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Outline

• The standard Kalman Filter and its extensions

• Kalman Filters for large dimensional systems

• The Ensemble Kalman Filter

• Hybrid Variational–EnKF algorithms
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• In a previous lecture it was shown that the linear, unbiased analysis  
equation had the form:

xa
k = xb

k + Kk (yk- Hk(x
b

k)) 

a = analysis;   b = background
k = time index (t=0,1,…,k,…)

• It was also shown that the best linear unbiased analysis (a.k.a. Best 
Linear Unbiased Estimator, BLUE) is achieved when the matrix Kk

(Kalman Gain Matrix) has the form:

Kk = Pb
k HT

k(Hk Pb
k HT

k + Rk)
-1 = ((Pb

k)
-1 +  HT

k Rk
-1 Hk )-1 HT

k Rk
-1

Pb = covariance matrix of the background error
R = covariance matrix of the observation error

• Here “best” means the minimum error variance analysis 

• An expression for the covariance matrix of the analysis error was also 
found:

Standard Kalman Filter
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• An expression for the covariance matrix of the analysis error was also 
found:

Pa
k = (I – KkHk)P

b
k (I – KkHk)

T + KkRkKk
T

• In most application of data assimilation we want to update our 
estimate of the state and its uncertainty at later times, as new 
observations come in: we want to cycle the analysis

• For each analysis in this cycle we require a background xb
k (i.e. a prior 

estimate of the state at time tk)

• Our best prior estimate of the state at time tk is given by a forecast 
from the preceding analysis:

xb
k = Mtk-1→tk

(xa
k-1)

• What is the error covariance matrix associated with this background?

Standard Kalman Filter
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• What is the error covariance matrix associated with this background?

xb
k = Mtk-1→tk

(xa
k-1)

• Subtract the true state x*
k  from both sides of the equation: 

εb
k = Mtk-1→tk

(xa
k-1) - x*

k

• Since xa
k-1 = x*

k-1 + εa
k-1 we have:

εb
k = Mtk-1→tk

(x*
k-1 + εa

k-1) - x*
k  = 

Mtk-1→tk
(x*

k-1) + Mtk-1→tk
εa

k-1 - x*
k  =

Mtk-1→tk
εa

k-1 + ηk

• Where we have defined the model error ηk = Mtk-1→tk
(x*

k-1) - x*
k

• We will also assume that < εa
k-1 > = < ηk> = 0  => < εb

k >

• The background error covariance matrix will then be given by: 

Standard Kalman Filter
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<εb
k (εb

k)
T> = Pb

k = <(Mtk-1→tk
εa

k-1 + ηk) (Mtk-1→tk
εa

k-1 + ηk)
T> =

Mtk-1→tk
<εa

k-1 (εa
k-1)T> (Mtk-1→tk

)T + <ηk (ηk)
T> =

Mtk-1→tk 
Pa

k-1 (Mtk-1→tk
)T + Qk

• Here we have assumed < εa
k-1 (ηk )

T> = 0  and defined the model error 
covariance matrix Qk = <ηk (ηk)

T>

• We now have all the equations necessary to propagate and update 
the state and its error estimates:

xb
k = Mtk-1→tk

(xa
k-1)

Pb
k = Mtk-1→tk 

Pa
k-1 (Mtk-1→tk

)T + Qk

xa
k = xb

k + Kk (y k- Hk(x
b

k))

Pa
k = (I – KkHk)P

b
k (I – KkHk)

T + KkRkKk
T

Kk = Pb
k HT

k(Hk Pb
k HT

k + Rk)
-1

Standard Kalman Filter
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xb
k = Mtk-1→tk

(xa
k-1)

Pb
k = Mtk-1→tk 

Pa
k-1 (Mtk-1→tk

)T + Qk

xa
k = xb

k + Kk (y k- Hk(x
b

k))

Pa
k = (I – KkHk)P

b
k (I – KkHk)

T + KkRkKk
T

Kk = Pb
k HT

k(Hk Pb
k HT

k + Rk)
-1

• Under the assumption that the model Mtk-1→tk 
and the observation 

operator Hk are linear, the Kalman Filter produces an optimal
sequence of analysis  

• The analysis xa
k is the best (minimum variance) estimate of the state 

at time tk , given xb
0 and all observations up to time tk (y0,y1,…,yk).

• Note that Gaussianity of errors is not required. If errors are Gaussian 
the KF provides  the exact conditional probability estimate,               
i.e. p(xa

k| xb
0; y0,y1,…,yk)

Standard Kalman Filter
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• If model and/or observation operators are “slightly” nonlinear a 
modified version of the KF can be used: the Extended Kalman Filter

• The state update and prediction steps use the nonlinear operators:

xb
k = Mtk-1→tk

(xa
k-1)

xa
k = xb

k + Kk (y k- Hk(x
b

k))

• The covariance update and prediction steps use the Jacobians of the 
model and observation operators, linearized around the 
analysed/predicted state, i.e.:

Mtk-1→tk
= 
�M
��

(xa
k-1)

Hk = 
�H
��

(xb
k)

• The EKF is thus a first order linearization of the KF equations around 
the current state estimates. As such it is as good as the linearization 
is a good approximation of the full nonlinear system.

Standard Kalman Filter
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• The Kalman Filter is impractical for large dimensional systems

• Assuming our state is O(108) (which is the order of magnitude of the 
analysis state in ECMWF 4DVar) the KF requires us to store and 
evolve in time state covariance matrices (Pa/b) of O(NxN)

 The World’s fastest computers can sustain ~ 1015 operations per 
second

 An efficient implementation of matrix multiplication of two 
108X108 matrices requires ~1022 operations: about 4 months on 
the fastest computer!

 Evaluating Pb
k = Mtk-1→tk 

Pa
k-1 (Mtk-1→tk

)T + Qk requires N~108

model integrations.

• A range of approximate Kalman Filters has been developed for use 
with large systems.

• All of these methods rely on a low-rank approximation of the 
covariance matrices of background and analysis error.

Kalman Filters for Large Dimensional Systems
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• Assume (big assumption!!)  that Pb
k has rank M<<N (e.g. M 100).

• Then we can write Pb
k= Xb

k(X
b

k)
T, where Xb

k is N x M.

• The Kalman Gain then becomes: 

Kk = Pb
k HT

k(Hk Pb
k HT

k + Rk)
-1 = 

Xb
k(X

b
k)

THT
k(Hk Xb

k(X
b

k)
T HT

k + Rk)
-1 =

Xb
k (HkX

b
k)

T(Hk Xb
k(HkX

b
k)

T + Rk)
-1

• Note that, to evaluate K, we apply Hk to the M columns of Xb
k rather 

than to the N columns of Pb
k. 

• The N x N matrices Pa/b
k have been eliminated from the computation! 

In their place we have N x M (Xb
k) and L x M (HkX

b
k) matrices (L = 

number of observations)

Kalman Filters for Large Dimensional Systems
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• The analysis error covariance matrix becomes:

Pa
k = (I – KkHk)P

b
k (I – KkHk)

T + KkRkKk
T = 

= (I - KkHk)P
b

k = (I - KkHk) Xb
k(X

b
k)

T =

Xb
k(X

b
k)

T - KkHk Xb
k(X

b
k)

T 

• Both terms in this expression for Pa
k contain an initial Xb

k and a final 
(Xb

k)
T so that Pa

k = Xb
kWk(X

b
k)

T for some M x M matrix Wk

• Finally the covariance matrix is propagated by:

Pb
k = Mtk-1→tk 

Pa
k-1 (Mtk-1→tk

)T + Qk =

Mtk-1→tk 
Xb

kWk(X
b

k)
T(Mtk-1→tk

)T + Qk =

Mtk-1→tk 
Xb

kWk (Mtk-1→tk
Xb

k)
T + Qk

• This requires only M integrations of the linearized model Mtk-1→tk

• Qk can be approximated by a suitable projection on M-dim subspace

Kalman Filters for Large Dimensional Systems
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• The algorithm described above is called Reduced-rank Kalman Filter

• All these gains in computational efficiency have a price, however 

• The analysis increment is a linear combination of the columns of Xb
k:

xa
k - xb

k = Kk (yk – Hk(x
b

k)) = Xb
k (HkX

b
k)

T ((HkX
b

k)(HkX
b

k)
T + R)-1 (yk – Hk(xb))

• Thus the increments are confined to the subspace spanned by Xb
k, 

which has at most rank M << N.

• The severe reduction in rank manifests itself in two forms:

1. There are too few degrees of freedom available to fit the ~107

observations: the analysis is too “smooth”;

2. The low-rank approximations of the covariance matrices suffer
from spurious long-distance correlations. These cause spurious 
increments in regions where there are no observations.  

Kalman Filters for Large Dimensional Systems
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• There are two ways around the rank deficiency problem: 

1. Domain localization (e.g. Evensen 2003; Ott et al. 2004);

• Domain localization solves the analysis equations independently for 
each gridpoint, or for each of a set of regions covering the domain. 

• Each analysis uses only observations that are local to the gridpoint
(or region) and the observations are usually weighted according to 
their distance from the analysed gridpoint (e.g., Hunt et al., 2007)

• This guarantees that the analysis at each gridpoint (or region) is not 
influenced by distant observations.

• In effect, the method acts to vastly increase the dimension of the 
sub-space in which the analysis increment is constructed.

• However, performing independent analyses for each region is not 
optimal, e.g. poor analysis of the large scales, and difficulties in 
producing balanced analyses.

Kalman Filters for Large Dimensional Systems
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• There are two ways around the rank deficiency problem: 

2. Covariance localization  (e.g. Houtekamer and Mitchell 2001). 

• Covariance localization is performed by element wise (Schur) 
multiplication of the error covariance matrices with a predefined 
covariance matrix representing a decaying function of distance. 

• In this way spurious long range correlations in Pa/b
k are suppressed.

• As for domain localization, the method acts to vastly increase the 
dimension of the sub-space in which the analysis increment is 
constructed.

• Choosing the product function is non-trivial. It is easy to modify Pa/b
k

in undesirable ways. In particular, balance relationships may be 
adversely affected.

Kalman Filters for Large Dimensional Systems
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• Ensemble Kalman Filters (EnKF, Evensen, 1994; Burgers et al., 1998) 
are Monte Carlo implementations of the Reduced-rank KF

• In EnKF error covariances are constructed as sample covariances 
from an ensemble of background/analysis fields, i.e.:

Pa/b
k = 

�

���
Σm=1,M-1(xb

k,m- <xb
k,m>) (xb

k,m- <xb
k,m>)T =

= Xb
k(X

b
k)

T

• Xb
k is the N x M matrix of background perturbations, i.e.:

Xb
k = 

�

���
((xb

k,1- <xb
k,m>), (xb

k,2- <xb
k,m>), .., (xb

k,M- <xb
k,m>))

• Note that the full covariance matrix is never formed explicitly: The 
error covariances are usually computed locally for each gridpoint in 
the M x M ensemble space 

Ensemble Kalman Filters
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• In the (extended) KF the error covariances are explicitly propagated 
using the tangent linear and adjoint of the model and observation 
operators, i.e.: 

Kk = Pb
k HT

k(Hk Pb
k HT

k + Rk)
-1 

Pb
k = Mtk-1→tk 

Pa
k-1 (Mtk-1→tk

)T + Qk

• In the EnKF the error covariances are implicitly propagated in time 
through the ensemble forecasts and the observation operators 
linearizations are computed as:

Pb
kHk

T = Xb
k(X

b
k)

T Hk
T= Xb

k(Hk X
b

k)
T = 

�

���
Σm=1,M-1(x

b
k,m- <xb

k,m>) (xb
k,m- <H(xb

k,m)>)T

HkP
b

kHk
T= Hk X

b
k(Hk X

b
k)

T = 
�

���
Σm=1,M-1(x

b
k,m- <H(xb

k,m)>) (xb
k,m- <H(xb

k,m)>)T

• Not having to code TL and ADJ operators is a major advantage!

Ensemble Kalman Filters

Slide 16



Slide 17

Massimo Bonavita – DA Training Course 2014 - EnKF 

• The Ensemble Kalman Filter requires us to generate a sample {xb
k,m; 

m=1,..,M} drawn from the p.d.f. of background error: how to do this?

• We can generate this from a sample {xa
k-1,m; m=1,..,M} from the p.d.f. 

of analysis error for the previous cycle: 

xb
k,m = Mtk-1→tk

(xa
k-1,m) + ηk,m

where ηk,m is a sample drawn from the p.d.f. of model error.

• The question is then: How do we generate a sample from the analysis 
p.d.f.? Let us look at the analysis update again:

xa = xb + K (y – H(xb)) = (I-KH) xb + Ky

• If we subtract the true state x* from both sides (and assume y*=Hx*)

ea = (I-KH) eb + Keo

• i.e., the errors have the same update as the state; note that this 
holds also for suboptimal K

Ensemble Kalman Filters
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• Consider now an ensemble of analysis where all the inputs to the 
analysis have been perturbed according to their error p.d.f.:

xa’ = (I-KH) xb’ + Ky’

• If we subtract the unperturbed analysis xa = (I-KH) xb + Ky

εa = (I-KH) εb + Kεo

• Note that the observations (during the update step) and the model
(during the forecast step) are perturbed explicitly.

• The background is implicitly perturbed , i.e.:

xb
k,m = Mtk-1→tk

(xa
k-1,m) + ηk,m

• Hence, one way to generate a sample drawn from the p.d.f. of 
analysis error is to perturb the observations with perturbations 
characteristic of observation error.

• The EnKF based on this idea is called Perturbed Observations EnKF
(Houtekamer and Mitchell, 1998). It is also the basis of ECMWF EDA

Ensemble Kalman Filters
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• Another way to construct the analysis sample without perturbing the 
observations is to make a linear combination of the background 
sample:

Xa
k=Xb

kT

where T is a M x M matrix chosen such that: 

Xa
k(X

a
k)

T = (Xb
kT) (Xb

kT)T = Pa
k = (I-KkHk)P

b
k

• Note that the choice of T is not unique: Any orthonormal 
transformation Q (QQT=QTQ=I) can be applied to T and give a valid 
analysis sample

• Implementations also differ on the treatment of observations (i.e., 
local patches, one at a time)

• Consequently there are a number of different, functionally 
equivalent, implementations  of the Deterministic EnKF (ETKF, Bishop 
et al., 2001; LETKF, Ott et al., 2004, Hunt et al., 2007; EnSRF, Whitaker 
and Hamill, 2002; EnAF, Anderson, 2001;…)

Ensemble Kalman Filters
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• How does the EnKF compare with standard 4DVar?

• The short answer: It depends!

Ensemble Kalman Filters
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Surface Pressure observations only

Slide 21
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Conventional observations only
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All observations

Slide 23

N.Hem. 500 hPa AC

EnKF vs 4DVar



Slide 24

Massimo Bonavita – DA Training Course 2014 - EnKF 

All observations
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• The rank deficiency of the sampled error covariances is not an issue 
when the observations are few, i.e. of the order of ensemble size

• The rank deficiency of the sampled error covariances becomes 
problematic when the observations are orders of magnitude more 
than the ensemble size

• In this latter case, careful localization of sampled covariances 
becomes crucial: This is an on-going research topic for EnKF

• Note how covariance localization becomes conceptually and 
practically more difficult for observations (satellite radiances) which 
are non-local by nature (Campbell et al., 2010)  

Ensemble Kalman Filters
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4D Variational methods

If we neglect model error (perfect model assumption) the 

problem of finding the model trajectory that best fits the 

observations over an assimilation interval (t=0,1,…,T) given a 

background state xb and its error covariance Pb can be solved by 

finding the minimum of the cost function: 

This is equivalent, for the same xb, Pb , to the Kalman filter 

solution at the end of the assimilation window (t=T) (Fisher et al., 

2005).

Hybrid Variational–EnKF algorithms
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4D Variational methods

The 4D-Var solution implicitly evolves background error 

covariances over the assimilation window (Thepaut et al.,1996) 

with the tangent linear dynamics:

Pb(t) ≈ MPbMT

Slide 27
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Variational vs Ensemble

Slide 28
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4D Variational methods

• The 4D-Var solution implicitly evolves background error 
covariances over the assimilation window with the tangent 
linear dynamics:

Pb(t) ≈ MPbMT

• But it does not propagate error information from one 
assimilation cycle to the next:  Pb is not evolved according to KF 
equations ( i.e., Pb = MPaMT + Q) but is reset to a climatological, 
stationary estimate at the beginning of each assimilation 
window. 

• Only information about the state (xb) is propagated from one 
cycle to the next.

Slide 29
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• What if we pushed back the start of the assimilation window 
‘enough’ so that the filter solution at the end of the window 
would no longer depend on the specified initial Pb? 

• How long is enough? 3-5 days in the troposphere for current 
NWP models, longer in the stratosphere

Slide 30
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4D Variational methods

For assimilation windows > 12h it is not accurate to assume the 

model to be perfect over the assimilation window. For long 

windows we have to add a model error term to our cost function 

(Weak-constraint 4D-Var):    

Two caveats:

1. Problem is shifted from estimation of Pb to estimation of Q: 
this is not any easier!

2. It is difficult in the variational framework to produce good 
estimates of Pa:  this is important for ensemble prediction!
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Quick recap:

a) Kalman Filter is computationally unfeasible for large dimensional 
systems (e.g., operational NWP);

b) Variational (4D-Var) do not cycle state error estimates: work well 
for short assimilation windows (6-12h). Longer windows, where Q
is required, have proved more difficult;

c) Reduced rank KF (EnKF) cycle reduced-rank estimates of state 
error covariances: need for spatial localization to combat rank 
deficiency, degrades dynamical balance, problematic for non-
local observations (radiances);

….

Hybrid approach: Use cycled, flow-dependent state error estimates

(from an EnKF/Ensemble DA system) in a 3/4D-Var analysis algorithm

Slide 32
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Hybrid approach: Use cycled, flow-dependent state error estimates

(from an EnKF/EDA system) in a 3/4D-Var analysis algorithm

This solution would:

1) Integrate flow-dependent state error covariance information into 
a variational analysis

2) Keep the full rank representation of Pb and its implicit evolution 
inside the assimilation window

3) More robust than pure EnKF for limited ensemble sizes and large 
model errors

4) Allow consistent localization of ensemble perturbations to be 
performed in state space (advantageous for radiances);

5) Allow for flow-dependent QC of observations

Slide 33
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In operational use (or under test), there are currently three 

main approaches to doing hybrid DA in a VAR context:

1. Alpha control variable  method (Met Office, NCEP/GMAO, CMC)

2. 4D-Ens-Var

3. Ensemble of Data Assimilations method (ECMWF, Meteo France)

Slide 34
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1. Alpha control variable  method (Barker, 1999; Lorenc, 2003)

Conceptually add a flow-dependent term to the model of Pb (B):

Bc is the static, climatological covariance
Pe ○ Cloc is the localised ensemble sample covariance

In practice this is done through augmentation of the control variable:

and introducing an additional term in the cost function:

Hybrids: α control variable
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1. Alpha control variable  method 

• The increment is now a weighted sum of the static B component 
and the flow-dependent, ensemble based B

• The flow-dependent increment is a linear combination of 
ensemble perturbations X’, modulated  by the α fields

• If the α fields were homogeneous  δxens could only span Nens-1 
degrees of freedom; α fields are then smoothly varying fields, 
which effectively increases the degrees of freedom

• Cloc is a covariance (localization) model for the flow-dependent
increments: it controls the spatial variation of α

Hybrids: α control variable
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Hybrids: α control variable
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2. 4D-Ensemble-Var  method (Liu et al., 2008) 

• In the alpha control variable method one uses the ensemble 
perturbations to estimate Pb only at the start of the 4DVar 
assimilation window: the evolution of Pb inside the window is due 
to the tangent linear dynamics (Pb(t) ≈ MPbMT)

• In 4D-Ens-Var Pb is sampled from ensemble trajectories 
throughout the assimilation window:   

Hybrids: 4D-Ens-Var
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2. 4D-Ensemble-Var  method (Liu et al., 2008) 

• The 4D-Ens-Var analysis is thus a localised linear combination of 
ensemble trajectories perturbations: conceptually very close to a 
pure EnKF

• While traditional 4DVar requires repeated, sequential runs of M, 
MT, ensemble trajectories from the previous assimilation time can 
be pre-computed in parallel

• Developing and maintaining  the TL and Adjoint models requires 
substantial resources and it is technically demanding: 4D-Ens-Var 
does not need them

Hybrids: 4D-Ens-Var
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• However 4D-Ens-Var requires all ensemble trajectories to be 
stored in memory: increasingly difficult for larger ensemble 
sizes/resolutions

• It is typically more accurate to evolve an initial estimate of Pb by 
the model TL dynamics than sampling it from an ensemble of 
trajectories

Hybrids: 4D-Ens-Var
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3. Ensemble of Data Assimilations method 

• To be continued…

Hybrids: EDA method
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