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Abstract

Besides the Indonesian throughflow (ITF), the South China Sea throughflow (SCSTF) also contributes to the water
transport from the Pacific to the Indian Ocean. However, this South China Sea (SCS) branch at the Karimata Strait
is poorly observed until 2007, even though its importance has been suggested by numerical studies for decades. In
this paper, we review the nearly 10-year field measurement in the Karimata Strait by the execution of the projects
of  “SCS-Indonesian  Seas  Transport/Exchange  (SITE)  and  Impacts  on  Seasonal  Fish  Migration”  and  “The
Transport, Internal Waves and Mixing in the Indonesian Throughflow regions (TIMIT) and Impacts on Marine
Ecosystem”, which extend the observations from the western Indonesian seas to the east to include the main
channels of the ITF, is introduced. Some major achievements from these projects are summarized.
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1  Introduction
Ocean circulation plays critical roles in the heat balance

around the globe. At its most basic level, the warm water from the
tropical Pacific Ocean flows into the Indian Ocean through the
Indonesian seas, which in turn joins the Agulhas Current to loop
around the Africa and travels northward in terms of the Gulf
Stream in the Atlantic Ocean. Upon reaching the North Atlantic,
these waters sink and creep southward along the ocean floor.
While exiting the Atlantic, it joins the eastward flow in the South-
ern Ocean, with part of the waters move northward to intrude in-
to the Indian Ocean, whereas most of them enter and cross the
Antarctic Circumpolar Current (ACC) to become a source of the
Antarctic Bottom Water (AABW). The deep and bottom waters
move northward to enter the Pacific Ocean where they upwell,
only to seep back into the Indian Ocean through the South China
Sea (SCS) and the Indonesian seas at low latitudes. This through-
flow from the Pacific to the Indian Ocean joins the Agulhas Cur-

rent subsequently, making the so called “great ocean conveyor
belt” closed (Broecker, 1991; Gordon, 2005; Talley, 2013).

The seepage of warm waters from the equatorial West Pacific
Ocean to the Indian Ocean via the Indonesian seas is called the
Indonesian throughflow (ITF), which has been long time recog-
nized as a key component of global ocean circulation (Wyrtki,
1961; Gordon et al., 2003; Gordon and Fine, 1996). The driving
force of the ITF is the pressure gradient between the West Pacific
and the eastern Indian Ocean across the Indonesian seas (Wyrtki,
1961, 1987; Gordon, 1986). The water transport of the Indonesian
throughflow is estimated at a low value of 1.5 Sv (1 Sv=106 m3/s)
by Wyrtki (1961) and much higher values from 5.1 up to 18 Sv
summarized by Gordon (1986) before direct measurements of
current are available. Since 1983, expendable bathythermograph
(XBT) have been repeatedly used along a section between Fre-
mantle, Australia and Sunda Strait, Indonesian (IX1 section) to
measure the upper ocean temperature and monitor the ITF vari-  
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ability. With the temperature data from XBT along the IX1 sec-
tion, Meyers et al. (1995) calculated the mean geostrophic
throughflow-transport to be 5 Sv relative to 400 m water depth.
This has been followed by more studies and the transport across
the IX1 section has been shown to have large uncertainty (Liu et
al., 2005, 2015; Wijffels et al., 2008). Satellite altimeter provides a
proxy for the ITF transport by empirical formula, which can be
used to produce a longer time series for the interannual variabil-
ity of ITF (Potemra, 2005; Sprintall and Révelard, 2014; Susanto
and Song, 2015).

Direct measurements of the ITF come from the International
Nusantara Stratification and Transport (INSTANT) program from
2004 to 2006 (Sprintall et al., 2004, 2009; Gordon et al., 2010) and
earlier Arlindo program from 1996 to 1998 (Gordon and Susanto,
1999; Susanto and Gordon, 2005). When the INSTANT program
ended in 2006, a single mooring in the Makassar Strait was car-
ried through (Susanto et al., 2012). Meanwhile, a mooring array
in the Timor Passage was operated to monitor the ITF as part of
the Australian Integrated Marine Observing System (IMOS) since
2007 (Moltmann et al., 2010; Moltmann, 2011). The efforts of dir-
ect velocity measurements of the ITF provide better estimation of
the ITF, improving our knowledge about the ITF and its relation-
ship with the Indian and Pacific climate (Sprintall and Révelard,
2014; Van Sebille et al., 2014; Yuan et al., 2011, 2013).

The other passage for the throughflow from the Pacific to the
Indian Ocean is through the SCS, with inflow of clod and salty
water via the Luzon Strait and outflow of warm and fresh water
via the Karimata Strait (Fang et al., 2003, 2005, 2009; Qu et al.,
2005, 2009; Du and Qu, 2010). The outflow waters then travel
eastward and southward to join the main route of the ITF and
flow into the Indian Ocean through the Sunda Strait, respectively
(Fang et al., 2010; Susanto et al., 2013). This passage is referred as
the SCS branch of the Pacific to Indian Ocean throughflow or the
SCS throughflow (Fig. 1a) (Fang et al., 2003, 2005; Qu et al., 2005;
Wang et al., 2006). The SCS branch or SCS Throughflow is an im-
portant conveyor for bring the signals from the Pacific to the SCS,
which can influence the SCS circulation or even to reach at the
eastern Indonesian seas and the Indian Ocean (Qu et al., 2004,
2006; Liu et al., 2011).

The water transport across the Karimata Strait derived from
numerical simulations are between 1.3 and 4.4 Sv from the SCS to
the Java Sea (JS) in boreal winter, and between 0.3 and 2.1 Sv
from the JS to the SCS in boreal summer, respectively (Lebedev
and Yaremchuk, 2000; Cai et al.,  2005; Fang et al.,  2005;
Yaremchuk et al., 2009; Xu and Malanotte-Rizzoli, 2013; He et al.,
2015). Although the volume transport of the SCS branch is relat-
ively smaller than the ITF, the heat and freshwater transports by
it could be up to 0.2 PW and 0.1 Sv (Qu et al., 2006; Fang et al.,
2009), comparable to the heat transport of 0.41 PW for the ITF
(Vranes et al., 2002). The significant heat and freshwater trans-
ports make the SCS branch play an important role in the modula-
tion of ITF variability (Tozuka et al., 2007, 2009; Gordon et al.,
2012). For example, the freshwater transported by the SCS
branch can affect the ITF vairiability in two aspects: it contrib-
utes to the total ITF, and at the same time it reduces the ITF by
inhibiting the main ITF through the Makassar Strait (Fang et al.,
2010; Gordon et al., 2012). Numerical experiment shows that
blocking the SCSTF would warm the SCS, and change the period
of the El Niño-South Oscillation (ENSO) (Tozuka et al., 2015).
Meanwhile, numerical experiment of blocking SCSTF results in
significant changes of the Pacific low-latitude western boundary
current system including the Kuroshio and Mindanao Currents

as well as the North Equatorial Current bifurcation (Wang et al.,
2011a). In addition, the phytoplankton community and environ-
mental parameters in the Sunda shelf are found influenced by
the SCS branch transport (Ke et al., 2014), which in turn influ-
ence the local fishery (Hendiarti et al., 2004, 2005).

So far, most of the investigations about the SCS branch of the
throughflow at the Karimata Strait rely on the numerical simula-
tion. The only in situ observation was done more than 50 years
ago by Wyrtki (1961) until the “SCS-Indonesian Seas Transport/
Exchange (SITE) and Impact on Seasonal Fish Migration” project
was initiated jointly by researchers from China, Indonesia, and
the United State in October 2006 (Fang et al., 2010; Susanto et al.,
2010). Based on the observation of the first stage of the SITE
cruise, the volume, heat and freshwater transport from the SCS to
the Indonesian seas are estimated at 3.6 Sv, 0.36 PW, and 0.14 Sv
during 13 January to 12 February 2008, respectively (Fang et al.,
2010; Susanto et al., 2013). Up to 2016, a total of 19 cruises have
been accomplished, providing nearly 10 years of time series for
the current velocities at the Karimata Strait. A detailed descrip-
tion of the SITE project is introduced in Section 2. Section 3 intro-
duces the project entitled “The Transport, Internal Waves and
Mixing in the Indonesian Throughflow Regions (TIMIT) and Im-
pacts on Marine Ecosystem”, which extend the observation from
western Indonesian seas to the east to include the main channels
of ITF such as the Lombok and Makassar Straits. Achievements
from the SITE and TIMIT projects are reviewed in Section 4. Sec-
tion 5 is a summary.

2  The SITE project
In view of a lack of any direct observations of the SCS branch

in the Karimata Strait, researchers from the First Institute of
Oceanography (FIO), Ministry of Natural Resources of China, the
Agency for Marine & Fisheries Research (AMFR), Ministry of
Marine Affairs and Fisheries of Indonesia, and the Columbia Uni-
versity and University of Maryland from the United States, con-
ducted a collaborative observing project, the South China Sea-In-
donesian Seas Transport/Exchange (SITE), to explore the heat
and freshwater fluxes between the SCS and the Indonesian seas
through the Karimata Strait. The Karimata Strait is located
between the southern SCS and the Java Sea with a mean water
depth shallower than 50 m (Fig. 1a). The Gaspar Strait is located
between the Bangka Island and Belitung Island. The Karimata
Strait is located between Bilitung Island and Kalimantan Island
(Fig. 1b).

The first two cruises were carried out between December
2007 and January 2008, during which there were two Trawl Res-
istant Bottom Mounts (TRBMs) deployed at A1 and A2 in the
Karimata Strait (Fig. 1b). The TRBM at A1 was carried a LinkQuest
Inc. 600 kHz acoustic Doppler Current Profile (ADCP), and a RBR
Ltd. Temperature-pressure logger. The configuration of the
TRBM at A2 was same as that at A2 except that a Sea-Bird con-
ductivity-temperature-pressure recorder was used instead of the
RBR logger. The averaged depths at A1 and A2 are 36.6 and 48.0 m,
respectively, as measured from the pressure sensors. Both
TRMBs were equipped with an acoustic modem to communicate
with the ship-deck to retrieve data from the ADCP in case of
TRBM cannot be recovered in the next cruise. The third cruise
only retrieved the data from the ADCP in both Stas A1 and A2,
with the TRBMs remain under service. The TRBMs were re-
covered in the fourth and fifth cruises in May 2008 for A1 and
November 2008 for A2, respectively.

Since November 2008, the SITE project was extended to in-
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clude the Sunda Strait with the consideration of their impacts on
seasonal fish migration. Moreover, in order to depict detailed
feature of the Karimata throughflow, the stations were changed
to B1 in the Gaspar Strait between the Bangka Island and Beli-
tung Island, and B2 and B3 in the Karimata Strait between the
Belitung Island and Kalimantan Island in the subsequent obser-
vations (Fig. 1b). During the 12th cruise in June 2012, we de-
ployed an additional TRBM at B4 in the Gaspar Strait, hence the
maintenance of TRBMs at B1–B4 and B2–B3 were continued un-
til May 2016. In the Sunda Strait, a total of three TRBMs stations
were selected (Fig. 1c). All the TRBMs along Section B and in the
Sunda Strait were equipped with an upward-looking ADCP
(Fig. 1d). There were different types of ADCP including Flowquest
300 kHz, RDI Inc. 300 or 600 kHz ADCP being opted for each of
the TRBMs. These TRBMs were repeatedly recovered and re-
deployed from 2008 through 2016 at the same positions in the
Karimata Strait and Sunda Strait. So far, a total of 19 cruises have
been accomplished (Table 1).

Throughout the SITE period, over 250 CTD casts were taken
within the Karimata, Sunda and Lombok Straits (Fig. 2a). After
the 13th cruise, the interaction between the SCS branch and the
ITF has been considered. Whereafter, we carried out the 14th
cruise to deploy a subsurface mooring equipped with two
Flowquest 150 kHz ADCP and a SBE 37 CTD in the Lombok
Strait. The CTD casts (Fig. 2a), mixing measurement using Tur-
boMAP (Fig. 2b) and five section of towed vehicle (Fig. 2c) were
done during the cruise. The towed vehicle carried multi-sensors
including temperature, conductivity, pressure, chlorophyll a, tur-
bidity, dissolved oxygen, pH and nutrients (Cui et al., 2010; Wang
et al., 2011b). The towed vehicle was operated to draw undulat-
ing profiles at a range of 20–200 m along the section.

3  TIMIT project
The INSTANT program deployed 11 subsurface mooring in

the main inflow and outflow passages, i.e., the Makassar, Lom-
bok, Ombai Straits and the Lifamatola and Timor Passages.
However, it overlooked the Karimata Strait, and the mooring in

the Lifamatola Passage only covers the water depth greater than
1 250 m. The lack of observations in these places leads to the
nonconservation around 2.3–3 Sv for the inflow and outflow
transport of the ITF. Therefore, synchronized observations cover-
ing the entire water column in the inflow passages (Karimata,
Makassar and Lifamatola) and outflow passages (Sunda, Lom-
bok, Ombai, Savu and Timor) are required. Meanwhile, the In-
donesia is concerned about how the ITF dynamics impacts on
the marine ecosystem of the surrounding seas. Hence, as an in-
tegral part of the arrangement between China and Indonesia for
the Indonesia-China Center for Ocean and Climate (ICCOC), the
plan of operation for “The Transport, Internal Waves and Mixing
in the Indonesian Throughflow regions (TIMIT) and Impacts on
Marine Ecosystem” was signed by scientist from FIO and AMFR
in December 2013. The TIMIT project is proposed under these
circumstances to observe long-term current velocity profile time
series in the Makassar, Lombok and Ombai Straits, and the Li-
famatola Passage. Combined with the observations of SITE in the
Karimata and Sunda Straits and that in the Timor Passage by the
IMOS, it will be possible to quantify the total inflow and outflow
of the Pacific to Indian Ocean throughflow and related processes
within the Indonesian seas. The first cruise of the TIMIT project
was carried out in October 2015, during which three subsurface
moorings were deployed in the Makassar and Lombok Straits
(Fig. 3). The CTD casts, TurboMAP mixing, and towed vehicle
sections were also done (Fig. 3). The subsurface mooring in the
Lombok and Makassar Straits were recovered in September 2016.
The TIMIT project was then suspended due to some reason and
no more cruises were carried out. Nevertheless, an independent
cooperation between the Institute of Oceanology, Chinese
Academy of Sciences (IOCAS) and the Indonesian Institute of
Sciences (LIPI) has been established to observe the source of the
ITF, and the observation was subsequently extended to the in-
ternal Indonesian seas.

4  Achievements based on SITE and TIMIT observations
Based on the early observation of the SITE project at Stas A1
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Fig. 1.   Schematic map of the Indonesian throughflow (solid) and the South China Sea branch (dashed) of the Pacific to Indian Ocean
throughflow (a), TRBM stations in the Karimata Strait (b), TRBM stations in the Sunda Strait (c), and TRBM deployed on the sea floor
(d).
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and A2, the volume, heat and freshwater transport from the SCS
to the Indonesian seas are estimated to be 3.6 Sv, 0.36 PW, and
0.14 Sv during 13 January to 12 February 2008, respectively (Fang
et al., 2010). The mean along-channel velocity, temperature, and
salinity during 13 January to 12 February 2008 are shown in Fig. 4.
The mean volume, heat and freshwater transport is (–2.7±1.1) Sv,
(–0.30±0.11) PW, and (–0.18±0.07) Sv during boreal winter
(December 2007 to March 2008), and (1.2±0.6) Sv, (0.14±0.03) PW,
and (0.12±0.04) Sv during boreal summer (May to September
2008), respectively (Susanto et al., 2013). The along-strait velo-
city time series for the Karimata Strait during 4 December 2007 to
1 November 2008 are shown in Fig. 5. Throughout the SITE peri-

od, the annual mean volume transport through the Karimata
Strait is around 0.75 Sv, with significant seasonal and interannu-
al variability (Fig. 6).

The oceanpgraphy in the Sunda Strait is also investigated
based on SITE observation (Susanto et al., 2016; Xu et al., 2018; Li
et al., 2018). Zonal wind is found to be the dominate force for the
water transport across the Sunda Strait. During boreal winter,
there is around 0.24 Sv low-salinity water entering the Java Sea
through the Sunda Strait to reduce the main ITF in the Makassar
Strait. During boreal summer, there are 0.83 Sv lower-salinity wa-
ter entering the Indian Ocean from the Java Sea (Susanto et al.,
2016). The seasonal variability of wind stress and along strait ve-

Table 1.   Schedule of the SITE cruises
Sequence Period Vessel name Objective

  1 1–5 Dec. 2007 R/V Baruna Jaya IV Deploy 1 TRBMs in Karimata, CTD casts

  2 10–13 Jan. 2008 R/V Baruna Jaya I Deploy 1 TRBMs in Karimata, CTD casts

  3 11–17 Feb. 2008 R/V Baruna Jaya III Retrieve ADCP data from 2 TRBMs via modem in Karimata, CTD
casts

  4 5–13 May 2008 R/V Baruna Jaya VIII Recover 1 TRBMs in Karimata, CTD casts

  5 23 Oct.–10 Nov. 2008 R/V Baruna Jaya VIII Recover 2 TRBMs in Karimata, deploy 3 TRBMs in Karimata and 2
in Sunda, CTD casts

  6 7–21 Aug. 2009 R/V Geomarin III Recover 3 TRBMs in Karimata and 2 in Sunda, CTD casts

  7 11–26 Oct. 2009 R/V Geomarin III Recover 3 TRBMs in Karimata and 2 in Sunda, CTD casts

  8 17 Feb.–3 Mar. 2010 R/V Geomarin III deploy 2 TRBMs in Sunda, CTD casts

  9 5–19 Nov. 2010 R/V Madidihang Recover 3 TRBMs in Karimata and 3 in Sunda, deploy 1 TRBMs in
Karimata and 1 in Sunda, CTD casts

10 13 Sep.–8 Oct. 2011 R/V Baruna Jaya VIII Recover 2 TRBMs in Karimata and 3 in Sunda, deploy 1 TRBMs in
Karimata and 1 in Sunda, CTD casts

11 7–29 Jun. 2012 R/V Baruna Jaya III Recover 1 TRBMs in Karimata and 3 in Sunda, deploy 4 TRBMs in
Karimata, CTD casts

12 20–29 Nov. 2012 R/V Baruna Jaya VIII Recover 4 TRBMs in Karimata, deploy 4 TRBMs in Karimata, CTD
casts

13 28 Jun.–7 Jul. 2013 R/V Baruna Jaya VIII Recover 4 TRBMs in Karimata and 1 in Sunda, deploy 4 TRBMs in
Karimata, CTD casts

14 15–24 Nov. 2013 R/V Baruna Jaya VIII deploy 1 subsurface mooring in Lombok, CTD casts

15 18 Apr.–4 May 2014 R/V Baruna Jaya IV Recover 4 TRBMs in Karimata, deploy 4 TRBMs in Karimata, CTD
casts

16 10–21 Sep. 2014 R/V Baruna Jaya VIII Recover 1 subsurface mooring in Lombok, CTD casts, Towed CTD,
TurboMAP turbulence

17 18–25 Dec. 2014 R/V Baruna Jaya VIII Recover 4 TRBMs in Karimata, deploy 4 TRBMs in Karimata, CTD
casts

18 2–20 Jun. 2015 R/V Baruna Jaya VIII Recover 4 TRBMs in Karimata, deploy 4 TRBMs in Karimata and 2
in Sunda, CTD casts

19 17–28 May 2016 R/V Baruna Jaya VIII Recover 4 TRBMs in Karimata and 2 in Sunda, CTD casts
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Fig. 2.   CTD stations (a), TurboMAP stations (b) and towed vehicle sections (c).
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locity in Sunda Strait are shown in Fig. 7.
In addition, strong intraseasonal variability (ISV) of the cur-

rent is found in the Sunda Strait (Fig. 8). The ISV accounts for up
to 59% of the total subtidal current variance in the Sunda Strait.
During the period of observations, the annual mean of in-
traseasonal exchange rate in the Sunda Strait was (0.26±0.17) Sv.
This value is comparable to the seasonal exchange rate of
(0.34±0.15) Sv, suggesting that the ISV makes an important con-
tribution to the water exchange between the Java Sea and Indian
Ocean (Li et al., 2018).

The ISV of the Sunda Strait throughflow is found to influence
the distribution of chlorophyll a concentrations in the Sunda
Strait (Xu et al., 2018). The chlorophyll a concentrations in the
south of the Sunda Strait are lower/higher during the inflow/out-
flow period of the ISV events in March through May (Fig. 9). The
mechanism attributes to both the nutrient-rich water transpor-
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Fig.  3.     CTD (solid dot),  TurboMAP (dashed dot),  subsurface
mooring (solid star) stations and towed vehicle sections (solid
line) of the first TIMIT cruise.
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ted by the intraseasonal flow in the Sunda Strait and by the up-
welling and Ekman transport driven by the local sea surface wind
anomalies.

The tidal elevation, current and energy flux in the Karimata
Strait is investigated using the sea level record and current pro-
file observation (Wei et al., 2016). The results show that the di-
urnal tides are the dominant constituents in the Karimata Strait,
with the largest amplitude greater than 50 cm for the constituent
K1, whereas smaller than 5 cm for the constituent M2. The tidal
currents are rectilinear type in the strait. The diurnal tidal energy
flows from the SCS to the JS. The semi-diurnal tidal energy flows

from the SCS to the JS through the Karimata Strait and flows from
the JS to the SCS through the Gaspar Strait (Fig. 10). These char-
acteristics imply that the Karimata Strait locate in the anti-nodal
band of the diurnal tidal waves and in the nodal band of the
semidiurnal tidal waves.

5  Summary
The pathway of the throughflow from the Pacific to the Indi-

an Ocean is the only oceanic channel for the heat and salt trans-
port between the two oceans. Moreover, the throughflow region
locates on the “21st-Century Maritime Silk Road”, which is the
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Strait (154° referenced to true north). b. Negative values indicate water transfer from the South China Sea to the Indonesian seas
(Susanto et al., 2013).
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Fig. 6.   Volume transport through the Karimata Strait. Dashed and solid lines indicate the transport along Sections A (December 2007
to November 2008) and B (December 2008 to May 2016), respectively.
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key route for the international trade between China and South-
east Asia and Africa countries—over 95% of the cargoes rely on
the maritime freightage, most of which are through the Karimata,
Makassar, Lombok, Sunda and Maluca Straits. The throughflow
regions are strongly influenced by climate or oceanic variability
from intraseasonal to interannual timescale (e.g., Madden-Julian
Oscillation, Kelvin waves, monsoon, Indian Ocean Dipole, EN-
SO). Meanwhile, complicated topography and geometry in the

throughflow regions resulting in complicate tidal system and
wave system, which influence the navigation directly. Although
there have been some observations in the Indonesian seas, it is
still insufficient. As the importance of the Indonesian seas in
marine environment and climate, a new round of monitor the
joining area of the Indo-Pacific Ocean is still urgently required
and expected to be conducted in the near future.
 

105° 106° 107°E 105° 106° 107°E

winter summer

5°

6°

7°

S

5°

6°

7°

S

wind

net water

movement

net water

movement

net water

movement

net water

movement

wind

wind

wind

0.2b

c

d

a

0.1

Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct.

Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct.

Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct.

0

5

10

D
ep

th
/m

W
in

d
 s

tr
es

s/
N

·m
-
2

D
ep

th
/m

15

20

25

10

20

30

40

50

60

70

80

90

-0.1

zonal wind stress North & South Java

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Velocity/m·s-1 (-southward)

 

Fig. 7.   The variability of wind stress and along-strait current in the Sunda Strait. a. Schematic of Ekman transport in the Southern
Hemisphere during boreal winter and summer monsoons. Wind directions are indicated by the purple arrows and their net water
transport/displacements, which are 90° to the left of wind directions, by the red arrows. b. Averaged zonal wind stress to the north and
south of the Java Island from 12°S to 3°S and 100°E to 115°E. c. Along-strait velocity profile time series in the Sunda Strait based on
trawl-resistant, bottom-mounted acoustic Doppler current profiler (ADCP) data collected at Sunda East from November 2008 to
October 2009. d. Similar data as in c, based on the Sunda West ADCP from November 2008 to July 2009. For clarity in the velocity plots,
a two-week low-pass filter has been applied (Susanto et al., 2016).
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Fig. 8.   Time series of vertically averaged along-channel velocities at S1 (a), S2 (b), and S3 (c); and time series of the low-frequency
kinetic energy (LKE) at these stations in the Sunda Strait (d). In a, b and c, the black lines indicate the daily mean values; the red lines
the intraseasonal variation after 20-90-day bandpass filtering; and the blue lines the seasonal variation after 90-day low-pass filtering.
The annual means (–17, –25 and –18 cm/s at S1, S2 and S11, respectively) are removed before plotting. Positive/negative values
represent inflow/outflow into/from the Java Sea along the channel (Li et al., 2018).
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