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From Optimal Interpolation to 3D-Var

@ In my last lecture, we derived the linear analysis equation
xa = xp + K(y — H(xp))
where
-1 -1
K=PPHT [HPPHT +R] = [(P)' + HTR'H| HTR™!

e Optimal Interpolation (Ol) applies direct solution methods to invert

the matrix [HP?HT + R].
@ Data selection is applied to reduce the dimension of the matrix.

@ Direct methods require access to the matrix elements. In particular,
HP2HT must be available in matrix form.

@ This limits us to very simple observation operators.
ECMWF
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From Optimal Interpolation to 3D-Var

o lIterative methods have significant advantages over the direct methods
used in Ol.

@ They can be applied to much larger problems than direct techniques,
so we can avoid data selection.

@ They do not require access to the matrix elements.

o Typically, to solve Ax = b, requires only the ability to calculate
matrix-vector products: Ax.

@ This allows us to use operators defined by pieces of code rather than
explicitly as matrices.

@ Examples of such operators include radiative-transfer codes, numerical
models, Fourier transforms, etc.

CSECMWF
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Example: Conjugate Gradients

To solve Ax = b, where A is real, symmetric and positive-definite:

rp \= b—AXO

Po ‘= 1o k=0

repeat until r,; is sufficiently small

Ok

Xk+1

Vi1
Bk

Pi+1

The result is xxt1
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From Optimal Interpolation to 3D-Var

@ There are two ways to apply iterative methods to the linear analysis
equation, depending which expression we adopt for K:

o For K= PPHT [HP?HT 4 R] ™" we have:
x> = xp + PPHTz  where [HPbHT + R} z=y— H(xp)
o For K = [(P?)"1 4+ HTR'H] "HTR!, we have:
X; = Xp+0x where [(Pb)_1 + HTR_IH} ox = HTR™! (y — H(xp))

@ The first of these alternatives is called PSAS
@ The second (although it may not look like it yet) is 3D-Var

CSECMWF
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3D-Var

@ As we have seen, (linear) 3D-Var analysis can be seen as an
application of iterative solution methods to the linear analysis
equation.

@ Historically, 3D-Var was not developed this way.
@ We will now consider this alternative derivation.

@ We will need to apply Bayes' theorem:

p(B|A)p(A)
p(B)

where p(A|B) is the probability of A given B, etc.

p(A|B) =

CSECMWF
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Maximum Likelihood

@ We developed the linear analysis equation by searching for a linear
combination of observation and background that minimized the
variance of the error.

@ An alternative approach is to look for the most probable solution,
given the background and observations:

xa = arg max (p(xly and x))
@ It will be convenient to define a cost function

J = —log (p(x|y and xp)) + const.
@ Then, since log is a monotonic function:

x; = arg min (J(x))
X
CCECMWF
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Maximum Likelihood
@ Applying Bayes' theorem gives:

p(y and x|x)p(x)
p(y and xp)

p(x|y and xp,) =

e Now, p(y and xp) is independent of x.
@ A Priori we know nothing about x — all values of x are equally likely.

@ Hence, we can regard p(x)/p(y and xp) as independent of x, and
write:
p(xly and x5) < p(y and x5 /x)

@ Furthermore, if observation errors and backgound errors are
uncorrelated, then

p(y and xp|x) = p(y[x)p(xs|x)

= J(x) = —log (p(y|x)) — log (p(xp|x)) 4 const. CCECMWF
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Maximum Likelihood

@ The maximum likelihood approach is applicable to any probability
density functions p(y|x) and p(xp|x).

@ However, let us consider the special case of Gaussian p.d.f's:

o) =y |3 (6 %) (Pe) (06 )|
PN = s &0 |5 (0 OO R (y - H(x)

e Now, J(x) = —log (p(y|x)) — log (p(xp|x)) + const.
@ Hence, with an appropriate choice of the constant const.:

I = 5 (=) (P) (x5~ x) + 5 (y — H()) TR (y — H(x)

@ This is the 3D-Var cost function
CCECMWF
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Maximum Likelihood

J00 = 5 (=) (Ps) (x5~ x) + 5 (y — H(0) R (y — H(x)

@ The maximum likelihood analysis corresponds to the global minimum
of the cost function

@ At the minimum, the gradient of the cost function (VJ(x) or 9J/0x)
is zero:

VJ(x) = (Ps) " (x —xp) + HTRT: (H(x) —y) = 0

CSECMWF
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Maximum Likelihood
VJ(x) = (Pp) " (x —xp) + HTRTH (H(x) —y) =0

o Now, if A is linear (or if we neglect second-order terms) then
H(x) = H(xp) + H(x — xp)

o Hence: (Pp) ™! (x —xp) + HTR™I (H(xp) + H(x — x5)) —y) = 0

@ Rearranging a little gives:

[(Pbr1 + HTRle] 5x = HTR™ (y — H(xp))

where 0x = x — Xp,

@ This is exactly the equation for the minimum-variance analysis we

derived at the start of the lecture!
CCECMWF
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Maximum Likelihood

@ We have shown that the maximum likelihood approach is naturally
expressed in terms of a cost function representing minus the log of
the probability of the analysis state.

@ The minimum of the cost function corresponds to the maximum
likelihood (probability) solution.

@ For Gaussian errors and linear observation operators, the maximum
likelihood analysis coincides with the minimum variance solution.

@ This is not the case in general:

A

P(xxly)

> X

'xML 'xMEAN ZSECMWF
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Maximum Likelihood

@ In the nonlinear case, the minimum variance approach is difficult to
apply.
@ The maximum-likelihood approach is much more generally applicable
@ As long as we know the p.d.f’s, we can define the cost function
» However, finding the global minimum may not be easy for highly
non-Gaussian p.d.f’s.
@ In practice, background errors are usually assumed to be Gaussian (or
a nonlinear transformation is applied to make them Gaussian).
» This makes the background-error term of the cost function quadratic.
@ However, non-Gaussian observation errors are taken into account. For
example:
» Directionally-ambiguous wind observations from scatterometers
» Observations contaminated by occasional gross errors, which make
outliers much more likely than implied by a Gaussian model.

CSECMWF
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Minimization

@ In 3D-Var, the analysis is found by minimizing the cost function:

1 1 _
J(x) =5 (% =x)" (Pp) ™" (x5 —x) + S0 —H(x)" R (y — H(x))
e This is a very large-scale (dim(x) ~ 108) minimization problem.
@ The size of the problem restricts on the algorithms we can use.

o Derivative-free algorithms (which require only the ability to calculate
J(x) for arbitrary x) are too slow.
@ This is because each function evaluation gives very limited
information about the shape of the cost function.
» E.g. a finite difference, J(x + dv) — J(x) ~ SvTVJ(x), gives a single
component of the gradient.
» We need O(108) components to work out which direction is “downbhill”.

CSECMWF
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Minimization

@ Practical algorithms for minimizing the 3D-Var cost function require
us to calculate its gradient:

VJ(x) = (Pp) "' (x — xp) + HTR™ (H(x) — y)

@ The simplest gradient-based minimization algorithm is called steepest
descent:
> Let xg be an initial guess of the analysis. Repeat the following steps for
k =0,1,2, etc. until the gradient is sufficiently small:
» Define a descent direction: dy = —VJ(xx).
» Find a step a, e.g. by line minimization of the function J(xx + ady),

for which J(xx + ady) < J(x).
> Set xx11 = Xk + ady.

CSECMWF
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Minimization

@ Steepest descent can work well
on very well conditioned
problems in which the
iso-surfaces of the cost function
are nearly spherical.

@ In this case, the steepest
descent direction points towards
the minimum.

@ For poorly conditioned problems,
with ellipsoidal iso-surfaces,
steepest descent is not efficient:

CSECMWF
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Minimization

@ Steepest Descent is inefficient because it does not use information
about the curvature (i.e. the second derivatives) of the cost function.

The simplest algorithm that uses curvature is Newtons method.

@ Newton's method uses a local quadratic approximation:

J(x + 6%) = J(x) + oxTVI(x) + %5XTJ”5X

@ Taking the gradient gives:
VJ(x + 6x) ~ VJ(x) + J"'ox
@ Since the gradient is zero at the minimum, Newton's method chooses

the step at each iteration by solving:
J"6x = =V J(x)
ECMWF
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Minimization

@ Newton's method:

» Start with an initial guess, Xo.

> Repeat the following steps for k = 0,1, 2, etc. until the gradient is
sufficiently small:

> Solve J"dxx = =V J(xk).

> Set Xx11 = Xk + OXk.

@ Newton's method works well for cost functions that are well
approximated by a quadratic — i.e. for quasi-linear observation
operators.

@ However, it suffers from several problems. ..

@ There is no control on the step length ||0x||. The method can make
huge jumps into regions where the local quadratic approximation is
poor.

» This can be controlled using line searches, or by trust region methods
that limit the step size to a region where the approximation is valid.
ECMWF
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Minimization

@ Newton's method requires us to solve J”dx, = —VJ(xk) at every
iteration.

e Now, J" is a ~ 108 x 108 matrix! Clearly, we cannot explicilty
construct the matrix, or use direct methods to invert it.

@ However, if we have a code that calculates Hessian-vector products,
then we can use an iterative method (e.g. conjugate gradients) to
solve for 0x.

@ Such a code is call a second order adjoint. See Wang, Navon,
LeDimet, Zou, 1992 Meteor. and Atmos. Phys. 50, pp3-20 for
details.

@ Alternatively, we can use a method that constructs an approximation
to (J/) 1.
o Methods based on approximations of J” or (J”)™" are called

quasi-Newton methods.
ECMWF
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Minimization

@ By far the most popular quasi-Newton method is the BFGS algorthm,
named after its creators Broyden, Fletcher, Goldfarb and Shanno.

@ The BFGS method builds up an approximation to the Hessian:

y&¥i  Busk (Brsk)"
YiS} skBys}

Biy1 =Bk +

where s = X441 — X and yx = VJ(xk11) — VI(xk).
@ The approximation is symmetric and positive definite, and satisfies

VJ(Xj-i-l) — VJ(XJ) = J”(Xj+1 - XJ) fOI’j = Oa 1’ T k

@ There is an explicit expression for the inverse of By, which allows
Newton's equation to be solved at the cost of O(Nk) operations.

CSECMWF
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Minimization
@ The BFGS quasi-Newton method:
» Start with an initial guess at the solution, xg, and an initial
approximation of the Hessian (typically,By = I).
> Repeat the following steps for k = 0,1, 2, etc. until the gradient is
sufficiently small:
» Solve the approximate Newton's equation, Bdxx = —VJ(x), to
determine the search direction.
» Perform a line search to find a step ay for which for which
J(Xk + akéxk) < J(Xk).
> Set Xk4+1 = Xk + QpOXg.
» Generate an updated approximation to the Hessian: By .
@ As k increases, the cost of storing and applying the approximate
Hessian increases linearly.

@ Moreover, the vectors s, and y, generated many iterations ago no
longer provide accurate information about the Hessian.

@ It is usual to construct By from only the O(10) most recent iterations.
The algorithm is then called the limited memory BFGS method. cecmwr
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Minimization
@ The methods presented so far apply to general nonlinear functions.

@ An important special case occurs if the observation operator H is
linear. In this case, the cost function is strictly quadratic, and the
gradient is linear:

VJ(x) = (Pp) tox+HTR™ (H(xp) + Hox —y)
- [(P,,)*1 +HTR- 1H} x + HIR™ (1(xp) — y)

@ In this case, it makes sense to determine the analysis by solving the
linear equation VJ(x) = 0.

@ Since the matrix [(Pb)_1 + HTRle] is symmetric and positive
definite, the best algorithm to use is conjugate gradients. (The
algorithm was presented earlier in this lecture.)

@ A good introduction to the method can be found online: Shewchuk
(1994) “An Introduction to the Conjugate Gradient Method Without
the Agonizing pain”. CECMWF
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Preconditioning

@ We noted that the steepest descent method works best if the
iso-surfaces of the cost function are approximately spherical.

@ This is generally true of all minimization algorithms.

@ In general, expressing the cost function directly in terms of x will not
lead to spherical iso-surfaces.

@ The degree of sphericity of the cost function can be measured by the
eigenvalues of the Hessian. (Each eigenvalue corresponds to the
curvature in the direction of the corresponding eigenvector.)

@ In particular, the convergence rate will depend on the condition

number:
)\max

K =
)\min

CSECMWF
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Preconditioning

@ We can speed up the convergence of the minimization by a change of
variables x = L™1(x — x,,), where L is chosen to make the cost
function more spherical.

1/2

@ A common choice is L = (Pp)™/“. The cost function becomes:

JO) = 53X 3y~ s + L)) Ry — Hlxs + L)

o With this change of variables, the Hessian becomes:
JY =1+ L"HTR™HL (plus higher order terms)

@ The presence of the identity matrix in this expression guarantees that
the minimum eigenvalue is > 1.

@ There are no small eigenvalues to destroy the conditioning of the

problem.
ECMWF
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Calculating the Gradient

To minimize the cost function, we must be able to calculate gradients.

If we precondition using L, the gradient (with respect to ) is:

VyJ(x) = x + LTHTR™ (y — H(xp + LX))

Typically, R is diagonal — observation errors are treated as being
mutually uncorrelated.

o However, the matrices H™, L™ and L are not diagonal, and are much
too large to be represented explicitly.

We must represent these as operators (subroutines) that calculate
matrix-vector products.

CSECMWF
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Calculating the Gradient

o Take H as an example. Each line of the subroutine that applies H
can be considered as a function hy, so that

H(x) = hi (hic—1 (- - (h(x))))

@ Each of the functions hj can be linearized, to give the corresponding
linear function hy. Each of these is extremely simple, and can be
represented by a one or two lines of code.

@ The resulting code is called the tangent linear of H.
H(X) = hKhK_1 s |"I1X

@ The transpose, HY(x) = hTh] ---hkx, is called the adjoint of H.
@ Again, each hE is extremely simple — just to a few lines of code.
@ NB: there is a whole 1-hour lecture on tangent linear and adjoint

operators later in the course. ECMWE
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Summary

@ We showed that 3D-Var can be considered as an iterative procedure
for solving the linear (minimum variance) analysis equation.

@ We also derived 3D-Var from the maximum likelihood principle.

@ The Maximum Likelihood approach can be applied to non-Gaussian,
nonlinear analysis.

@ We introduced the 3D-Var cost function.

@ We considered how to minimize the cost function using algorithms
based on knowledge of its gradient.

@ We looked at a simple preconditioning.

e Finally, we saw how it is possible to write code that computes the

gradient.

CSECMWF
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