ECMWF Data Assimilation Training course

Land Surface Data Assimilation

Patricia de Rosnay

P. de Rosnay

Room: 1006 Extension: 2625

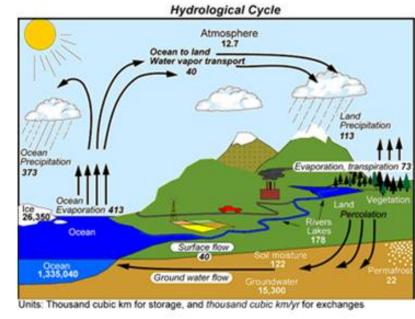
Patricia.Rosnay@ecmwf.int

Outline

Part I (Monday 10 March)

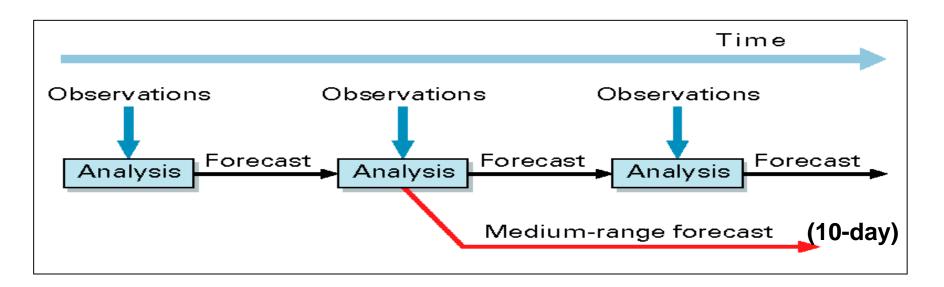
- Introduction
- Snow analysis
- Screen level parameters analysis

Part II (Tuesday 11 March)


- Soil moisture analysis
- Summary and future plans

Introduction: Land Surface in NWP

- Land surfaces: Boundary conditions at the lowest level of the atmosphere
- Land surface processes → Continental hydrological cycle, interaction with the atmosphere on various time and spatial scales, strong heterogeneities
- Crucial for near surface weather conditions, whose high quality forecast is a key objective in NWP
- Land Surface Models (LSMs) prognostic variables include:
 - Soil moisture
 - Soil temperature
 - Snow water equivalent, snow temperature, snow density
- Land surface initialization:
 Important for NWP & Seasonal Prediction


(Beljaars et al., Mon. Wea. Rev, 1996, Koster et al., 2004 & 2011)

Trenberth et al. (2007)

Introduction: ECMWF Integrated Forecasting System (IFS) data assimilation system

Data Assimilation System:Provides best possible accuracy

of initial conditions to the forecast model

- 4D-Var for atmosphere
- Land surface data assimilation
- SST and Sea Ice analysis

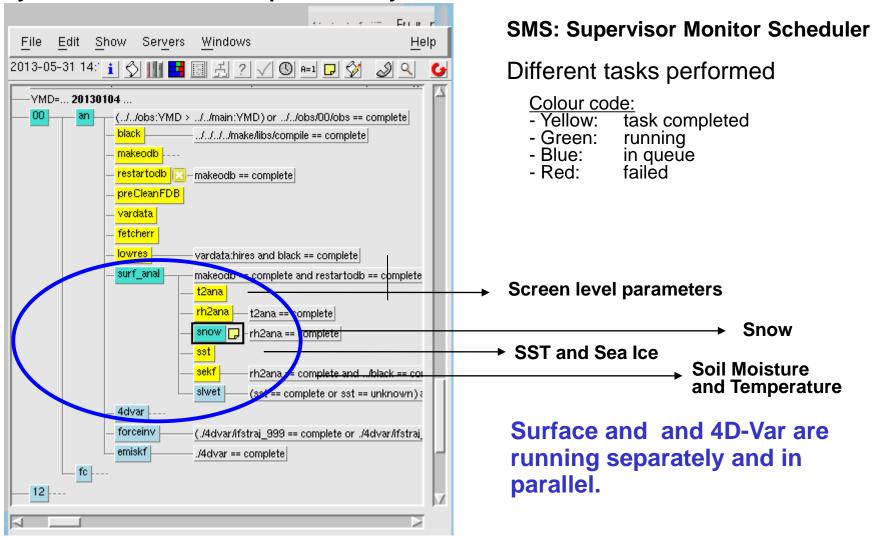
- Surface and upper air analyses are running separately in parallel
- Feedbacks provided through the first guess forecast initialised with the analysed fields
- → Surface and Atmopsheric DA are weakly coupled

Introduction: Land Surface Data Assimilation (LDAS) Snow depth analysis

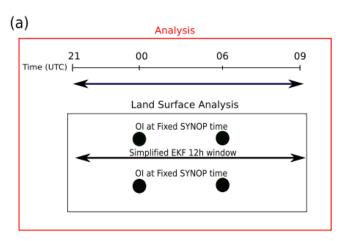
- <u>Approaches</u>: Cressman (DWD, ECMWF ERA-I), <u>2D Optimal Interpolation (OI)</u> (ECMWF, CMC, JMA)
- Observations: in situ snow depth and NOAA/NESDIS IMS Snow Cover

Soil Moisture analysis

- Approaches:
 - -1D Optimal Interpolation (Météo-France, CMC, ALADIN and HIRLAM)
 - Analytical nudging approach (BoM)
 - Simplified Extended Kalman Filter (EKF) (DWD, ECMWF, UKMO)
- <u>Conventional observations:</u> SYNOP data of 2m air relative humidity and air temperature; **Dedicated 2D OI screen level parameters analysis**
- <u>Satellite data</u>: ASCAT soil moisture (UKMO), SMOS (dvpt ECMWF, UKMO, Env.Canada)

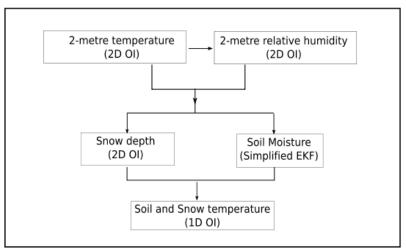

Soil Temperature and Snow temperature also analysed

- 1D OI for the first layer of soil and snow temperature (ECMWF, Météo-France)



Introduction: LDAS tasks organisation

IFS cycle 40r1 is the current operational cycle


Introduction: LDAS tasks organisation

4D-Var Upper-air analysis

Sreen level parameters & Snow depth analyses (2D OI) Simplified EKF soil moisture analysis Soil & Snow Temperature analyses (1D OI)

(b)

LDAS:

- 2D OI:
 Screen-level for T and humidity
 Snow depth
- EKF Soil moisture
- 1D OI: Snow & soil temperature

Analysed surface fields: used as initial conditions for the next forecast.

- → Influence the forecast which will be used as first guess for the next data assimilation window, for both 4D-Var and LDAS
- → Feedback surface-atmosphere.

Slide 7

Outline

Part I (Monday)

- Introduction
- Snow analysis
- Screen level parameters analysis

Part II (Tuesday)

- Soil moisture analysis
- Summary and future plans

Slide 8

Snow data assimilation

Snow Model: Component of H-TESSEL

(Balsamo et al., JHM 2009, Dutra et al., 2010)

- Snow depth S (m) (diagnostic)
- Snow water equivalent SWE (m), ie snow mass]
- Snow Density ρ_s , between 100 and 400 kg/m³

Prognostic variables

$$SWE = \frac{S \stackrel{\times}{\cdot} \rho_{S}}{1000} \quad [m]$$

Observations types used:

- Conventional snow depth data: SYNOP and National networks
- Snow cover extent: NOAA NESDIS/IMS daily product (4km)

Drusch et al. JAM, 2004 ; de Rosnay et al, SG 2013 de Rosnay et al. Res. Mem. R48.3/PdR/1028 2010, and Res. Mem. R48.3/PdR/1139 2011

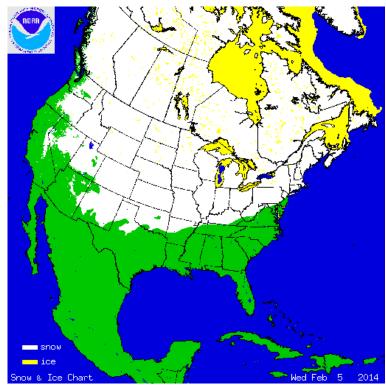
Data Assimilation Approaches:

- Cressman Interpolation in ERA-Interim
- Optimal Interpolation in operations de Rosnay et al, Survey of Geophysics 2013

NOAA/NESDIS IMS Snow extent data

Interactive Multisensor Snow and Ice Mapping System

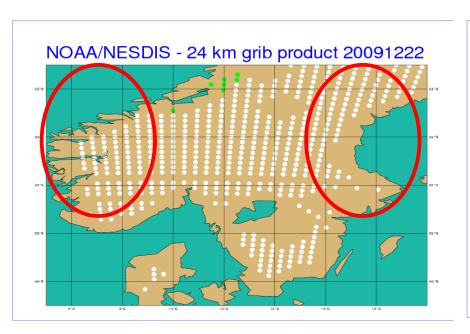
- Time sequenced imagery from geostationary satellites
- AVHRR,
- SSM/I
- Station data

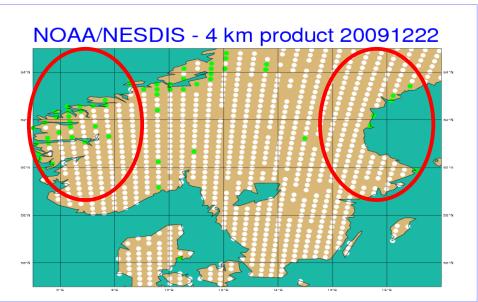

Northern Hemisphere product

- Daily, no time stamp
- Polar stereographic projection

Information content: Snow/Snow free

Data used at ECMWF:


- 24km product in Grib Used in ERA-Interim (2004-present) and in operations (2004-2010)
- 4 km product in Ascii Revised pre processing Used in operations (Nov 2010-present)

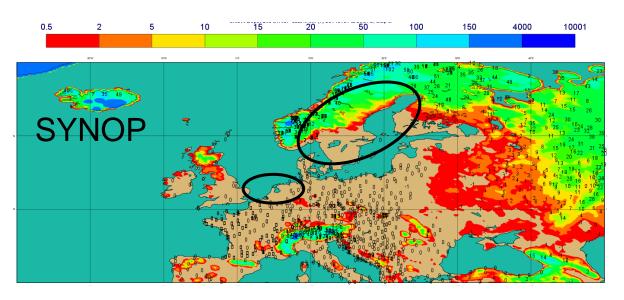


IMS Snow Cover 5 Feb. 2014

ECMWF

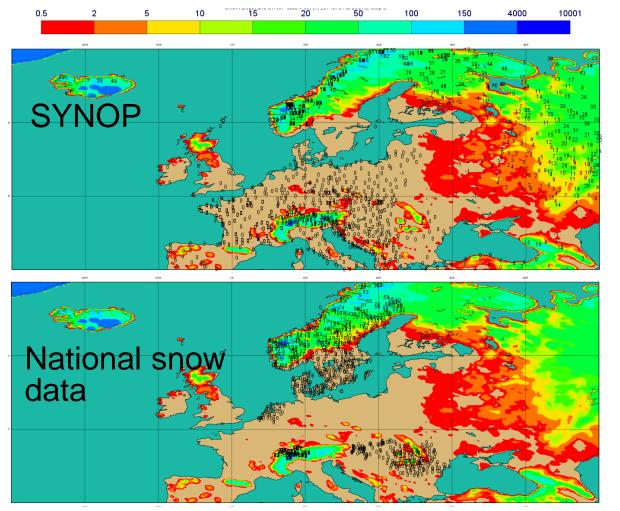
Snow Cover 24km vs 4km product

IMS Products after pre-processing at ECMWF


- Coast mask applied in the 24km product (lack of geolocation information in the grib product)
- Data thinning (1/36) of the 4km product -> same data quantity, improved quality

4km product provides more local information than 24km product

→ consistent with the way IMS is used in the data assimilation system


Snow SYNOP

2014 01 01 at 06UTC

Snow SYNOP and National Network data

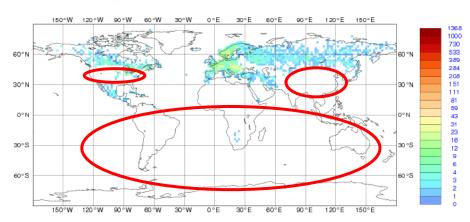
2014 01 01 at 06UTC

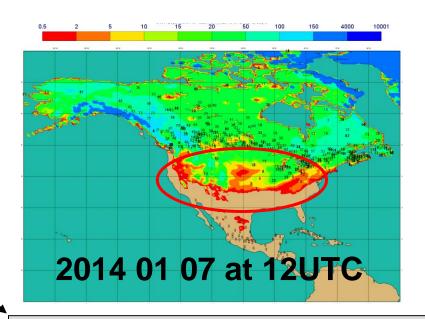
Additional data from national networks from 7 countries:

Sweden (>300), Romania(78), The Netherlands (33), Denmark (43), Hungary (61), Norway (183), Switzerland (332).

→ Dedicated BUFR

(de Rosnay et al. ECMWF Res. Memo, R48.3/PdR/1139, 2011)

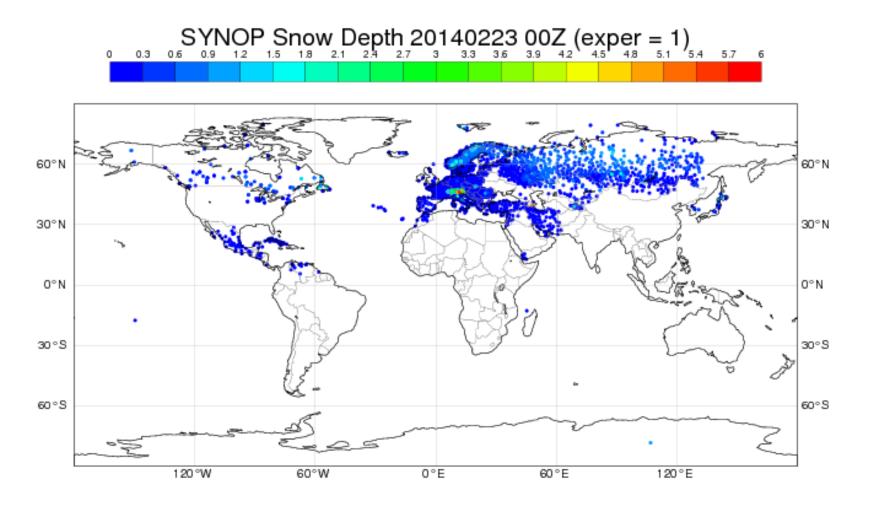



SYNOP Snow depth availability

ECMWF Operational monitoring of SYNOP snow depth: number of observations on 2014 01 04 at 00UTC (21-09 UTC):

observations gap in USA, China and southern hemisphere

http://www.ecmwf.int/products/forecasts/d/charts /monitoring/conventional/snow/



GCW Snow Watch initiative to improve in situ snow depth data access (NRT and rescue), Brun et al 2013

Snow depth observations

Snow depth observations available (>4500 per day in winter time)

Snow Analysis at ECMWF

Pre-Processing:

- SYNOP reports converted into BUFR files.
- IMS converted to BUFR (and orography added)
- SYNOP BUFR data is put into the ODB (Observation Data Base)

Snow depth analysis at 00, 06, 12, 18 UTC:

- Cressman interpolation: Operations: 1987-2010

Still used in ERA-Interim

- Optimal Interpolation (OI): Operational since November 2010

(de Rosnay et al; SG 2013)

Use NESDIS IMS data in the OI (00 UTC):

NESDIS: 1stGuess:	Snow	No Snow
Snow	Х	DA 5cm
No Snow	DA	DA

 $\begin{array}{ll} \text{Observation errors:} \\ \text{BG:} & \sigma_b = 3\text{cm} \\ \text{SYNOP} & \sigma_{\text{SYNOP}} = 4\text{cm} \\ \text{IMS} & \sigma_{\text{ims}} = 8\text{cm} \end{array}$

Snow depth Optimal Interpolation

Used at CMC, JMA, ECMWF

Based on Brasnett, j appl. Meteo. 1999

- 1. Observed first guess departure ΔS_i are computed from the interpolated background at each observation location i.
- 2. Analysis increments ΔS_i^a at each model grid point j are calculated from:

$$\Delta S_{j}^{a} = \sum_{i=1}^{N} W_{i} \times \Delta S_{i}$$

- 3. The optimum weights w_i are given for each grid point j by: $(\mathbf{B} + \mathbf{O}) \mathbf{w} = \mathbf{b}$
 - **b**: background error vector between model grid point j and observation i (dimension of N observations) $b(i) = \sigma_b^2 \mu(i,j)$
 - **B**: correlation coefficient matrix of background field errors between all pairs of observations (N × N observations)

 $B(i_1,i_2) = \sigma_b^2 \times \mu(i_1,i_2)$ with the horizontal correlation coefficients $\mu(i_1,i_2)$ and $\sigma_b = 3$ cm the standard deviation of background errors.

O : covariance matrix of the observation error (N × N observations):

$$\mathbf{O} = \sigma^2_0 \times \mathbf{I}$$

with σ_o the standard deviation of observation errors (4cm in situ, 8cm IMS)

Snow depth Optimal Interpolation

Used at CMC, JMA, ECMWF

Based on Brasnett, j appl. Meteo. 1999

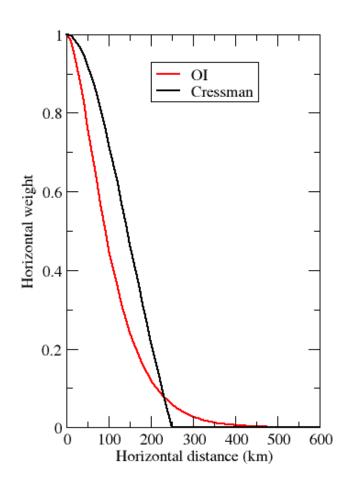
Correlation coefficients $\mu(i_1,i_2)$ (structure function):

$$\mu(i_1, i_2) = (1 + \frac{r_{i_1 i_2}}{Lx}) \exp\left(-\left[\frac{r_{i_1 i_2}}{Lx}\right]\right) \cdot \exp\left(-\left[\frac{z_{i_1 i_2}}{Lz}\right]^2\right)$$

Lz; vertical length scale: 800m, **Lx:** horizontal length scale: 55km $r_{i1,i2}$ and $Z_{i1,i2}$ the horizontal and vertical distances between points i1 and i2

Quality Control: reject observation if $\Delta S_i > \text{Tol } (\sigma_b^2 + \sigma_o^2)^{1/2}$ with Tol = 5 \rightarrow Observation rejected if first guess departure larger than 25 cm

Redundancy rejection: use observation reports closest to analysis time And use a maximum of 50 observations per grid point)


OI vs Cressman

In both cases:
$$\Delta S_j^a = \sum_{i=1}^N w_i \times \Delta S_i$$

Cressman (1959): weights are function of horizontal and vertical distances. Do not account for observations and background errors.

OI: The correlation coefficients of B and b follow a second-order autoregressive horizontal structure and a Gaussian for the vertical elevation differences.

OI has longer tails than Cressman and considers more observations. Model/observation information optimally weighted using error statistics.

Validation data: NWS/COOP

- NWS Cooperative Observer Program
- Independent data relevant for validation
- Used to validate a set of numerical experiments considering different assimilation approaches and IMS snow cover

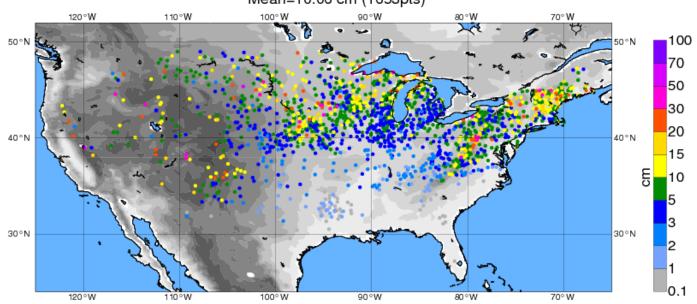
Numerical Experiments	Bias (cm)	R	RMSE (cm)
Cressman, IMS 24 km	1.1	0.66	18.0
OI, IMS 24 km	- 2.0	0.74	10.1
OI, IMS 4km	- 2.1	0.73	10.3
OI, IMS 4km <1500m	- 1.5	0.74	10.1

- Oper until Nov 2010
- ERA-Interim

- Oper since Nov 2010

Validation against ground data

→ Main improvement due to the OI compared to Cressman

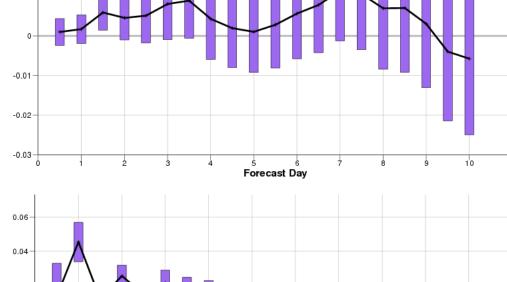


Validation data: NWS/COOP

- NWS Cooperative Observer Program
- Independent data relevant for validation
- Used to validate a set of numerical experiments considering different assimilation approaches and IMS snow cover

RMSE (cm) for the new snow analysis (OI, IMS 4km except in mountainous areas)

Model-COOP RMSE, Snow Depth, figg, Winter 2010, AN time: 0/6/12/18 (Z) Mean=10.06 cm (1653pts)



Impact on the Atmospheric Forecasts

Positive means OI improves

0.02

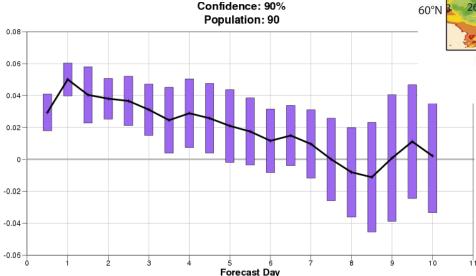
Bottom: Overall impact

New OI,IMS 4km vs Cressman, IMS 24km

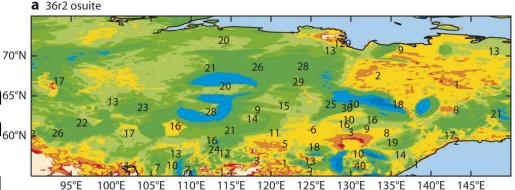
Positive means new analysis improves

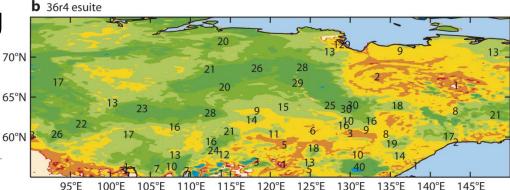
Validation with atmospheric forecasts

→ Main improvement due to the IMS 4km and pre-processing



OI snow Analysis in Operations From Nov 2010


Old: Cressman_{65°N} IMS 24km_{60°N}


New: OI IMS 4km & new preprocessing

FC impact (East Asia) RMSE 500 hPa Geopot H

Snow depth (cm) analysis and SYNOP reports on 30 October 2010 at 00 UTC

1 2 5 10 15 20 50 100 150 4000

New snow analysis improves both the snow depth patterns and the atmospheric forecasts

Snow Analysis latest improvements

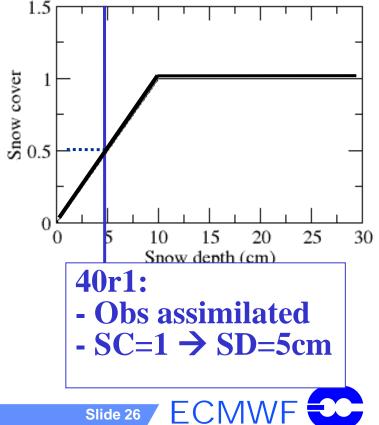
- 2010: replace Cressman by OI and improved IMS use (4km data and revised preprocessing)
- 2013: further improvement in the ECMWF snow analysis in IFS 40r1:
 - -Revised observations error specification for IMS snow cover and assimilation of 5cm of snow instead of direct insertion,
 - -Generic snow blacklist,
 - -Revised surface analysis code and Observation data base (ODB) feedback
 - New Land surface observations monitoring for conventional and IMS data

https://software.ecmwf.int/wiki/display/LDAS/Land+Surface+Observations+monitoring

Slide 25

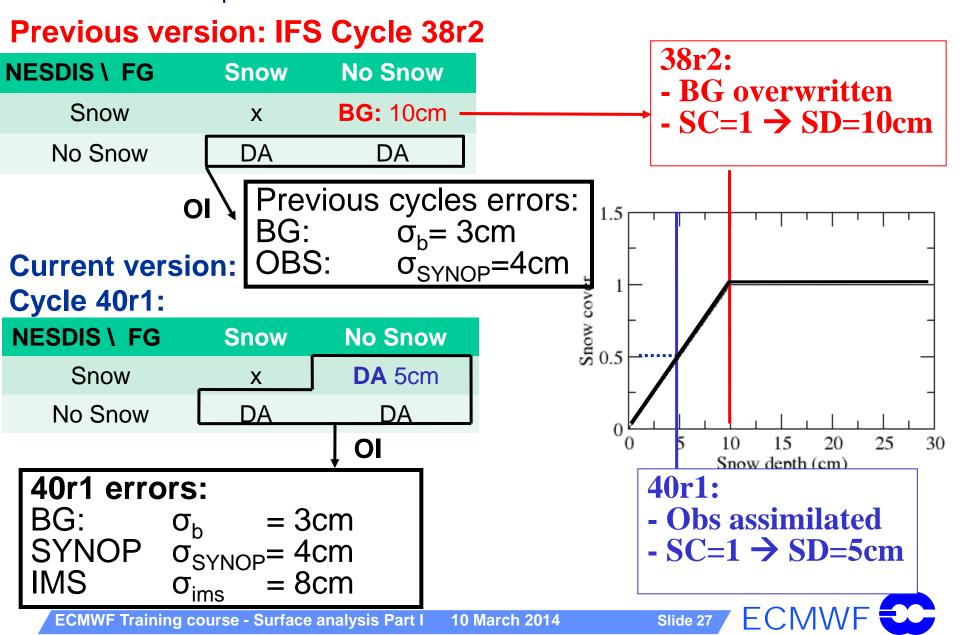
Snow Analysis latest improvements

Improved use of NESDIS/IMS snow cover data


Current version:

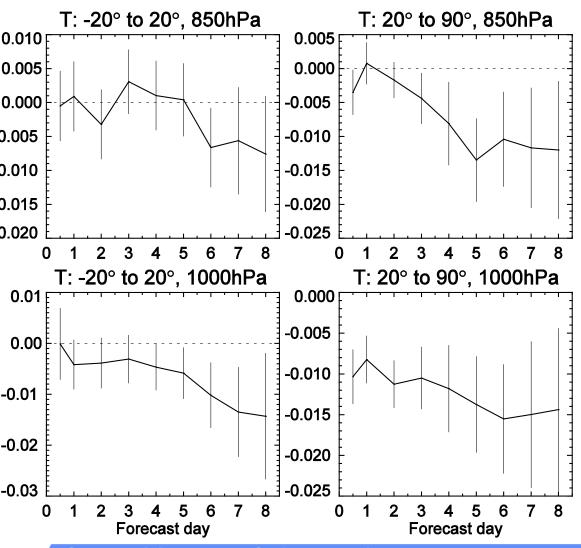
Cycle 40r1:

NESDIS \ FG	Snow	No Snow
Snow	Х	DA 5cm
No Snow	DA	DA
		OI


40r1 errors:

BG: =3cm $\sigma_{\rm b}$ **SYNOP** $\sigma_{SYNOP}^{-}=4cm$ IMS = 8cm σ_{ims}

Snow Analysis latest improvements


Improved use of NESDIS/IMS snow cover data

Snow analysis latest improvements: Temperature FC verification

Tropics

NH extra-tropics

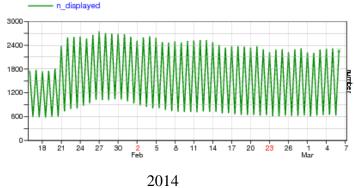
Temp FC RMSE Verified against own analysis (20 Dec 12 – 08 Mar 13)

40r1-38r2 (current-previous cycle)

Improved use of IMS snow cover → Significant impact on the atmosphere and error reduction in forecasts

de Rosnay et al. in prep 2014

Snow observations monitoring



Global first guess departure

Global analysis departure

Standard deviation of departure statistics

Number of in situ observations used: ~600 to 2500 per 12 hours

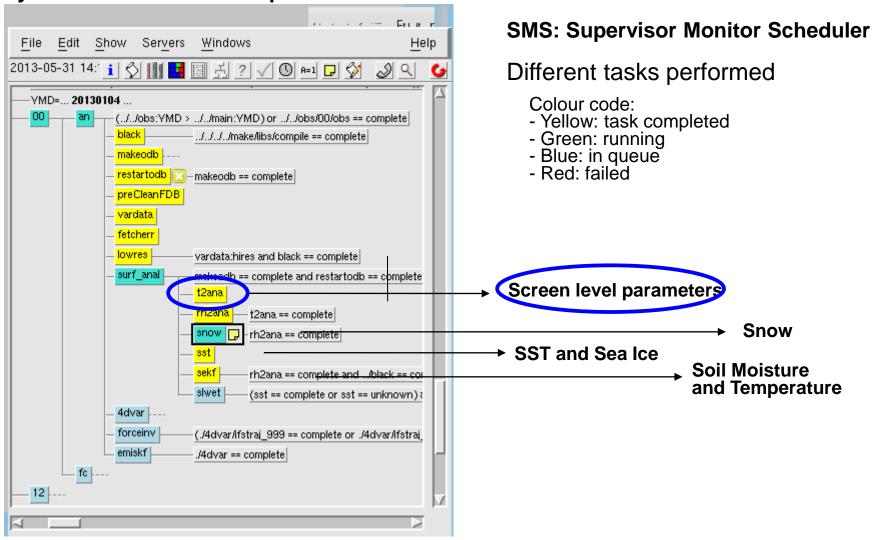
Summary on Snow Analysis

- Large sensitivity of atmospheric forecasts to snow data assimilation (DA method, observations pre-processing, error specification)
- Current snow analysis based on 2D-OI (CMC, JMC, ECMWF), old approach was based on Cressman (still used in ERA-Interim)
- > Importance of in situ snow depth data availability
- ➤ Scarce snow depth observations in some areas → European initiative (new BUFR for additional snow data) action to extend it to WMO Member States
- Snow cover data used (NOAA/NESDIS IMS product)
- No use of Snow Water Equivalent product in NWP
- Future investigations on using satellite radiances

Slide 30

Outline

Part I (Monday)


- Introduction
- Snow analysis
- Screen level parameters analysis

Part II (Tuesday)

- Soil moisture analysis
- Summary and future plans

IFS cycle 38r1 is the current operational

Screen Level parameters analysis

- Screen level variables: 2m Air Temperature (T2m) and air Relative humidity (RH2m), both diagnostic variables.
- Analysis based on an Optimal Interpolation using SYNOP observations, every six hours: 00UTC, 06UTC, 12UTC, 18UTC.
- Screen level analysis increments are used for the soil moisture analysis (OI system, e.g. at Météo-France and ECMWF ERA-Interim),
- Screen level analysis fields are used as input of the SEKF soil moisture analysis (ECMWF)
- T2m and RH2m are diagnostic variables of the model, so their analysis only has an indirect effect on atmosphere through the soil and snow variables.
- Relevance of screen level analysis for evaluation purposes

OI Screen Level parameters analysis

Mahfouf, J. Appl. Meteo. 1991, & ECMWF News Lett. 2000

Same approach as snow analysis:

- 1. First guess departure ΔX_i estimated at each observation location i from the observation and the interpolated background field (6 h or 12 h forecast).
- 2. Analysis increments ΔX_i^a at each model grid point j are calculated from:

$$\Delta X_{j}^{a} = \sum_{i=1}^{N} W_{i} \times \Delta X_{i}$$

3. The optimum weights w_i are given by: $(\mathbf{B} + \mathbf{O}) \mathbf{w} = \mathbf{b}$

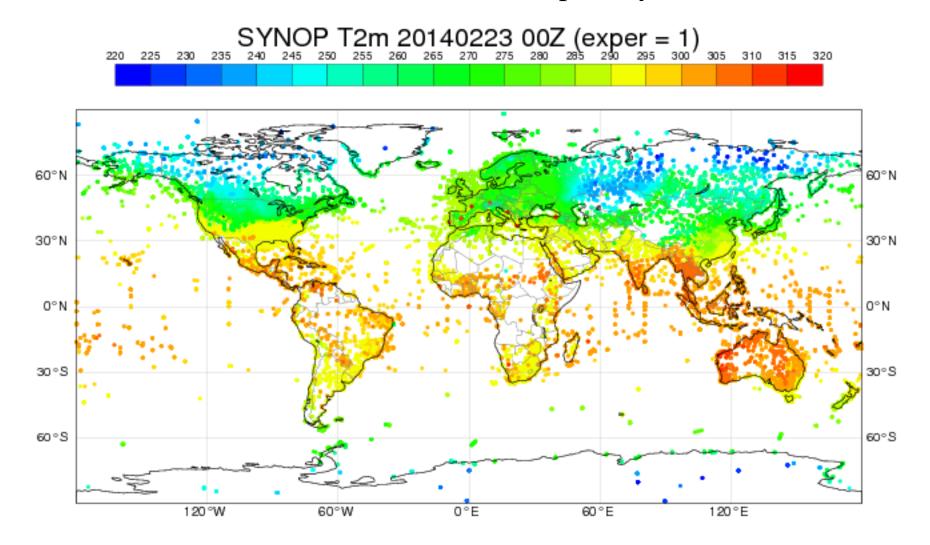
b: error covariance between observation i and model grid point i (dimension of N observations)

B: error covariance matrix of the background field $(N \times N)$ observations) $B(i_1,i_2) = \sigma^2_b \times \mu(i_1,i_2)$ with the horizontal correlation coefficients $\mu(i_1,i_2)$ and $\sigma_b = 1.5 \text{ K} / 5 \% \text{ rH}$ the standard deviation of background errors.

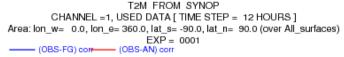
$$\mu(i_1, i_2) = \exp\left(-\frac{1}{2} \left[\frac{r_{i_1 i_2}}{d}\right]^2\right)$$

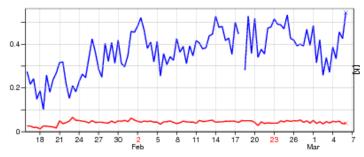
 \mathbf{O} : covariance matrix of the observation error (N \times N observations):

 $\mathbf{O} = \sigma_0^2 \times \mathbf{I}$ with $\sigma_0 = 2.0 \text{ K} / 10 \% \text{ rH}$ the standard deviation of obs. errors


Screen Level parameters analysis

Quality control:


- Number of observations N = 50, d = 300 km, scanned radius 1000km.
- Gross quality checks as rH ∈ [0,100] and T > T_{dewpoint}
- Observation points that differ more than 300 m from model orography are rejected.
- First-guess check: Observation is rejected if : $|\Delta X_i| = \gamma \sqrt{\sigma_o^2 + \sigma_b^2}$ with γ = 3 (tolerance)
- Redundancy rejection
- Number of active observations > 16000 per 12 hour (less than 20% of the available observations).


Screen level observations

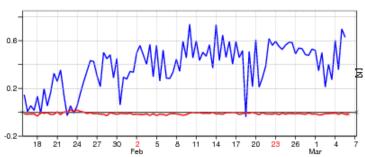
All T2m observations available (>180000 per day)

Screen level observations monitoring

Global first guess departure

Global analysis departure

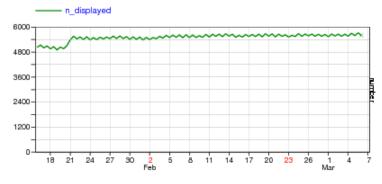
Standard deviation of departure statistics



Number of observations used: >16000 per 12 hours

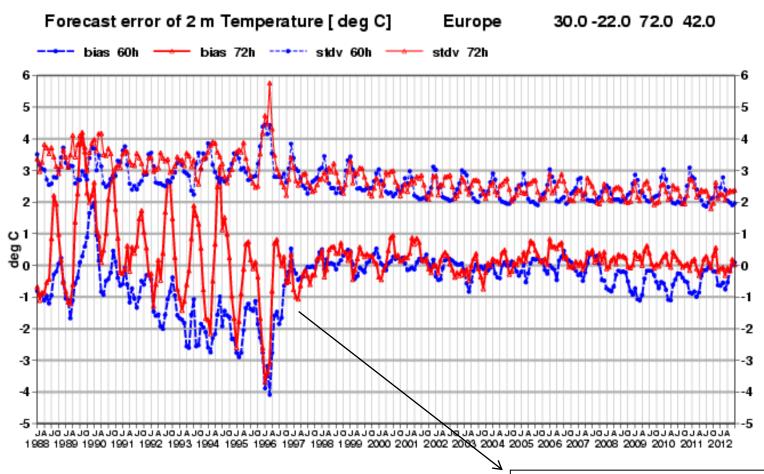
Screen level observations monitoring

T2M FROM SYNOP



Europe first guess departure

Europe analysis departure


Standard deviation of departure statistics

Number of observations used over Europe: ~5000 per 12 hours

Slide 38

Screen level analysis: 2m temperature forecast verification

Verification for 60h (night time) and 72h (day time)

Soil freezing parameterisation Snow albedo parameterisation

From Richardson et al., 2012, ECMWF Tech. Memo 688

Outline

Part I (Monday)

- Introduction
- Snow analysis
- Screen level parameters analysis

Part II (Tuesday)

- Soil moisture analysis
- Summary and future plans

