The Global Observing System

Stephen English

European Centre for Medium-Range Weather Forecasts

Role of observations

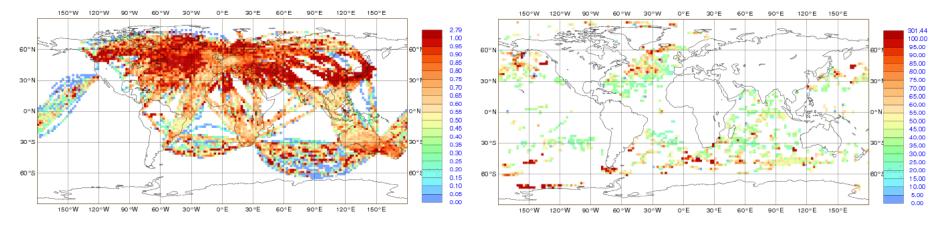
SEVIRI 6.2 µm

Every 12 hours we assimilate ~20,000,000 observations to correct the model's variables....

The model has many more variables than we have observations.

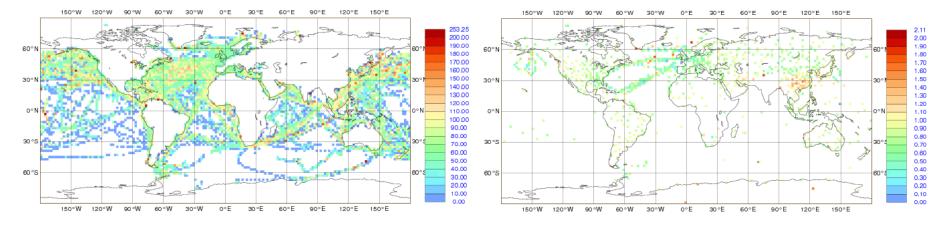
WV 6.2 µm 0h-24h 0001 T1259 20110701-20110731 2.4 stdev(O-B) 2.2 stdev(O-A) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.49 101 11 21 31 41 51 61 71 81 92 02 12 22 32 4 Time (hours)

Observations limit error growth and make forecasting possible....



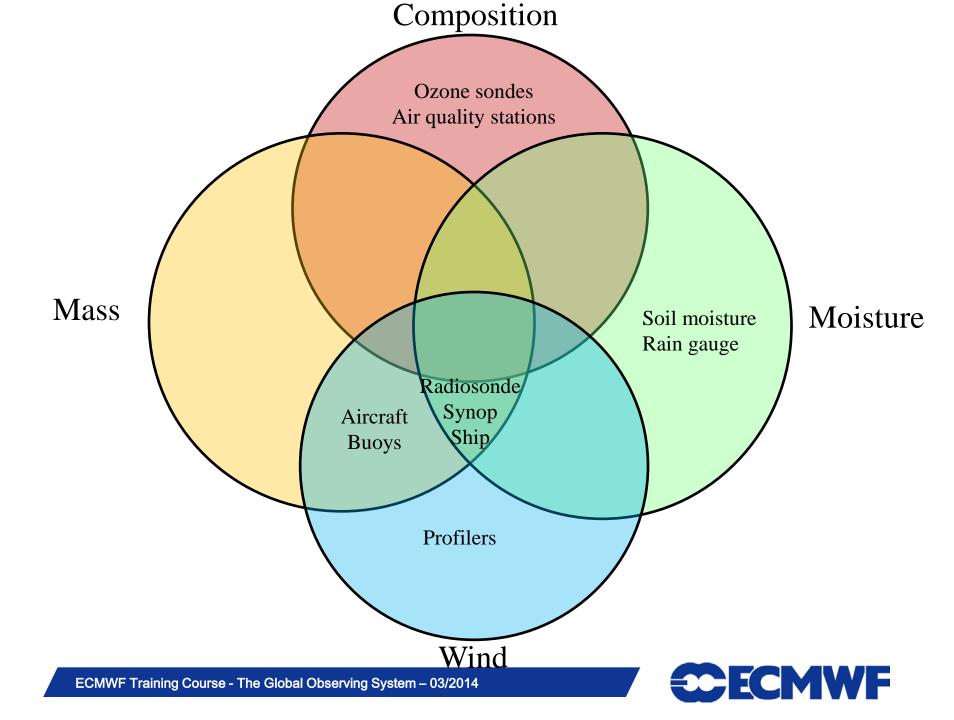
Data sources: Conventional

Instrument	Parameters	HeightLand: 2m, ships: 25m2mProfilesProfilesProfilesProfiles			
SYNOP SHIP METAR	temperature, dew-point temperature, wind				
BUOYS	temperature, pressure, wind				
TEMP TEMPSHIP DROPSONDES	temperature, humidity, pressure, wind				
PROFILERS	wind				
Aircraft	temperature, pressure wind				



Example of conventional data coverage

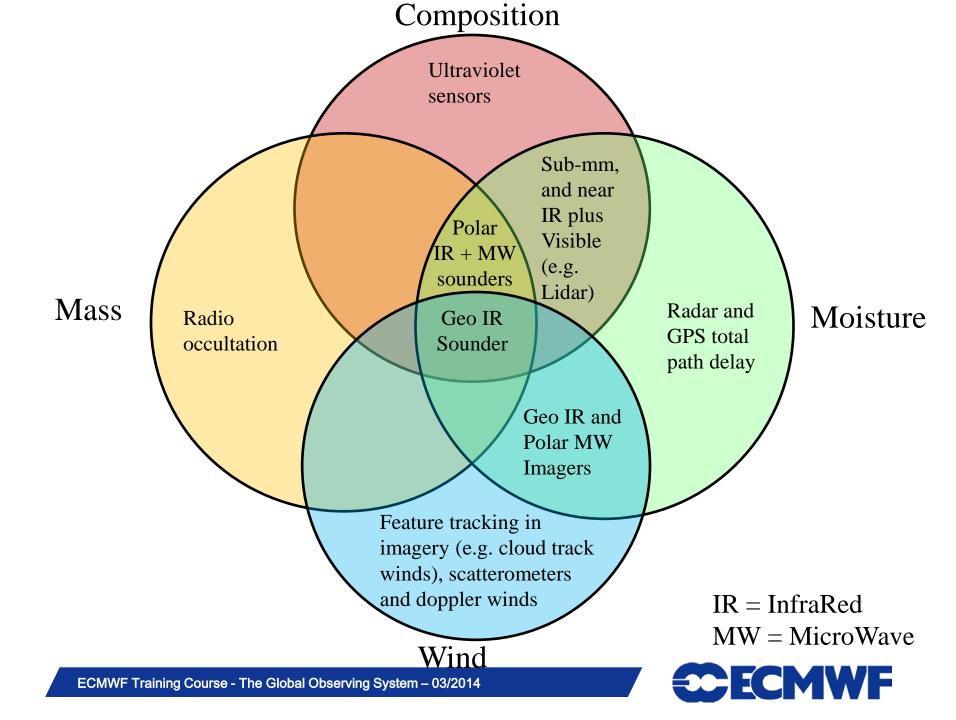
Aircraft – AMDAR (note also have Airep and ACARs)

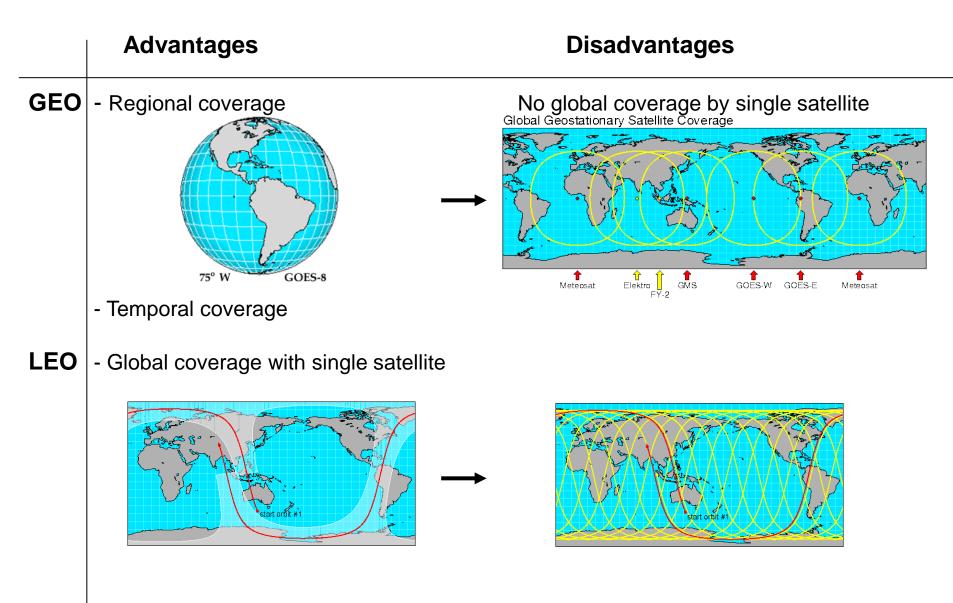


Surface (synop) - ship

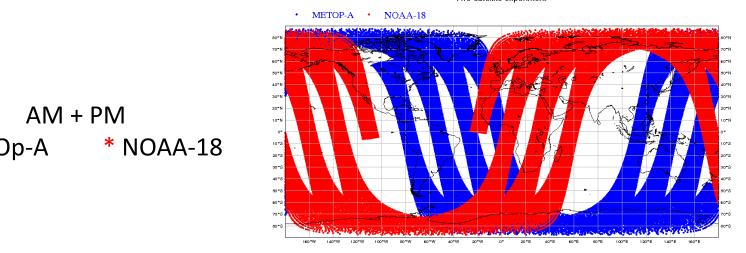
Balloon profiles e.g. radiosondes

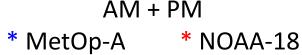
In situ data issues

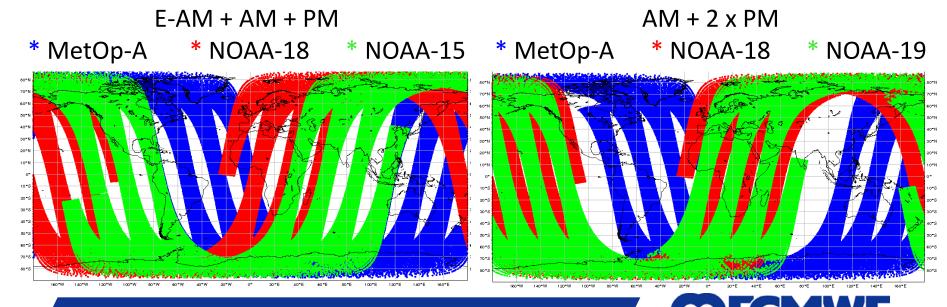

- Biases, duplicates, incorrect locations
- Representivity error....if we measure temperature here at ECMWF is it representative of model grid resolution?
- Data voids
- Data quality some radiosondes are good quality, others less so; absolute calibration can vary with age
- Old alphanumeric codes -> BUFR
- Sampling e.g. significant levels in radiosonde vs full resolution data
- But, they are a direct, in situ measurement
- Interpretation is usually more straightforward than remotely sensed data


Remotely sensed data issues

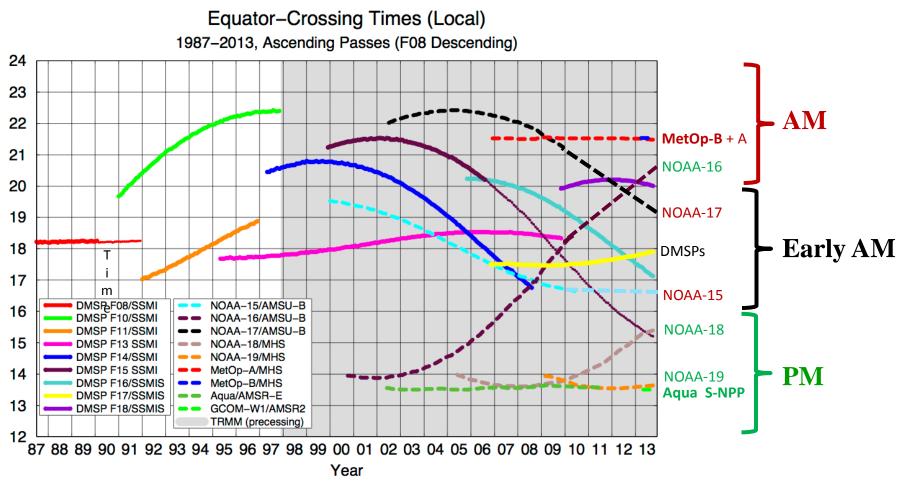
- Poor vertical resolution (in general)
- Rarely an absolute measurement long term drifts, observation biases
- Data voids: less of a problem than for in situ, but there are areas where data is hard to interpret
- Data quality whilst most remotely sensed observations are of very high quality, this can change suddenly.
- An indirect measurement we need complex observation operators
- But, they measure on a global or regional scale
- Representivity error is lower large volumes are more representative of what the model is trying to represent


What types of satellites are used in NWP?

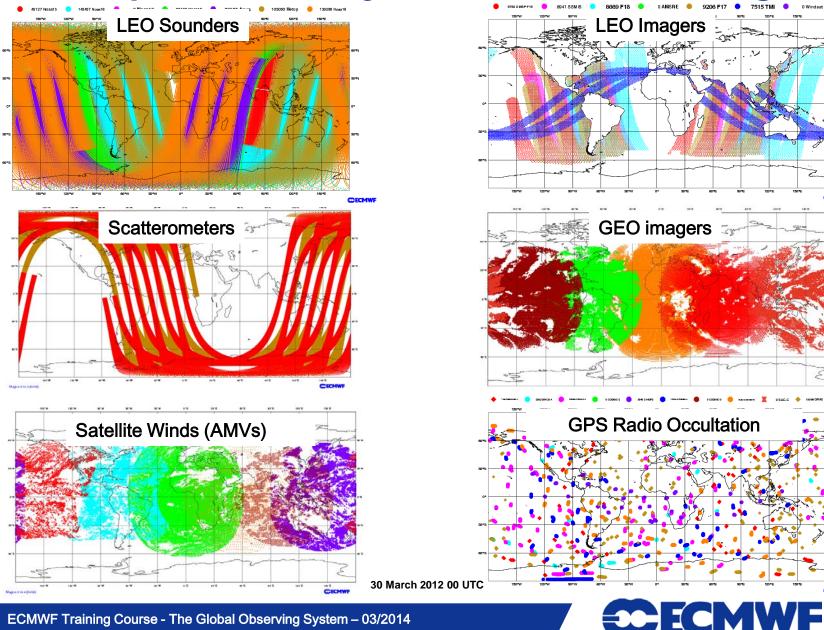




Satellite orbits

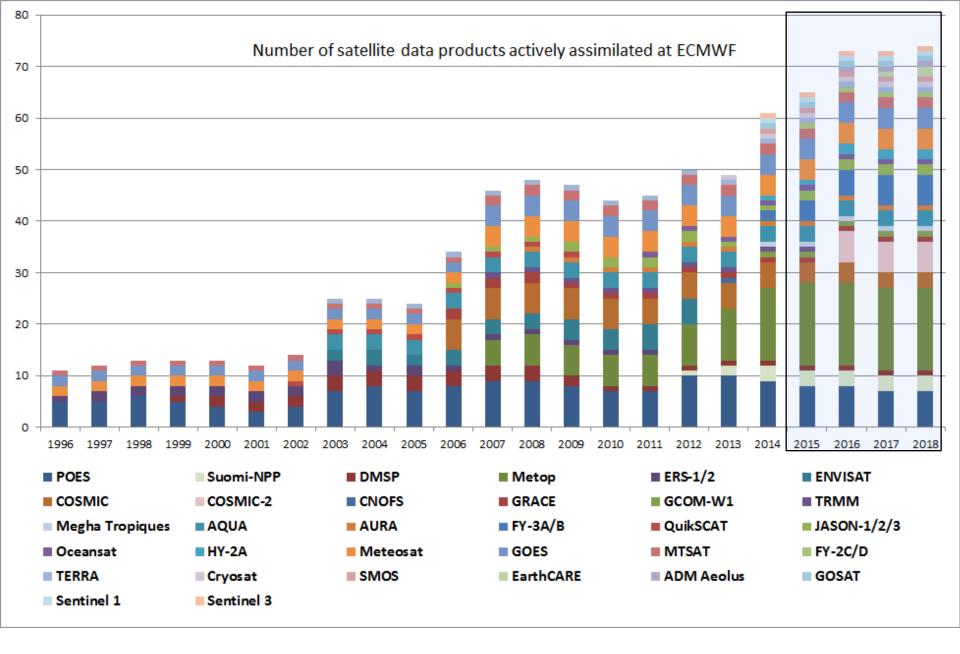

"Two-satellite experiment"

Satellite orbits

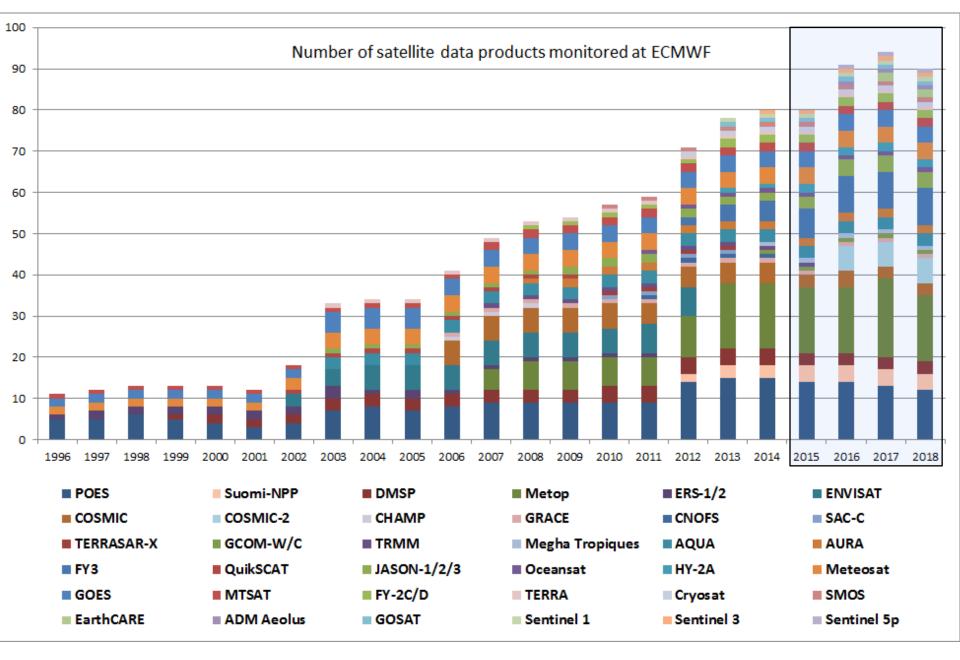


Adapted from

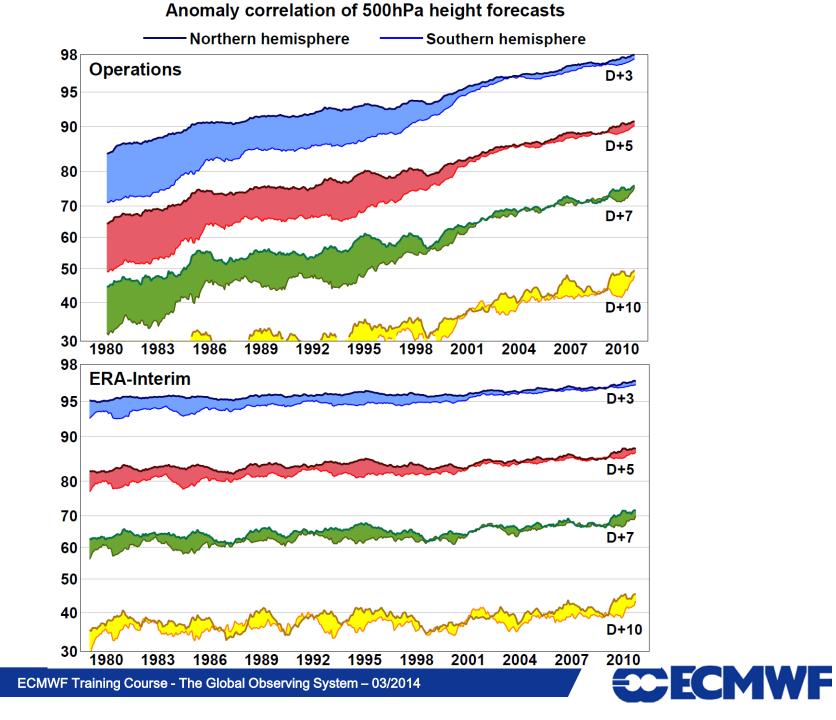
Image by Eric Nelkin (SSAI), 23 October 2013, NASA/Goddard Space Flight Center, Greenbelt, MD.

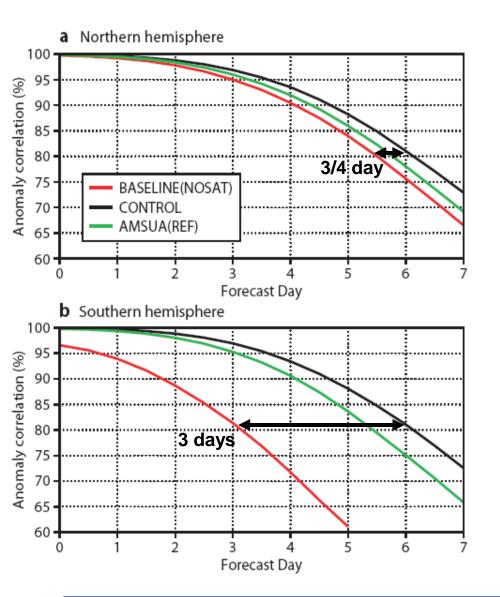


Example of 6-hourly satellite data coverage



CECMV


CECMW



Combined impact of all satellite data

EUCOS Observing System Experiments (OSEs):

- 2007 ECMWF forecasting system,
- winter & summer season,
- different baseline systems:
 - no satellite data (NOSAT),
 - NOSAT + AMVs,
 - NOSAT + 1 AMSU-A,
- general impact of satellites,
- impact of individual systems,
- all conventional observations.
- ← 500 hPa *geopotential height* anomaly correlation

Using DA to help design and make best use of the Global Observing System

Examples questions we use Data Assimilation techniques to study:

- Very specific questions e.g. Would it be beneficial for the Chinese FY3 program to move to the "early morning orbit" with the Europeans occupying the "morning orbit" and the Americans the "afternoon orbit"?
- Preparation for future instruments such as lidar and radar (EarthCARE)
 will these observations make a difference?
- Which observations were vital to key high profile events such as the Sandy forecast guiding future investment.
- Monitoring the quality of observations protecting the operational system

Global Observing System is essential to weather forecasting

Technology driven....a more integrated approach now?

Mass – is well observed by satellites and conventional observations, albeit only on the large scale.

Moisture – satellite observations are data rich but difficult to exploit to their full potential. Radar and lidar will become more important.

Dynamics – wind observations are scarce. Aeolus may help.

Composition – NWP techniques have been successfully extended to environmental analysis (ozone, aerosol, trace gases...)

Surface – Some "static" fields are needed e.g. vegetation, orography, land:sea, lakes; others are more dynamic e.g. sea ice, snow, soil moisture, surface temperature, flooding

Sun-Synchronous Polar Satellites

Instrument	Early morning orbit	Morning orbit	Afternoon orbit				
High spectral resolution IR sounder		IASI	Aqua AIRS NPP CrIS				
Microwave T sounder	F16, 17 SSMIS	Metop AMSU-A FY3A MWTS DMSP F18 SSMIS Meteor-M N1 MTVZA	NOAA-15, 18, 19 AMSU-A Aqua AMSU-A FY3B MWTS, NPP ATMS				
Microwave Q sounder + imagers	F16, 17 SSMIS	Metop MHS DMSP F18 SSMIS FY3A MWHS	NOAA-18, 19 MHS FY3B MWHS, NPP ATMS				
Broadband IR sounder		Metop HIRS FY3A IRAS	NOAA-19 HIRS FY3B IRAS				
IR Imagers		Metop AVHRR Meteor-M N1 MSU-MR	Aqua+Terra MODIS NOAA-15, 16, 18, 19 AVHRR				
Composition (ozone etc).		NOAA-17 SBUV	NOAA-18, 19 SBUV ENVISAT GOMOS AURA OMI, MLS ENVISAT SCIAMACHY GOSAT				
ECMWF Training	ECMWF Training Course - The Global Observing System – 03/2014						

Sun-Synchronous Polar Satellites (2)

Instrument	Early morning orbit	Morning orbit		Afternoon orbit		
Scatterometer		Metop ASCA Coriolis Wind		Oceansat OSCAT		
Radar				CloudSat		
Lidar				Calipso		
Visible reflectance				Parasol		
L-band imagery	SMOS SAC-D/Aquarius					
Non Sun-Synchronous Observations						
Instrument	High inclination	n (> 60°)	Low inclination (<60°)			
Radio occultation	GRAS, GRACE-A, COSMIC, TerraSarX C-NOFS, (SAC-C), ROSA					
MW Imagers			Meghat	TRMM TMI ropics SAFIRE MADRAS		
Radar Altimeter	ENVISAT R JASON Cryo					
ECMWF Training Course - The Global Observing System – 03/2014						

Data sources: Geostationary Satellites

Product	Status		
SEVIRI Clear sky radiance	Assimilated		
SEVIRI All sky radiance	Being tested for overcast radiances, and cloud-free radiances in the ASR dataset		
SEVIRI total column ozone	Monitored		
SEVIRI AMVs	IR, Vis, WV-cloudy AMVs assimilated		
GOES	AMVs, Clear sky radiances assimilated		
MTSAT-2	AMVs, Clear sky radiances assimilated		

User requirements and satellite data: OSCAR

www.wmo-sat.info/oscar/

	-		· ·		-	· –				
	Ob 🖓	MO serving Requiremer tabase	nts							Log
									() <u>Help</u>	Quick Search 🏅
De	tails for A	tmospheric temperatu	r			Classification				
Def Mea	l name finition asuring Units rizontal Res Ut	Atmospheric temper 3D field of the atmos K nits km		р К km		→ Domain: Atmosphere → Theme: Basic atmospheric → Variable: Atmospheric temperature → Measured in Layers: → HS&M → HS	F	Used in Application	<u>vleteorology</u> eteorology 2	
Las	mment: at modified: EQUIREM	Includes atmospher	ic stability index (LT)	RIG	• Vis	sion for the GOS in 2025		- High Res NWf - Nowcasting - SPARC - Synoptic Mete	-	
Id	▲ Layer	Application Area	≎ Uncert. Goal		-	oted June 2009		Thresh	≎ Avail Goal	Show/Hide Detail:
5	LT	Aeronautical Meteorology	2 K		• G(OS user guide WMO-No.			60 min	2 h
26	HS&M	Global Modelling	1 K		188	(2007)			30 d	60 d
27	HT	Global Modelling	0.5 K		400	(2007)			30 d	60 d
28	LS	Global Modelling	0.5 K		• Ma	anual of the GOS WMO-			30 d	60 d
29	LT	Global Modelling	0.5 K						30 d	60 d
54	HS&M	Global NWP	0.5 K		No.	544 (2003) (updated for			6 min	6 h
55	HT	Global NWP	0.5 K	\mathbf{n}				h	6 min	6 h
56	LS	Global NWP	0.5 K	\mathbf{X}	ET-S	SAT Geneva April 2012)		24 h	6 min	6 h
57	LT	<u>Global NWP</u>	0.5 K	3				24 h	6 min	6 h
39	HT	High Res NWP	0.5 K	зк				6 h	15 min	2 h
4	LT	Agricultural Meteorology	0 К	οĸ			s0 min	60 min	0 у	0 у
40	LS	High Res NWP	0.5 K	3 K			15 min	6 h	15 min	2 h

ECMWF

OSCAR demonstration / practical

