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ABSTRACT

The mean of the sea level deviation data derived from the TOPEX/Poseidon altimeter in the equatorial Pacific,
between 108S and 108N, and between 1208E and 788W, from cycles 2 to 136 (3 October 1992–2 June 1996),
are extracted using a maximum–minimum average method. Then, two-dimensional (2D) sea level deviation time
series are developed to visualize the dynamics of equatorial waves. The complex singular value decomposition
(CSVD) method is applied to decompose these 2D time series into empirical orthogonal modes. Using this
method, zonal and meridional structures, propagation directions, periods, and propagation speeds of these em-
pirical modes are obtained.

The first empirical mode is propagating westward, and its structure is asymmetric to the equator. It has an
average phase speed c 5 20.6 m s21 within 48–68N and c 5 20.4 m s21 within 68–88S, respectively, and a
period of 15 months, which is associated with an interannual Rossby wave. The second empirical mode is
propagating eastward along the equator and has a phase speed of 2.5 m s21 and a period of 7 months, which is
associated with an equatorial Kelvin wave.

The asymmetric feature of the empirical Rossby wave, which is also observed in the equatorial Pacific, may
suggest that the background currents and wind fields in the equatorial Pacific Ocean affect its propagation. The
amplitude of the empirical Kelvin mode increases as it propagates eastward. This is associated with an eastward
shoaling of the thermocline depth along the equatorial Pacific Ocean. The results of both empirical modes are
consistent with those predicted by the theory of Kelvin and Rossby waves and closely represent the actual
features of both waves observed in the equatorial Pacific Ocean. Therefore, the CSVD is a suitable method for
revealing the dynamics of equatorial waves.

1. Introduction

The fundamental theories of equatorially trapped
waves have been intensively developed (Moore and Phi-
lander 1977; Pedlosky 1987; Philander 1979) and have
been verified by in situ observation (Luther 1980; Knox
and Halpern 1982; Eriksen et al. 1983). Since the launch
of the Seasat altimetry in 1978, the sea level data have
been used to investigate the equatorially trapped waves
(Malardé et al. 1987). Miller et al. (1988) used the first
two years of Geosat (geodetic satellite) sea level data
to observe equatorially trapped waves in the Pacific
Ocean before and after the 1986–87 El Niño–Southern
Oscillation (ENSO) event and found that Kelvin waves
propagated across the Pacific with phase speeds of 2.4–
2.8 m s21. Delcroix et al. (1991) examined the first year
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of Geosat sea level data and found evidence of equa-
torially trapped Kelvin and the first meridional Rossby
waves in the Pacific Ocean and gave their phase speeds,
estimated by time-lag correlation and least squares fit
of the sea level anomaly meridional structures to the-
oretical modes. White and Tai (1992) used Geosat sea
level data to examine the reflection of interannual Ross-
by waves at the maritime western boundary of the trop-
ical Pacific Ocean and verified the existence of west-
ward-propagating Rossby waves and eastward-propa-
gating Kelvin waves in the equatorial domain. Jacobs
et al. (1993) used Geosat data to observe Rossby waves
in the whole Pacific Ocean. Zheng et al. (1994) used
satellite data to verify the effect of shear flow on the
propagation of Rossby waves in the equatorial Pacific,
and Zheng et al. (1995) used Geosat sea level data to
observe the behavior of the frequency spectra of equa-
torial waves, especially during the 1986–87 ENSO
event. Boulanger and Menkes (1995) used the TOPEX/
Poseidon (T/P) sea level data combined with the Trop-
ical Ocean Global Atmosphere–Tropical Atmosphere
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Ocean (TOGA–TAO) mooring array to study propa-
gations and reflections of long equatorial waves in the
Pacific during the 1992–93 El Niño. Chelton and Schlax
(1996) used T/P data to observe global Rossby waves.
To distinguish Kelvin and Rossby waves, the previous
investigators (e.g., White and Tai 1992; Zheng et al.
1995; Boulanger and Menkes 1995; Boulanger and Fu
1996) decomposed meridional structure of sea level into
theoretical Kelvin–Rossby wave modes. This method is
widely used; however, it is worth noting that this de-
composition does not satisfy the orthogonality relation.
Our effort is seeking a new method that is able to de-
compose a time series into orthogonal modes and is
suitable for analyzing 20 distributions of sea level vari-
ability observed by satellite altimeters.

A common method to decompose a signal into or-
thogonal modes is empirical orthogonal functions
(EOFs) or principle component analysis; however, this
method cannot be used for detection of propagating fea-
tures because of the lack of phase information. Barnett
(1983) applied a complex EOF analysis using a co-
variance matrix to investigate the interaction of the mon-
soon and trade wind systems in the Pacific, and he de-
tected propagating features in the wind systems. In this
study we use a complex singular value decomposition
(CSVD) for which the covariance matrix is not needed,
making this method simpler and more efficient. Using
CSVD, one can calculate not only the eigenvalues and
eigenvectors but also the spatial amplitudes, and spatial
and temporal phase functions, from which one can ob-
serve the eastward–westward propagation of equatorial
waves. Their wavenumbers k and angular velocities v
can also be derived. Furthermore, the phase speed can
be obtained using the dispersion relation c 5 v/k.

In this study, our goal is to seek a method to decom-
pose a 2D time series, T/P sea level deviation (SLD)
data into orthogonal modes and to reveal the propaga-
tion directions, propagation speeds, periods, and zonal
and meridional structures of equatorial waves. The fol-
lowing sections of this paper show that the CSVD meth-
od does satisfy these requirements. The theory of CSVD
is discussed in detail in section 2. Section 3 discusses
the application of CSVD to the T/P sea level deviation
data in the equatorial Pacific. Section 4 provides a sum-
mary.

2. Complex singular value decomposition (CSVD)

Before applying the CSVD method to the sea level
deviation data, the data have to be transformed into a
complex signal using the Hilbert transform. The sea
level deviation time series h(t) is the real part of a com-
plex function, that is,

h(t) 5 Re[c(t)], (1)

where

c(t) 5 h(t) 1 ij(t). (2)

Then j(t) is the Hilbert transform of h(t):

`1 h(u)
j(t) 5 H [h(t)] 5 du. (3)Ep t 2 u

2`

The Hilbert transform, therefore, is equivalent to a phase
shift of 6p in the spectral domain. In practice, when
working with discrete spectra computed using the fast
Fourier transform, the determination of ci from hi is
handled most easily by computing the transform of h(t)
and then computing the Fourier transform of c(t) or Fc.

The 2D complex sea level deviation time series h(x,
y, t) can be reduced to D(x9, t). Assume D is an m (spatial
points) by n (temporal points) matrix, then

D 5 USVH, (4)

where VH is the conjugate transpose of V (Strang 1988).
The columns of U (m 3 m) are eigenvectors of DDH,
and the columns of V (n 3 n) are eigenvectors of DHD.
The r singular values on the diagonal of S (m 3 n) are
the square roots of the nonzero eigenvalues of both DDH

and DHD, where r is the rank of D. For complex matrices,
S remains real, U and V become unitary (the complex
analog of orthogonal), which means

HU U 5 I and
HV V 5 I . (5)

One can see that the columns of U are eigenvectors of
DDH, and the columns of V are eigenvectors of DHD
using the following expansions:

H H H H H T HDD 5 (USV )(USV ) 5 (USV VS U )
T H5 USS U ,

H H H H T H HD D 5 (USV ) (USV ) 5 (VS U USV )
T H5 VS SV , (6)

where ST is the transpose of S.
To aid in the interpretation, we offer an example, D(x,

t) 5 a exp[i(kx 2 vt)]. Following Barnett (1983), we
define the following parameters, which constitute a gen-
eral description of propagating patterns.

a. Spatial amplitude function Sn(x)

The spatial amplitude function shows the spatial dis-
tribution of variability associated with each eigenmode
and may be interpreted as in a regular EOF or singular
valve decomposition (SVD) analysis. To find the am-
plitude, let the matrix A satisfy the following relation:

DH 5 VAH, (7)

which, by comparison with Eq. (4), gives A 5 US. Then
Sn(x) is defined as the real value of complex matrix A,
where n represents mode number. For a sinusoid func-
tion, Sn(x) is a constant since a is independent of x.
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FIG. 1. (a) An example of the original SLD data. (b) The low-
frequency variability of SLD after the data processing techniques
have been applied.

b. Spatial phase function un(x)

The spatial phase function shows the relative phase
of fluctuations among the various spatial locations
where D is defined. The spatial phase function is defined
as

Im[A (x)]nu (x) 5 arctan . (8)n 1 2Re[A (x)]n

The spatial derivative of un(x) provides, for the sinusoid
field, a measure of the local wavenumber k.

c. Temporal amplitude function Rn(t)

Similar to the spatial amplitude function, the temporal
amplitude function is defined such that matrix B satisfies
the following relation:

D 5 UBH, (9)

which, by comparison with Eq. (4), gives B 5 VST.
Then Rn(t) is defined as the real value of complex matrix
B. This temporal amplitude function measures the tem-
poral variability in the magnitude of the modal structure
of D.

d. Temporal phase function fn(t)

The temporal phase function describes the temporal
variation of phase associated with D,

Im[B (t)]nf (t) 5 arctan . (10)n 1 2Re[B (t)]n

For the sinusoid wave, one can see that f n(t) 5 vt.
Therefore, the time derivative of f n(t) is directly pro-
portional to the angular frequency v.

3. Application of CSVD to T/P data in the
equatorial Pacific

a. TOPEX/Poseidon sea level data

The T/P sea level data are derived from raw T/P data
at the National Oceanic and Atmospheric Administra-
tion (NOAA) Geoscience Laboratory. The data used in
this study have a spatial resolution of 1.08 latitude by
2.88 longitude and cover 608S–608N from cycles 2 to
136 (3 October 1992–2 June 1996). Standard corrections
have been applied to remove signals from the wet and
dry troposphere, ionosphere, tides, inverse barometric
pressure, sea state bias, geoid, and orbit errors. Then
the sea level time series are expressed as deviations
relative to the 3-yr mean: January 1993–96.

The baseline used for this study is a subdataset of the
T/P sea level deviation time series, which is taken from
the area between 108S and 108N and between 1208E and
788W in the equatorial Pacific Ocean. One can use data
from either ascending or descending orbits or both; how-
ever, one should note that there are time lags between

ascending and descending orbits. To avoid additional
bias in the data, we use the data taken from descending
orbits only. The original data contain high-frequency
signals of which the amplitudes are of the order of 3
cm, which is of the same order of magnitude as the
resolution limit of the T/P altimeter. In this study we
focus on analyzing the low-frequency variability of sea
level regardless of high-frequency components. To ex-
tract low-frequency components from the original data,
a maximum–minimum mean method (Huang et al. 1998,
manuscript submitted to Proc. Roy. Soc. London, Ser.
A), which is particularly suitable for analyzing nonsta-
tionary time series data, is used. A moving average and
median filter are also applied to processed data in order
to smooth the data further. Figure 1a shows an example
of the original SLD data, and Fig. 1b shows the low-
frequency variability of the SLD obtained using the
above processing techniques. Figure 2 shows time–lon-
gitude panels of the low-frequency variability of SLD
along the equator, 68N, and 68S. Along the equator there
are eastward-propagating patterns, which are probably
associated with equatorial Kelvin waves; meanwhile
along 68N and 68S there are westward-propagating pat-
terns that are probably associated with Rossby waves.
The solid lines represent the zero value of SLD. Then,
2D time series of low-frequency variability of SLD are
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developed for visualizing the spatial structure and prop-
agation of the equatorial waves (Fig. 3).

b. A case study of CSVD analysis

A subset of 2D sea level deviation time series from
March 1993 to January 1994, which is associated with
the 1992–93 El Niño event, is analyzed. Figure 3 shows
the 2D low-frequency variability of SLD; these are se-
lected as an example of a total of 30 cycles of T/P data
during this period. Before May 1993, one can clearly
see a Kelvin wave approaching the eastern Pacific and
then, about 1 month later, a Rossby wave is observed
propagating westward. These figures provide evidence
of the reflection of an equatorial Kelvin wave and its
transformation into a Rossby wave at the eastern Pacific
boundary. One can also see that the meridional structure
of the Rossby wave propagating westward is asym-
metric to the equator. To reveal more details of these
waves, the CSVD method is used to decompose a 2D
SLD time series into eastward and westward propagat-
ing orthogonal modes. The phase speeds of these modes
will also be calculated. We wish to resolve the asym-
metric meridional structure of the Rossby wave in the
real ocean, as shown in Fig. 3.

Using the CSVD method, we obtain 2D empirical
orthogonal modes of 2D SLD time series. Figure 4a
shows the first empirical mode, which has a similar
structure to that of a theoretical Rossby wave mode, and
Fig. 4b shows the second empirical mode, which has a
similar structure to that of a theoretical Kelvin wave
mode. From Fig. 4a, one can clearly see that the me-
ridional structure of empirical mode 1 is asymmetric to
the equator. As mentioned earlier, we have observed an
asymmetric structure of the equatorial Rossby wave
propagating westward in the 2D time series shown in
Fig. 3. In our parallel study (Zheng et al. 1997), we
observed that the westerly wind burst, which is most
likely responsible for generating equatorial waves, is
asymmetric to the equator. This wind causes the asym-
metric meridional structure of the Intertropical Con-
vergence Zone (ITCZ) and the thermocline depth, which
then force the meridional structure of Rossby waves to
be asymmetric to the equator.

From Fig. 4b, one can see that the amplitude of the
empirical Kelvin wave increases as it propagates east-
ward. This result agrees with our results of an equatorial
Kelvin solitary wave using the same dataset (Zheng et
al. 1998, manuscript submitted to J. Phys. Oceanogr.,
hereafter referred to as Z98), that is, sea level deviation
pulses are consistent with a Kelvin soliton solution of
the perturbed KdV equation (PKdV) derived by Long
and Chang (1990). In the western Pacific, the thermo-
cline depth is nearly constant at 160-m depth, and it
begins shoaling at 1758W up to 60-m depth in the east-
ern Pacific Ocean. The equilibrium depth of the ther-
mocline changes seasonally. Because of the eastward
shoaling of the thermocline depth along the equatorial

Pacific, the amplitude of the Kelvin wave increases as
it propagates eastward. The effect of the eastward shoal-
ing thermocline depth on the propagation of linear Kel-
vin waves has been studied by Hughes (1981), who
concluded that the amplitude of Kelvin waves increase
as they propagate eastward in the equatorial Pacific. This
phenomenon is similar to that of a surface gravity wave
approaching a shoaling beach. In addition, the nonlinear
behavior of equatorial waves has been studied theoret-
ically by Boyd (1980, 1984, 1990) and observed by
Glazman et al. (1996).

In order to compare the empirical modes with the
theoretical Kelvin–Rossby wave modes, the empirical
modes are decomposed into these nonorthogonal modes.
Tables 1 and 2 show the relative amplitudes of the first
six Kelvin–Rossby wave modes derived from the first
and second empirical modes at selected longitudes, re-
spectively. Figures 5a and 5b show a comparison of
meridional structures of the first and second empirical
modes at selected longitudes with superpositions of
those of the first eight theoretical Kelvin–Rossby wave
modes. From Table 1, one can see that in the central
Pacific, the first empirical mode is primarily composed
of the first four Rossby modes and the Kelvin mode.
The Rossby mode 2 is the most dominant and the con-
tributions of the Kelvin mode and Rossby modes 1, 3,
and 4 are all of the same order of magnitude. Meanwhile,
in the eastern Pacific, the meridional structure of this
empirical mode is dominated by the first two Rossby
modes, where the second mode is more dominant than
the first mode. As shown later, these results are also
confirmed by the phase speeds. Table 2 shows that the
second empirical mode is dominated by the Kelvin
mode, which is 3–20 times larger than the first two
Rossby modes, depending on the longitude.

After determining the spatial amplitude of the em-
pirical modes, the next step is to calculate their temporal
amplitudes. Figures 6a and 6b show the feather plot of
the imaginary and the real parts of the temporal am-
plitude function of the empirical modes 1 and 2, re-
spectively. This function represents temporal variability
of the sea level. A semiregular clockwise rotation shown
in these figures proves that indeed there is a propagating
pattern (if there is no propagating pattern, the vectors
or ‘‘sticks’’ will be vertical since there is no imaginary
part or phase information). For periodic signals, the pe-
riod of the empirical mode can be obtained from this
function directly. However, the length of ours is too
short to derive the periods of the waves, and the waves
are probably even aperiodic; therefore, the values given
here are an approximation only. From Fig. 6a, the period
of the first empirical mode is 15 months, which is prob-
ably associated with an interannual Rossby wave. Mean-
while, from Fig. 6b, the period of the second empirical
mode, associated with a Kelvin wave, is 7 months. As
shown later, these periods agree with those derived from
the temporal phase functions. The period of Rossby
waves can span timescales of several days to several
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FIG. 2. Time–longitude panels of the low-frequency variability of SLD along the equator, 68N and 68S.

years, with length scales ranging from tens of kilometers
to several thousand kilometers (Jacobs et al. 1993). The
period of the empirical Rossby wave obtained in this
study lies within this timescale.

In order to determine the propagation directions of

these empirical modes, their spatial phase functions
un(x) and temporal phase functions f n(t) must be cal-
culated. The spatial derivative of un(x) represents wave-
number k, while the temporal derivative of f n(t) rep-
resents the angular frequency v, which is assumed al-
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FIG. 3. Two-dimensional low-frequency variability of SLD time series; these are selected as an example of a total
of 30 cycles of TOPEX/Poseidon data from March 1993 to January 1994.
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FIG. 4. The spatial amplitudes of (a) the first empirical mode and (b) the second empirical modes
obtained using the CSVD method.

ways to be positive. If the wavenumber k for a given
mode is positive, it means that this mode propagates
eastward. Otherwise, the mode propagates westward.
From Fig. 4, one can see that the peak positions of the
empirical Rossby mode are at 48–68N and 68–88S at the
eastern and central Pacific Ocean, respectively. There-
fore, the spatial phase functions for both modes are
calculated along these latitudes. The results of the first
empirical mode are shown in Figs. 7a and 7b, respec-
tively. Figure 7c shows the spatial phase function of the
second empirical mode along the equator (18S–18N).
The symbols are derived from satellite observations, and

the solid lines are their linear fits calculated by regres-
sions.

Figures 7d and 7e show the temporal phase functions
of the first and second empirical modes, respectively.
The dots are derived from satellite observations, and the
solid lines are their linear fits calculated by regressions.
The slope of the spatial phase function represents the
wavenumber, while that for the temporal phase function
represents the angular frequency. The first empirical
mode has wavenumber k 5 20.029 rad (8longitude)21

and k 5 20.043 rad (8longitude)21 within 48–68N and
68–88S, respectively. The angular frequency of the first
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TABLE 1. The empirical Rossby mode decomposed into theoretical
Kelvin–Rossby wave modes at selected longitudes: K is the theoret-
ical Kelvin wave mode and R 2 n is the theoretical Rossby wave
mode n, where n is mode number.

Long

Relative amplitude

K R 2 1 R 2 2 R 2 3 R 2 4 R 2 5

165.68E
168.48E
171.28E
174.08E
176.88E

216.63
217.12
210.73
22.50

8.00

212.70
212.71
213.39
210.49
29.84

247.96
238.72
232.68
229.29
229.44

12.97
12.07
12.51
10.82
10.01

210.98
211.28
211.00
210.52
28.77

3.00
2.95
2.95
2.93
2.86

124.48W
118.88W
113.28W
107.68W
102.08W

23.26
27.46

217.48
215.40
27.86

27.79
33.09
25.87
24.94
31.19

34.91
38.54
45.73
43.24
36.47

2.99
1.92
3.91
4.69
2.29

6.17
7.34
6.11
5.31
5.86

0.30
0.16

20.60
21.21
20.42

TABLE 2. The empirical Kelvin mode decomposed into theoretical
Kelvin–Rossby wave modes at selected longitudes: K is the theoret-
ical Kelvin wave mode and R 2 n is the theoretical Rossby wave
mode n, where n is mode number.

Long

Relative amplitude

K R 2 1 R 2 2 R 2 3 R 2 4 R 2 5

169.28W
163.68W
158.08W
152.48W
146.88W
141.28W
135.68W
127.28W
121.68W
116.08W
110.48W
104.88W

99.28W
96.48W
90.88W
88.08W

14.38
22.97
36.76
46.38
44.33
44.75
58.41
62.36
71.36
70.69
73.76
75.57
50.34
49.47
44.41
37.32

23.47
21.72
21.86

214.31
215.83
210.93

4.97
10.52

7.15
5.93
3.04
4.13

23.40
22.65
21.94
21.07

4.43
1.22

22.17
21.54

6.54
8.73
6.72
7.79
3.24

21.28
23.80
24.86

9.00
9.04
6.29
7.05

6.34
6.41
4.25
4.80
3.22
0.34

25.33
27.24
26.25
25.02
23.42
21.79

0.83
0.73

20.11
20.10

21.84
22.35
22.26
21.94
21.39
21.72
20.95
20.01

1.40
1.24
0.98
1.32

20.86
20.02

0.11
0.20

20.46
0.02
0.60
0.23
0.23
0.99
2.07
2.20
1.53
1.06
0.51
0.34
0.09
0.36
0.31
0.36

FIG. 5. Comparison of meridional structure of (a) the first and (b)
the second empirical modes at selected longitudes with that of the-
oretical Kelvin–Rossby wave modes. The asterisks represent the em-
pirical modes derived using the CSVD method, while the solid lines
are superpositions of the first eight Kelvin–Rossby wave modes.

mode v 5 0.014 rad day21. The second empirical mode
has wavenumber k 5 0.016 rad (8longitude)21 and v 5
0.031 rad day21. From values of wavenumber and an-
gular frequency, one can obtain the periods and wave-
lengths of these modes. The periods are 15 months and
7 months for the first and the second empirical modes,
respectively.

Using the relation c 5 v/k, we obtain the average
phase speed of the first empirical mode as 20.6 m s21

along 48–68N, and 20.4 m s21 along 68–88S associated
with a westward-propagating Rossby wave. The average
phase speed of the second mode is 2.5 m s21 associated
with an eastward-propagating Kelvin wave. There is a
difference in the phase speed of Rossby wave within
48–68N and that within 68–88S, which suggests that the
asymmetric peaks of Rossby wave do not propagate
westward with a constant speed. This is probably due
to the interaction between the waves and background
currents in the equatorial Pacific Ocean.

Using the empirical Kelvin wave phase speed (2.5 m
s21) and the mean of the empirical Rossby mode phase
speed (20.5 m s21), and then applying to the dispersion
relation cm 5 c/(1 1 2m), where m is the Rossby mode
number, c is the equatorial Kelvin wave speed, and cm

is phase speed of Rossby wave mode m, shows that
Rossby mode 2 is the most dominant component. This
result is confirmed by the mode decompositions into the
theoretical Kelvin–Rossby wave modes (see Table 1).
The phase speeds of both empirical modes are in good
agreement with those predicted by the linear theory of
Kelvin and Rossby waves reported by previous inves-
tigators (e.g., Luther 1980; Knox and Halpern 1982;
Gill 1982; Eriksen et al. 1983; Miller 1988; Delcroix et
al. 1991; Zheng et al. 1995; Chelton and Schlax 1996),
who predicted that a Kelvin wave phase speed is in the
range 2.4–3.1 m s21.

4. Summary

The CSVD analysis of the TOPEX/Poseidon sea level
deviation data from March 1993 to January 1994 has

provided valuable information about the spatial struc-
ture in both zonal and meridional directions, propaga-
tion directions, periods, and phase speeds of equatorial
waves. The first empirical mode is asymmetric to the
equator, which is probably due to the wind fields, me-
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FIG. 6. The feather plot of the imaginary and the real parts of the temporal amplitude functions of (a) the first empirical mode and (b) the
second empirical mode.

ridional thermocline depth, and background current ef-
fects, and has a similar structure to that of the Rossby
wave observed in the real ocean. The second empirical
mode structure agrees with that of a Kelvin wave. The
amplitude of the second mode increases as it propagates
eastward due to the eastward shoaling of the thermocline
depth along the equatorial Pacific, as shown in our par-
allel study of an equatorial Kelvin soliton (Z98) and by
previous investigators (Hughes 1981; Long and Chang
1990). In the eastern Pacific, the meridional structure
of the first empirical mode is composed mostly of a
superposition of the first two theoretical Rossby modes,
where the second mode is more dominant than the first.
In the central Pacific, this mode is also composed pri-
marily of the second Rossby mode; however, the con-
tributions of the theoretical Kelvin mode and the the-
oretical Rossby modes 1, 3, and 4 are all of the same
order of magnitude. These results are confirmed by their
phase speeds. The meridional structure of the second
empirical mode agrees well with that of the theoretical
Kelvin wave. Based on their temporal modes and tem-
poral phase functions, the period of the first empirical
mode is 15 months, which is probably associated with

an interannual Rossby wave. The period of the second
empirical mode, which is probably associated with a
Kelvin wave, is 7 months.

The phase speed of the first mode associated with an
interannual Rossby wave is 20.6 and 20.4 m s21 within
the peak at 48–68N and 68–88S, respectively. This dif-
ference is probably due to the influence of background
currents in the equatorial Pacific Ocean. The mean of
the empirical Rossby mode phase speeds is 20.5 m s21.
The phase speed of the second mode is 2.5 m s21. Equat-
ing these phase speeds to the dispersion relation c/(1 1
2m), where m is the theoretical Rossby mode number
and c is the theoretical Kelvin wave speed, shows that
Rossby mode 2 is the most dominant component. The
mode decompositions of the empirical modes into the-
oretical Kelvin–Rossby wave modes given in Table 1
confirms this result.

Using the CSVD method we obtain zonal and me-
ridional structures, propagation directions, periods, and
propagation speeds of both empirical Kelvin and Rossby
waves, where the results are in good agreement with
those predicted by the theory of equatorial Kelvin and
Rossby waves. The asymmetric feature of the empirical
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FIG. 7. The spatial phase functions of (a) the first empirical mode
along the peak at 48–68N, (b) the first empirical mode along the peak
at 68–88S, and (c) the second empirical mode along the equator (18S–
18N). Also shown are the temporal phase functions of (d) the first
empirical mode and (e) the second empirical mode. The symbols and
dots are derived from satellite observation, and the solid lines are
their linear fits or slopes calculated by regression.

Rossby mode and the increasing amplitude of the em-
pirical Kelvin mode as it propagates eastward represent
the natural features observed in the equatorial Pacific
Ocean. Therefore, we believe that this method is a suit-
able technique for analyzing equatorial wave dynamics.
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