Operational and research activities at ECMWF now and in the future

Sarah Keeley Education Officer

Erland Källén Director of Research

Global observation system

Global numerical weather forecasts

How ECMWF was established

Start of operational activities

1978 Installation of first computer system (CRAY 1-A)

1979 Start of operations

N48 grid point model – 200km

Current system

- IBM Cluster
 - Two identical systems for resiliency
 - 1.5 Petaflops peak performance (1.5×10^{15})
- Operational Model T1279 (16km)
- Ensemble Prediction System T639 (31km)
- Coming soon Cray XC30

Evolution of ECMWF scores

Adapted and extended from Simmons & Hollingsworth (2002)

Physical aspects, included in IFS

Data assimilation

Variational data assimilation

Predictability, diagnostics and extended-range forecasting

The atmosphere is a chaotic system

- Small errors can grow to have major impact (butterfly effect)
- This limits detailed weather prediction to a week or so ahead
- Slowly evolving components of the climate system can give predictability at longer timescales

Meteosat 9 IR10.8 20080525 0 UTC

ECMWF Fc 20080525 00 UTC+0h:

Meteorological Operations

ECMWF Research

Erland Källén Director of Research ECMWF

RMS error of 500 hPa height field Northern Hemisphere

Outline

- Operational scores
- Clouds and surface processes
- Increasing resolution
- Ensemble prediction
- Data assimilation
- Reanalysis
- Chemical modelling and assimilation

Wind storm NW Europe 28 October 2013

Signal from 4-5 days ahead in the Extreme Forecast Index (EFI)

Model: Physical aspects

- Cloud microphysics
- Convection scheme revisions
- Stable boundary layer roughness lengths
- Radiation and aerosols

Focus on improved cloud parametrization:

- Super-cooled liquid layers in mixed phase stratiform cloud (37r3)
- Ice water content in cirrus (38r1)

Diurnal evolution of total heating profile -radiation

HPCF performance vs Strategy

Scalability activities

- Preparation for future HPC architectures (2018 onwards)
 - Data assimilation (OOPS)
 - IFS dynamical core
 - Model code optimisation
 - Other code optimisations (observation handling)

Model: Numerical aspects

- Resolution increases
 - —Horizontal: 16 km in 2010 → 10 km in 2015 → ≈5 km in 2020
 - -Vertical: 91 \rightarrow 137 levels in 2013
- Fast Legendre transforms
- Non-hydrostatic model
- Mass conservation

Strategy for IFS dynamical core

- Unified hydrostatic-anelastic equations
- Extend to nonhydrostatic formulation
- Retain semi-implicit, semi-Lagrangian schemes
- Retain spectral transform technique
- Improve parallelisation/scalability by implementing unstructured grids

EULAG on full Gaussian grid

ENsemble prediction System (ENS)

- EDA, singular vectors and ENS
- Stochastic physics
- 91 levels in the vertical T639
- Coupled to the ocean model from the start of the forecast
- Monthly forecasting
 - MJO skill scores
- Seasonal forecast System 4
 - EUROSIP including NCEP
- Applications of ENS
 - Flooding/drought prediction
 - Health

Performance of the monthly Forecasts since 2002

Hindcasts covering the period 1995-2001

Data assimilation

- Variational assimilation
- Ensemble of Data Assimilations (EDA)
- Ensemble Kalman Filter (EnKF)
- Surface analysis

Ensemble assimilation and prediction

Z500 Time series of ACC=80% N hemisphere

HRES and ERA Interim 00,12UTC forecast skill

500hPa geopotential Lead time of Anomaly correlation reaching 80%

Reanalysis (ERA)

- Climate monitoring in near real time
- ERA-20th century reanalysis in preparation
- Ocean reanalysis

Global Warming since 1957

Anomalies of monthly-means relative to 1989 - 2001 average

Time evolution of ocean heat content

Atmospheric composition

- Modelling and data assimilation
- Monitoring and evaluation
- Impact on NWP aerosols

Ceilometer, obs. & simul.

Summary

- ECMWF world leader medium range weather forecasting
- Variational and ensemble data assimilation
- Very high resolution possible
- Atmospheric composition
- Reanalysis

