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• Observations are essential for data assimilation  
 

• Introduction to observation operators 
      
• Different flavours of observation operators 

 
• Jacobians (linearized operators) 
 
• Why variational data assimilation is very flexible with 

respect to observation usage 
 

• Summary 

Overview of Lecture 
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Data assimilation for weather prediction 

A short-range forecast provides an 
estimate of the atmosphere that is 
compared with the observations. 

 
The two kinds of information are 

combined to form a corrected 
atmospheric state: the analysis.  

 
Corrections are computed and applied 

twice per day at ECMWF. This process 
is called ‘Data Assimilation’. 

The FORECAST is computed on a quasi-regular 
grid over the globe. 

The meteorological OBSERVATIONS comes at 
any time from any location on the globe. 

The computer model’s prediction of the 
atmosphere is compared against the 
available observations, in near real time 
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Conventional observations used by ECMWF’s analysis 

MSL Pressure, 10m-wind, 2m-Rel.Hum. DRIBU: MSL Pressure, Wind-10m  

Wind, Temperature, Spec. Humidity  PILOT/Profilers: Wind 

Aircraft: Wind, Temperature 

SYNOP/METAR/SHIP: 

Radiosonde balloons (TEMP): 

Note: Data assimilation only  use a 
limited number of the observed 
variables - especially over land. 
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Data extraction 

Thinning 

• Some data is not used 
to avoid over-sampling 
and correlated errors 

• Departures and flags 
are still calculated for 
further assessment 

Blacklisting 

• Data skipped due to systematic 
bad performance or due to different 
considerations (e.g. data being 
assessed in passive mode) 

• Departures and flags available for  
all data for further assessment 

Model/4D-Var dependent QC 

• First guess based rejections 

• VarQC rejections 

 Used data  Increments 

• Check out duplicate reports 

• Ship tracks check 

• Hydrostatic check 

Analysis 

 Quality control of observations is very important  

More on observation QC in tomorrow’s lecture by Elias Holm 
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• We learned the basic concepts of data assimilation 
 

• We learned the definition of the observation operator, H 
 
 

 I will now repeat a few of Mike’s slides 
 

From Mike Fisher’s lecture this morning: 
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Comparing model and observations 

• The forecast model provides the background (or prior) 
information to the analysis 

• Observation operators allow observations and model 
background to be compared (“O-B”) 

• The differences are called departures or innovations 

• They are central in providing observation information that 
corrects the background model fields 

• These corrections, or increments, are added to the 
background to give the analysis (or posterior estimate)  

• Observation operators also allow comparison of 
observations and the analysis (analysis departures “O-A”) 
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Example: Statistics of departures 

Radiosonde temperature Aircraft temperature 

• The standard deviation of background departures for both radiosondes 
and aircraft is around 1-1.5 K in the mid-troposphere. 
• The standard deviation of the analysis departures is here approximately 
30% smaller – the analysis has “drawn” to the observations. 

Background departures:  
Analysis departures: 

by Hx−
ay Hx−

ay Hx−

by Hx−

ax
y

bx

= observations 

= analysis state 

= background state 

(O-B)  
(O-A) 

Press 
(hPa) 

Number 
of obs 
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The observation operator “H” 
How to compare model with observations?  Satellites measure 
radiances/brightness temperatures/reflectivities, etc., NOT directly 
temperature, humidity and ozone. 

A model equivalent of the observation needs to be calculated to enable 
comparison in observation space (or related model-equivalent space). 

This is done with the ‘observation operator’, H. 

 H may be a simple interpolation from model grid to observation 
location for direct observations, for example, of winds or temperature from 
radiosondes 

 H may possibly perform additional complex transformations of 
model variables to, for example, satellite radiances: 

Model 
T,u,v,q,o3 

Observed 
satellite radiance Model radiance H Compare 

O-B 
Obs-Background 
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Forecast versus observed fields 

oJ
Observed 

satellite radiance Model radiance Model 
T and q 

H compare 

Meteosat imagery – water vapour channel 
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“Usual” observation operators:  
Radiative transfer operator* 

dz
dz

dzTBL ∫
∞





=

0

)())(,()( ντνν + Surface 
emission + Surface 

reflection/ 
scattering 

+ Cloud/rain 
contribution 

• Satellite instruments (active and passive) simply measure the 
RADIANCE L that reaches the top of the atmosphere at given frequency 
v . The measured radiance is related to geophysical atmospheric 
variables (T,Q,O3) by the radiative transfer equation (covered in detail 
in other lectures). 

+ ... 

• The observation operator for satellite measurements is in this case a  
convolution of the horizontal and vertical interpolation operators and the 
radiative transfer equation applied to the interpolated model state variables 
(for example, temperature, humidity)  and solved via approximations which 
depend on the specific channel/frequency. 

* Details in presentations by T. McNally and at the SAT Training course next week! 



ECMWF Training Course on Data Assimilation, Reading, 10-14 April 2014 

“Unusual” observation operators: 
Aerosol Optical Depth  

 
• The AOD operator is based on tabulated or parameterized optical 

properties of the N aerosol species that are modeled. These optical 
properties are then weighted by the mass of the particulate to provide 
the extinction coefficient and integrated vertically to give the total optical 
depth at a given wavelength: 

 
  
     
    where                         is the extinction coefficient which is a function of  
    particle size and height (and relative humidity for some aerosol types).  
   
• An aerosol optical depth operator is currently used operationally in the 

aerosol forecasts for the EU project “Monitoring of the Atmospheric 
Composition and Climate” (MACC) for assimilation of the Moderate 
Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depths 
at 550 nm.   
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Forecast versus observed fields 
O

bserved lidar  
backscatter 

M
odel lidar 

 backscatter 
M

odel 
aerosols 

H
 

com
pare 

CALIPSO satellite– lidar aerosol backscatter 
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Direct observations versus retrievals 
What about transforming observations closer to model space before assimilation?  
It is possible to use “satellite retrievals” instead of “direct observations”.  

 H becomes simpler for a satellite retrieval product 

 Related tangent linear & adjoint operators also simpler  

 Retrieval assumptions made by data providers not always explicit/valid 

 Use of NWP data in retrieval algorithms can introduce correlated errors 

   The choice is often application dependent! 

Model 
T,u,v,q,o3 

H 

Observed 
satellite 
quantity 

Model 
T,u,v,q,o3 

Model  
equivalent H O-B 

Satellite 
retrieval 

e.g. o3, T,  
q, AOD 

Retrieval 
algorithm 

Observed 
satellite 
quantity 

O-B 
Model  

equivalent 

Units of radiance 

Units of mixing ratio, K etc 
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The observation operator provides the link between the model variables  
and the observations (Lorenc 1986; Pailleux 1990). 
 
The observation operator is typically implemented as a sequence of  
operators transforming the analysis control variable x into the  
equivalents of each observed quantity y, at observation locations. 
 
This sequence of operators can be multi-variate (can depend on many 
variables) and may include:  
 
 “Interpolation” from forecast time to observation time (in 4D-Var this is 

actually running the forecast model over the assimilation window) 
 Horizontal and vertical interpolations  
 Vertical integration 
 If limb-geometry, also horizontal integration 
 If radiances, radiative transfer computation 
 Any other transformation to go from model space to observation 

space. 

Actual implementation of observation operators used  
in the ECMWF 4D Variational Data assimilation 
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Actual implementation of observation operators used  
in the ECMWF 4D Variational Data assimilation 

The observation operator is typically implemented as a sequence of  
operators transforming the analysis control variable x into the  
equivalents of each observed quantity y, at observation locations: 

These first three steps are common for all data  
types: 
• The inverse change of variable converts from 

control variables to model variables 
• The inverse spectral transforms put the model 

variables on the model’s reduced Gaussian 
grid 

• A 12-point bi-cubic horizontal interpolation 
gives vertical profiles of model variables at 
observation points 

Further steps (depend on the specific 
observations treated): 

• Vertical interpolation to the level of the 
observations. The vertical operations depend 
on the observed variable 

• Vertical integration of, for example, the 
hydrostatic equation to obtain geopotential, 
and of the radiative transfer equation to obtain  
top of the atmosphere radiances. 

Change of variable 

Forecast 

Inverse transforms 

Horizontal interpolation 

Vertical interpolation 

Radiative transfer 

Jo-calculation 
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Upper-air observation operators 

The following vertical interpolation techniques are 
employed: 
 
Wind:   linear in ln(p) on full model levels 
Geopotential:  as for wind, but the interpolated quantity      
                                is the deviation from the ICAO standard  
                                atmosphere 
Humidity:  linear in p on full model levels 
Temperature: linear in p on full model levels 
Ozone:  linear in p on full model levels 
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Interpolation of highly nonlinear fields 

 
• The problem of a “correct” horizontal interpolation is especially felt 

when dealing with heterogeneous model fields such as precipitation 
and clouds.  

 
• In the special case of current rain assimilation, model fields are not 

interpolated to the observation location.  Instead, an average of 
observation values is compared with the model-equivalent at a model 
grid-point – observations are interpolated to model locations. 

 
• Different choices can affect the departure statistics which in turn 

affect the observation error assigned to an observation, and hence 
the weight given to observations. 
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Main difficulties: inaccurate moist physics parameterizations (location/intensity), 
formulation of observation errors, bias correction, linearity assumptions 

4D-Var first guess SSM/I ∆Tb 19v-19h [K] SSM/I observational ∆Tb 19v-19h [K] 

Observation operator for and use of rain affected 
microwave radiances – a difficult task 

Observed 
satellite radiance Model radiance Model 

T and q 
H compare 
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Representativeness Errors 

 
• Errors introduced by the interpolation operator, and also by the 

finite resolution of the model fields, are often accounted for by 
adding “representativeness” errors to the “instrument” error of 
the observations. 
 

• For some data, e.g. radiosonde winds, the representativeness 
errors are the dominant contribution to the observation errors in 
the matrix R.   

 
• In effect, we compare model and observations not in 

observation space, but in model-equivalent space.  We ask 
what would the observed quantity be if we degraded the 
atmosphere down to model resolution? 
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Representativeness Errors 
Model grid box small, but still large compared to reality 

Grid box 16km x 16km x 200m 
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Representativeness errors 

 
At ECMWF 2 metre SYNOP 
temperatures are are not adjusted 
for  differences between station 
height and model height. This 
shows up as a lapse rate error of 
close to 6.5 °/km. 
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The Jacobian matrix 

• The tangent linear of the observation operator H consists of the 
partial derivatives of H with respect to all of its inputs, expressing 
the variations of H in the vicinity of the background xb. 

 
• H is sometimes referred to as the Jacobian of H.  If H varies 

significantly with xb then H is non-linear. 
 

• Needed for the incremental formulation of 4D-Var (adjoint too). 
You will more about this later this week. 
 

• But also, for complex observation operators, study of the 
Jacobian highlights observation sensitivities to input model 
variables at specific points (quantified as information content,  
effectively which model components have been “observed”). 
 

• In the case of radiances, for example, columns of H will express 
each channel’s ‘weighting function’ on the model geometry. 
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A Jacobian example: MSU-2 

• The Jacobian for TOVS channel MSU-2 is shown in the leftmost  
     diagram. It can be interpreted as a profile of weights for a vertically  
     averaged temperature. 

• The second diagram 
on the left shows the 
analysis increment in 
the special case of a 
diagonal B-matrix. 

• The two panels to the 
right show theoretical 
and actual analysis 
increments, with a 
realistic B-matrix. 

• Weighting functions and analysis increments are similar but not 
identical because they also include the background term (as per 
equation): )()()( 1

b
TT

ba Hxyxx −+=− −RHBHBH
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Summary: Variational data assimilation 
allows easy use of  direct observations 

• One of the advantages of variational data assimilation is that it allows 
the direct assimilation of radiances and other “indirect” observations 
(e.g. optical depth, reflectivities, lidar backscatter): 
 
– Physical (based on radiative transfer calculations) 
– Simultaneous (in T, q, o3 and ps …) 
– Uses an accurate short-range forecast as background information, and its 

error covariance as a constraint 
 

• In 3D-Var: 
– Horizontal consistency is ensured 
– Other data types are used simultaneously 
– Mass-wind balance constraints are imposed 

 
• In 4D-Var: 

– Consistency in time. Frequent data can be used. 
– The dynamics of the model acts as additional constraint 
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Summary: This flexibility is very important 

The notion of ‘observation operators’ makes variational  
assimilation systems particularly flexible with respect to 
their use of observations. 
 

• This has been shown to be of real importance for the assimilation  
of  radiance data, for example. And it will be even more  
important in the coming years as a large variety of data from  
additional space-based observing systems become available - each  
with different characteristics. 
 

• There is no need to convert the  
observed data to correspond to  
the model quantities. The retrieval  
is, instead, seen and integral part  
of the variational estimation problem. 
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Summary: Role of the observation operator H 

Every observed quantity that can be related to the model variables in a  
meaningful way, can be used in 3D/4D-Var.  The link to enable the comparison 
of model and observations is the observation operator H 

• Accurately computing H(x) is important for deriving background departures 
and the assimilation’s analysis increments.  Assumptions/approximations 
within the observational operator need to be taken into account, including the 
interpolation error and finite model resolution (they contribute to the  
representativeness error). 

• One observation can depend on several model quantities: Geop=H(T,Ps,q), 
Rad=H(T,q,o3,…). That means it is multi-variate. 

• H may be non-linear.  Some TOVS channels vary strongly non-linearly with q 
(humidity), for example.  Its first derivative H (the Jacobian) then depends on 
the atmospheric state. 

Moreover, when the observations are significantly influenced by geophysical 
quantities that are not analysed in the system (e.g. surface emissivity, skin 
temperature, clouds or precipitation) then difficulties may arise. 
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Summary:  
Typical issues associated with observation usage 

 

• How can we compare the model to the observations? 
– Can we implement a forward operator H ? 

• Do we have all the information needed by the forward model? 
• How about the tangent linear and adjoint operators? 
• Are the operators computationally affordable? 

– Would it be better to use a retrieval product made elsewhere? 
• What additional assumptions are being made?  Are they valid? 
• Can the processing assumptions/parameters be controlled? 

– There is often a transition from retrievals to more raw products like radiances 
• This can take several years 
 

• How much weight should we give to the observations and background? 
– What are the sources of error? 
– Are the errors random or systematic? 

 

• Answers from previous experience and further research 
• Even “old” observations need to be re-assessed (i.e. fundamental for 

reanalysis activities) 
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