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Overview of this lecture

In this lecture the variational bias correction scheme (VarBC) as used at ECMWEF is explained.
VarBC replaced the tedious job of estimating observation bias off-line for each satellite
instrument or in-situ network by an automatic self-adaptive system.

This is achieved by making the bias estimation an integral part of the ECMWEF variational
data assimilation system, where now both the initial model state and observation bias
estimates are updated simultaneously.

By the end of the session you should be able to realize that:

1. many observations are biased, and that the characteristics of bias varies widely between
types of instruments,

2. separation between model bias and observation bias is often difficult,

3. the success of an adaptive system implicitly relies on a redundancy in the underlying
observing system.



Bias: Ignorance is bliss...

Everyone knows that
models are biased

Not everyone knows
that most observations
are biased as well

So... where is the bias _ _
term In thls equatlon? Tanore if, Jeffries. s unscientific,”

JX) = (x, = X)'B™(x, - X) + [y = h(x)] ' R™[y - h(x)]
O ~ J (N ~

background constraint observational constraint
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Model bias:

Systematic Day-3 Z500 errors in three different forecast models
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Different models often have similar error characteristics
Period DJF 2001-2003



Model bias:
Seasonal variation in upper-stratospheric model errors
T255L60 model currently used for the ERA-Interim reanalysis
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Observation bias:

Radiosonde temperature observations

Daytime warm bias due
to radiative heating of
the temperature sensor

(depends on solar elevation
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Observation and observation operator bias:

Satellite radiances

Monitoring the background departures (averaged in time and/or space):

Bias depending on scan position
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Observation and observation operator bias:

Sate

llite radiances

Monitoring the background departures (averaged in time and/or space):
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Obs-FG bias [K]

HIRS channel 5 (peaking around
600hPa) on NOAA-14 satellite has
+2.0K radiance bias against FG.

Same channel on NOAA-16 satellite has
no radiance bias against FG.

=P \OAA-14 channel 5 has an instrument bias.



Obs —FG Bias

Observation and observation operator bias:
Satellite radiances

Different bias for HIRS due to change in spectroscopy ~ Obs-FG bias [K]

used in the radiative transfer model. 7
Other common causes for biases in radiative .
transfer: -
e Biasin assumed concentrations of
. Old New
atmospheric gases (e.g., CO,, aerosols)
spectroscopy | spectroscopy
e Neglected effects (e.g., clouds) l -
e
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Implications for data assimilation:
Bias problems in a nutshell

e Observations and observation operators have biases, which may change over time

— Daytime warm bias in radiosonde measurements of stratospheric temperature;
radiosonde equipment changes

— Biases in cloud-drift wind data due to problems in height assignment
— Biases in satellite radiance measurements and radiative transfer models

e Models have biases, and changes in observational coverage over time may change the
extent to which observations correct these biases

— Stratospheric temperature bias modulated by radiance assimilation
— This is especially important for reanalysis (trend analysis)

¢ Data assimilation methods are primarily designed to correct small (random) errors in
the model background

— Large corrections generally introduce spurious signals in the assimilation

— Likewise, inconsistencies among different parts of the observing system lead to
all kinds of problems



Implications for data assimilation:
The effect of model bias on trend estimates

Most assimilation systems assume unbiased models and unbiased data

Unbiased model, unbiased observations

_mean error = 0.028 | mean error = 0.024
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Biases in models and/or data can induce spurious trends in the assimilation

Biased model, unbiased observations
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Implications for data assimilation:
ERA-40 surface temperatures compared to land-station values

Surface air temperature anomaly (°C) with respect to 1987-2001
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Variational analysis and bias correction:
A brief review of variational data assimilation

Minimise J(X) = (X, — X)"B™(x, — X) + [y = h)]'R|y - h(x)]

|\ I
Y Y

background constraint (J,) observational constraint (J,)

The input x,, represents past information propagated by the forecast model
(the model background)

The input [y — h(x,)] represents the new information entering the system
(the background departures)

The function h(x) represents a model for simulating observations
(the observation operator)

Minimising the cost function J(x) produces an adjustment to the model background
based on all used observations

(the analysis)



Variational analysis and bias correction:
Error sources in the input data

Minimise J(X) = (X, — X)"B™(x, — X) + [y = h)]'R|y - h(x)]

|\ I
Y Y

background constraint (J,) observational constraint (J,)

e Errors in the input [y — h(x,)] arise from:
e errors in the actual observations
e errors in the model background
e errors in the observation operator

e There is no general method for separating these different error sources
e we only have information about differences
e there is no true reference in the real world!

e The analysis does not respond well to conflicting input information
A lot of work is done to remove biases prior to assimilation:
e ideally by removing the cause
e in practise by careful comparison against other data



The need for an adequate bias model

Prerequisite for any bias correction is a good model for the bias (b(x,B)):
e |deally, guided by the physical origins of the bias.
e In practice, bias models are derived empirically from observation

monitoring.
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Satellite radiance bias correction at ECMWEF, prior to 2006

Scan bias and air-mass dependent bias for each satellite/sensor/channel were estimated
off-line from background departures, and stored in files (Harris and Kelly 2001)

Error model for brightness temperature data:  y =h(X) + b + b*" (x) +

where b>**" =b*™*" (latitude, scan position) Predictors, for instance:

air  _ N / + 1000-300 hPa thickness
b™ = 'BO + Zi:l 'Bi ¢ 200-50 hPa thickness
» surface skin temperature
* total precipitable water

e°® = random observation error

Average the background departures:

(y=h(x,))= b+ b (x)

Periodically estimate scan bias and predictor coefficients:
» typically 2 weeks of background departures
e 2-step regression procedure
» careful masking and data selection




The need for an adaptive bias correction system

M Cryosat
e The observing system is increasingly complex and constantly changing m Sentinel 5p
. . . . m Sentinel 3
e ltis dominated by satellite radiance data: = Sentinel 1
W GOSAT
B ADM Aeolus

e biases are flow-dependent, and may change with time :E:/:g]SCARE

e they are different for different sensors W GMS/MTSAT Rad
m GOES Rad
e they are different for different channels m METEOSAT Rad
B AVHRR AMV
® TERRA/AQUA AMV
= FY-2C/D AMV
20 m GMS/MTSAT AMV
m GOES AMV
m METEOSAT AMV
m HY-2A
B Oceansat

HFY-3A/B
m AURA
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m Megha Tropiques
B TRMM
B GCOM-W/C
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m SAC-C
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e How can we manage the bias corrections for all these different components?
e This requires a consistent approach and a flexible, automated system



The Variational bias correction scheme:
The general idea

The bias in a given instrument/channel (bias group) is described by (a few) bias parameters:
typically, these are functions of air-mass and scan-position (the predictors)

These parameters can be estimated in a variational analysis along with the model state
(Derber and Wu, 1998 at NCEP, USA)

The standard variational analysis minimizes

_ _ Xl

JX) = (% =X) B (%, —x) + [y =h(x)] "R™ [y —h(x)] Y
Modify the observation operator to account for bias: /;f( z)= /3(\ S)
Include the bias parameters in the control vector: zi=[x" B

Minimize instead |J(z) = (z,—2)'B.'(z, —2) + [y — hiz)] "R [y —h(z)]

What is needed to implement this:

1.  The modified operator /_;(.\-, /7) and its TL + adjoint
2.  Acycling scheme for updating the bias parameter estimates
3.  An effective preconditioner for the joint minimization problem




Variational bias correction:
The modified analysis problem

The original problem:

Jy,: background constraint

' A N\
JO) = (% —X)"BHX, — %) + [y = h()[' Ry - h(x)]

A\ J/
Y

J,: observation constraint

The modified problem:

J,: background constraint for x Jg: background constraint for B
r
0B = (6 - 0B 6, - ’ BB, (B, -
b,(x, B) — h(X)['R '1[y b, (x, B) ~ h(x)]
_

Parameter estlmates
from previous analysis J,: bias- corrected observation constraint




Example 1:
Spinning up new instruments — IASlI on MetOp A

e |ASlis a high-resolution interferometer with 8461 channels

e Initially unstable — data gaps, preprocessing changes
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Example 2:
NOAA-9 MSU channel 3 bias corrections (cosmic storm)
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Example 3:
Fit to conventional data
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Extension to other types of observations

Current bias ‘classes’ in the ECMWEF operational system:
* Radiances: clear sky/all sky, infrared/microwave, polar/geostationary

Total column ozone: currently only OMI

Aircraft data: one group per aircraft

Total column water vapour:

Ground-based radar precipitation: one group embracing US stations

Other automated bias corrections, but outside 4D-Var:
e Surface pressure
e Radiosonde temperature and humidity

Specific:

* ERA-Interim: VarBC for radiances only

* ERA-20C: the 20 century reanalysis using surface observations only
* MACC: atmospheric composition



VarBC for satellite radiances

e ~1,500 channels (~40 sensors on ~25 different satellites)

e Anchored to each other, GPS-RO, and all conventional observations

* Bias model: B, + 3B, p(model state) + 33, p;(instrument state)
(~11,400 parameters in total)
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VarBC for ozone

e OMI, (SCIAMACHY, GOMOS, SEVIRI, GOME2, GOME in past)
e Anchored to SBUV/2
e Bias model: B, + B, x solar elevation

STATISTICS FOR OZONE FROM FROM AURA/CMI
MEAN BIAS CORRECTION [DU] (USED)
DATA PERIOD = 2014-02-06 21 - 2014-03-08 09
EXP = 0001, LEVEL = 0.01 - 1013.25 HPA
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VarBC for aircraft temperature

e For each aircraft separately (~¥5000 distinct aircraft)

e Anchored to all temperature-sensitive observations

e Bias model: B, + B, x ascent rate + 3, x descent rate

Average temperature departures for the
northern hemisphere during a

2-week period
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Limitations of VarBC:
Interaction with model bias

VarBC introduces extra degrees of freedom in the variational analysis, to help improve
the fit to the (bias-corrected) observations:

J(x,B) = (x, —X) B (%, —X) + (B, —B)' B, (B, —B)

+ly —b(x,B)—h(x)]' R™*|y — b(x,B) —h(x)]

It works well (even if the model is biased) when the analysis is strongly constrained by
observations:

model

A 4

abundant observations

It does not work as well when there are large model biases and few observations to constrain
them:

v

model —¢ - -

observations

VarBC is not designed to correct model biases: Need for a weak-constraints 4D-Var (Trémolet)



Summary

Biases are everywhere:
e Most observations cannot be usefully assimilated without bias adjustments

e Off-line bias tuning for satellite data is practically impossible
e Bias parameters can be estimated and adjusted during the assimilation,
using all available information

e Variational bias correction works best in situations where:
e there is sufficient redundancy in the data; or
e there are no large model biases

Challenges:
e How to develop good bias models for observations
e How to separate observation bias from model bias
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Dee, 2004: Variational bias correction of radiance data in the ECMWEF system. Pp.
97-112 in Proceedings of the ECMWF workshop on assimilation of high spectral
resolution sounders in NWP, 28 June-1 July 2004, Reading, UK

Dee, 2005: Bias and data assimilation. Q. J. R. Meteorol. Soc., 131, 3323-3343

Dee and Uppala, 2009: Variational bias correction of satellite radiance data.in the
ERA-Interim reanalysis. Q. J. R. Meteorol. Soc., 135, 1830-1841 L

Feel free to contact me with questions:

Hans.Hersbach@ecmwf.int



VarBC for total column water vapour

e ENVISAT/MERIS until April 2012
e Anchored to all other humidity-sensitive observations
e Bias model: B, + B; x TCWV(model state)

Statistics for Total Column Water Vapor from ENVISAT/MERIS
MEAN BIAS CORRECTICN [kg/m2] (All)
Data Period = 2011-03-28 09 - 2011-05-07 09
EXF = 0001, Channel =1
Min: -1.89736 Max: 0.250089 Mean: -0.630024
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