecast model (time evolution of the model state, index i), 
H observation operator (model space  observation space). 
 

[ ]( )
0

1 ' 1
x 0 0 0

0
min (  ) [ ] 0

n
T T

b i i i i i i
i

J J t ,t H M− −

=

′⇔ ∇ = − + − =∑B x x M H R x y

H’T = adjoint of observation operator and M’T = adjoint of forecast model. 
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Incremental 4D-Var at ECMWF 

• The gradient of the cost function to be minimized is: 
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• In incremental 4D-Var, the cost function is minimized in terms of increments: 

 with the model state defined at any time ti as: 

( )i i i tid y H x= −

• 4D-Var cost function can then be approximated to the first order by:  

 where  is the so-called departure computed using the 
nonlinear model and observational operator.  

0 0[ , ]i ix M t t xδ δ′=

         and          are the tangent linear models which are used in the 
computations of incremental updates during the minimization (iterative 
procedure). 
        and           are the adjoint models which are used to obtain the 
gradient of the cost function with respect to the initial condition. 
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where       is the linearised version of        about       and  
are the departures from observations. 

Details on linearisation 

'
iH

In the first order approximation, a perturbation      of the control variable 
(initial condition) evolves according to the tangent linear model: 

where i is the time-step index. 
The perturbation of the cost function around the initial state is: 
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The gradient of the cost function with respect to       is given by: 

Details of the linearisation (cnt.) 
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The optimal initial perturbation is obtained by finding the value 
of            for which: 

0
0x Jδ∇ =

The gradient of the cost function with respect to the initial condition is 
provided by the adjoint solution at time t=0. Let’s see how…  

remembering that  ( )T T TAB B A=
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For any linear operator         there exist an adjoint operator  
       such as: 

Definition of adjoint operator 

' *, ,x M y M x y=

'M

where        is an inner scalar product and x, y are vectors  
(or functions) of the space where this product is defined. 
 
It can be shown that for the inner product defined in the  
Euclidean space : 

0
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We will now show that the gradient of the cost function at time 
t=0 is provided by the solution of the adjoint equations at the  
same time: 
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Usually the initial guess          is chosen to be equal to the  
background          so that the initial perturbation 
The gradient of the cost function is hence simplified as:  

Adjoint solution 
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Adjoint solution (cnt.) 
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The gradient of the cost function with respect to the control 
variable (initial condition) is obtained by a backward integration of 
the adjoint model. 
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Iterative steps in the 4D-Var Algorithm 

1. Integrate forward model gives   .  

2. Integrate adjoint model backwards gives      . 

3. If                       then stop. 

4. Compute descent direction        (Newton, CG, …). 

5. Compute step size     : 

6. Update initial condition:  
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Finding the minimum of cost function J is an   
iterative minimization procedure 

cost function J J(xb) 

Jmini 

m mDρ

1m m m mx x Dρ+ = +
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 An analysis cycle in 4D-Var  
1st ifstraj:  
• Non-linear model is used to compute the high-res  
  trajectory (T1279 operational, 12-h forecast) 
• High-res departures are computed at exact obs  
  time and location 
• Trajectory is interpolated at low res (T159) 
 

1st ifsmin (70 iterations): 
• Iterative minimization at T159 resolution 
• Tangent linear with simplified physics to calculate 
   the increments  
• The Adjoint is used to compute the gradient of the 
   cost function with respect to the departure in  
   initial condition  
• Analysis increment at initial time        is interpolated 
  back linearly from low-res to high-res and it provides 
  a new initial state for the 2nd trajectory run 
 
2nd ifstraj: 
• repeat 1st ifstraj and interpolates at T255 resolution 
 
2nd ifsmin (30 iterations): 
• repeat 1st ifsmin at  T255 
 
Last ifstraj: 
• Uses updated initial condition to run another 12-h  
forecast and stores analysis departures in the  
Observational Data Base (ODB)   

iδx

0δxJ∇
0δx2 minimizations in the old  

configuration 
Now 3 minimizations  

are operational! 
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Recap on TL and AD models  
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Simple example of adjoint writing 
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As an alternative to the matrix method, adjoint coding can be carried 
out using a line-by-line approach. 

Simple example of adjoint writing (cnt.) 
Often the adjoint variables in mathematical formulations are 
indicated with an asterisk 

Do not forget the last equation!!! That too is part of the adjoint! 
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More practical examples on adjont coding: 
 the Lorenz model 

where    is the Prandtl number,    the Rayleigh number, and     
   the aspect ratio. 
     is the intensity of convection,      
     is the maximum temperature difference  
     is the stratification change due to convection.  
Details on the Lorenz model can be found in the references.  
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The linear code in Fortran 

Linearize each line of the code one by one, and set dx/dt=y for simplicity: 
 

   y(1)   = -p*x(1)   +p*x(2)      :Nonlinear statement 
(1)yd(1)  = -p*xd(1)  +p*xd(2)     :Tangent linear 
 

   y(2)   =  x(1)*(r-x(3)) -x(2)   :Nonlinear statement 
(2)yd(2)  = xd(1)*(r-x(3)) 
              -x(1)*xd(3)  -xd(2)  :Tangent linear 
 

   …etc 
 
Remember that  p, r, b are constants;  
x(1), x(2) and x(3) are the independent variables;  
y(1), y(2) and y(3) are the dependent variables.  
 
We chose the suffix “d” for the tangent linear variable for consistency with the automatic differentation 
software TAPENADE (see optional practical exercise).  Adjoint variables are indicated with the suffix “b”.  
This is just a convention.   
 
Note that in the ECMWF Integrated Forecast System (IFS) the tangent linear and adjoint variables are 
indicated without any subscripts and the nonlinear trajectory (x) is indicated with the suffix “5” (x5). 
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Adjoint of one instruction 
We start from the tangent linear code:  

yd(1)=-p*xd(1)+p*xd(2) 
In matrix form, it can be written as: 

which can easily be transposed (asterisk indicates adjoint variables): 

The corresponding adjoint code in FORTRAN is: 
    xb(1)=xb(1)-p*yb(1) 
    xb(2)=xb(2)+p*yb(1) 
    yb(1)=0 
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Adjoint of one instruction (II) 
We start again from the tangent linear code:  
       yd(2)= xd(1)*(r-x(3))-xd(2)- x(1)*xd(3) 
 

In matrix form, it can be written as: 

which can easily be transposed (asterisk indicates transposition): 

The corresponding adjoint code in FORTRAN is: 
    xb(1)=xb(1)+(r-x(3))*yb(2) 
    xb(2)=xb(2)- yb(2) 
    xb(3)=xb(3)- x(1)*yb(2) 
    yb(2)=0 
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These terms come from the 
trajectory! Needs to be stored 
in memory or recomputed 
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Trajectory 

The trajectory has to be available. It can be: 
 
•     saved which costs memory, 
•     recomputed which costs CPU time. 
 

Depending on the complexity of the code, one  
option or the other is adopted (or both options 
at the same time). 
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The Adjoint Code 

Property of adjoints (transposition): 

Application:                                where     represents the 
line    of the tangent linear model. 
 
The adjoint code is made of the transpose of each line of 
the tangent linear code in reverse order. 
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Adjoint of loops 
In the TL code for the Lorenz model we have: 
  DO i=1,3 
    xd(i)=xd(i)+dt*yd(i) 
  ENDDO 
dt is a constant for our purposes. This loop can be written 
explicitly: 
  xd(1)=xd(1)+dt*yd(1) 
  xd(2)=xd(2)+dt*yd(2) 
  xd(3)=xd(3)+dt*yd(3) 
 
We can now transpose and reverse the lines to get the adjoint: 
  yb(3)=yb(3)+dt*xb(3) 
  yb(2)=yb(2)+dt*xb(2) 
  yb(1)=yb(1)+dt*xb(1) 
 
which is equivalent to 
  DO i=3,1,-1    !Reverse order of indeces! 
    yb(i)=yb(i)+dt*xb(i) 
  ENDDO 
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Conditional statements (“IF” statements) 

• What we want is the adjoint of the statements which 
were actually executed in the direct model. 
 

• We need to know which “branch” of the IF statement 
was executed 
 

• The result of the conditional statement has to be stored: 
it is part of the trajectory !!! 
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Tangent linear code Adjoint code 

δx = 0 δx* = 0 
δx = A δy + B δz  δy* = δy* + A δx*  

δz* = δz* + B δx* 

δx* = 0 
δx = A δx + B δz  
 

δz* = δz* + B δx* 

δx* = A δx*  
do k = 1, N 
   δx(k) = A δx(k−1) + B δy(k) 
end do 

do k = N, 1, − 1  (Reverse the loop!) 
   δx*(k −1) = δx*(k−1) + A δx*(k) 
   δy*(k ) = δy*(k) + B δx*(k) 
   δx*(k) = 0 
end do 

if (condition)  tangent linear code if (condition) adjoint code 

Summary of basic rules for line-by-line adjoint coding (1) 

And do not forget to initialize local adjoint variables to zero !  

Adjoint statements are derived from tangent linear ones in a reversed order  

Order of operations is important  
when variable is updated!  
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Tangent linear code Trajectory and adjoint code 

if (x > x0) then 
   δx = A δx / x 
   x = A Log(x)  
end if 

------------- Trajectory ---------------- 
xstore = x     (storage for use in adjoint) 
if (x > x0) then 
   x = A Log(x)  
end if 
--------------- Adjoint ------------------ 
if (xstore > x0) then 
   δx* = A δx* / xstore

 

end if 

Summary of basic rules for line-by-line adjoint coding (2) 

The most common sources of error in adjoint coding are: 
1) Pure coding errors 
2) Forgotten initialization of local adjoint variables to zero 
3) Mismatching trajectories in tangent linear and adjoint (even slightly) 
4) Bad identification of trajectory updates 

To save memory, the trajectory can be recomputed just before the adjoint 
calculations (again it depends on the complexity of the model). 
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More facts about adjoints 

• The adjoint always exists and it is unique, assuming spaces of finite 
dimension. Hence, coding the adjoint does not raise questions about 
its existence, only questions related to the technical implementation. 
 

• In the meteorological literature, the term adjoint is often improperly 
used to denote the adjoint of the tangent linear of a non-linear 
operator. In reality, the adjoint can be defined for any linear operator. 
One must be aware that discussions about the existence of the 
adjoint usually should address the existence of the tangent linear 
model. 
 

• Without re-computation, the cost of the TL is usually about 1.5 times 
that of the non-linear code, the cost of the adjoint between 2 and 3 
times. 
 

• The tangent linear model is not strictly necessary to run a 4D-Var 
system (but it is  needed in the incremental 4D-Var formulation in use 
operationally at ECMWF). It is also needed as an intermediate step to 
write and test the adjoint. 
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Test for adjoint model 

The adjoint test is truly unforgiving. If you do not have a ratio of the norm close to 1  
within the precision of the machine, you know there is a bug in your adjoint.  
At the end of your debugging you will have a perfect adjoint. If properly tested,  
the adjoint is the only piece of code on Earth to be entirely bug-free (although you  
may still have an imperfect tangent linear)!  
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Test of adjoint in practice… 
 

• Compute perturbed variable (y) using perturbation in input variables (x,z) with 
the tangent linear code 

      
 
 
 
• Compute TL norm: 
• Call adjoint routine to obtain gradients in x  and z with respect to initial 

perturbation  in x and z                from perturbation in y. 
         
 
 
 
 
 
•  Compute the norm from the adjoint calculation, using unperturbed state and 

gradients: 
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Automatic differentiation 

• Because of the strict rules of tangent linear and adjoint coding, 
    automatic differentiation is possible. 

 
• Existing tools: TAF (TAMC), TAPENADE (Odyssée), ... 

– Reverse the order of instructions, 
– Transpose instructions instantly without typos !!! 
– Especially good in deriving tangent linear codes! 

 
• There are still unresolved issues: 

–  It is NOT a black box tool, 
–  Cannot handle non-differentiable instructions (TL is wrong), 
–  Can create huge arrays to store the trajectory, 
–  The codes often need to be cleaned-up and optimised. 

 
• Look in the “Supplementary material” for more information! 
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Useful References 

• Variational data assimilation: 
   Lorenc, A., 1986, Quarterly Journal of the Royal Meteorological Society, 112, 1177-1194. 
   Courtier, P. et al., 1994, Quarterly Journal of the Royal Meteorological Society, 120, 1367-1387. 
   Rabier, F. et al., 2000, Quarterly Journal of the Royal Meteorological Society, 126, 1143-1170. 
 
• The adjoint technique: 
   Errico, R.M., 1997, Bulletin of the American Meteorological Society, 78, 2577-2591. 
 
• Tangent-linear approximation: 
   Errico, R.M. et al., 1993, Tellus, 45A, 462-477. 
   Errico, R.M., and K. Reader, 1999, Quarterly Journal of the Royal Meteorological Society, 125, 169-195. 
   Janisková, M. et al., 1999, Monthly Weather Review, 127, 26-45. 
   Mahfouf, J.-F., 1999, Tellus, 51A, 147-166. 

 
•  Lorenz model: 
     X. Y. Huang and X. Yang. Variational data assimilation with the Lorenz model. Technical Report 26, HIRLAM, 
        April 1996. Available on ftp site (see notes for practical session). 
    E. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130-141, 1963. 
 
• Automatic differentiation: 
      Giering R., Tangent Linear and Adjoint Model Compiler, Users Manual Center for Global Change  
         Sciences, Department of Earth, Atmospheric, and PlanetaryScience,MIT,1997 
      Giering  R. and T. Kaminski, Recipes for Adjoint Code Construction, ACM Transactions on  
          Mathematical Software, 1998 
       TAMC: http://www.autodiff.org/ 
       TAPENADE:  http://www-sop.inria.fr/tropics/tapenade.html 

 
• Sensitivity studies using the adjoint technique 
        Janiskova, M. and J.-J. Morcrette., 2005. Investigation of the sensitivity of the ECMWF radiation scheme to input 

parameters using adjoint technique. Quart. J. Roy. Meteor. Soc., 131,1975-1996. 
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