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Abstract: With their complex narrow passages and vigorous mixing, the Indonesian seas provide
the only low-latitude pathway between the Pacific and Indian Oceans and thus play an essential
role in regulating Pacific-Indian Ocean exchange, regional air-sea interaction, and ultimately, global
climate phenomena. While previous investigations using remote sensing and numerical simulations
strongly suggest that this mixing is tidally driven, the impacts of monsoon and El Niño Southern
Oscillation (ENSO) on tidal mixing in the Indonesian seas must play an important role. Here we use
high-resolution sea surface temperature from June 2002 to June 2021 to reveal monsoon and ENSO
modulations of mixing. The largest spring-neap (fortnightly) signals are found to be localized in
the narrow passages/straits and sills, with more vigorous tidal mixing during the southeast (boreal
summer) monsoon and El Niño than that during the northwest (boreal winter monsoon) and La
Niña. Therefore, tidal mixing, which necessarily responds to seasonal and interannual changes
in stratification, must also play a feedback role in regulating seasonal and interannual variability
of water mass transformations and Indonesian throughflow. The findings have implications for
longer-term variations and changes of Pacific–Indian ocean water mass transformation, circulation,
and climate.

Keywords: Indonesian seas; tidal mixing; spring-neap tide; fortnightly; Indonesian throughflow;
monsoon; ENSO; Indian Ocean Dipole

1. Introduction

With their complex geography and narrow passages, the Indonesian seas provide the
only pathway for low-latitude Pacific Ocean water to flow into the Indian Ocean (Figure 1).
Transport and water-mass transformation associated with the Indonesian throughflow
(ITF) directly impacts the heat and freshwater budgets of the Pacific and Indian Oceans,
and influences the El Niño Southern Oscillation (ENSO) and Asian–Australian monsoons,
e.g., [1–3]. Furthermore, the Indonesian seas are a prime location of atmospheric convection
that drives the Walker Circulation. Hence any changes in sea surface temperature (SST)
within these regions will have global impacts on weather and climate events, e.g., [4–6].
Ocean mixing in the Indonesian seas affects the mean state of the Indo-Pacific region and
its interannual variability [7].

Along the ITF pathways, waters experience strong tidal mixing and air-sea interactions.
The detailed geography of nonlinear interactions between tides and tidally-induced mixing,
and the influence of the ITF and strait geometry in the Indonesian seas are complicated
and not fully understood. The temperature and salinity stratification are significantly al-
tered within the Indonesian Seas’ complex topography by turbulent mixing processes [2,8].
Although the core of the ITF is at about 100 m depth, the mixing drives Sea Surface
Temperature (SST) changes by several ◦C [2]. While many aspects of the water-mass
modification remain poorly understood, it is clear that tidally-driven mixing is a crucial
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component [2,8–14]. Ffield and Gordon [15] argued for tidal mixing by identifying a pro-
nounced spring-neap tidal cycle in satellite SST data centered on the Banda Sea. A more
recent satellite study by Ray and Susanto [16], based on much more superior SST measure-
ments, produced significantly different results with the strongest fortnightly SST signals
localized to relatively small straits, channels, and sills—Sulu Sill and exit passages of the In-
donesian seas from Bali to the Timor Islands. The analysis of Ray and Susanto [16] identified
little significant fortnightly SST signals in the central Banda Sea, which is consistent with in
situ microstructure measurements of weak mixing there [17]. It also identified moderate
fortnightly SST signals in Lifamatola Passage and Manipa Strait, where microstructure
measurements show significant tidal mixing with dissipation rates ranging from 10−7 to
10−6 W kg−1 [18,19]. Slightly lower fortnightly SST signals are seen in the Ceram and
Halmahera seas, consistent with in situ observations [8,19,20]. Meanwhile, Lombok Strait
and Sape Strait show even stronger fortnightly SST signals than those regions. This is also
consistent with in situ measurements [19]. Note that the fortnightly satellite SST amplitude
(~0.1 ◦C) [16,21] should not be confused with the much larger, regional SST change of
>0.5 ◦C described by Sprintall et al. [2]. The 0.5◦ change represents the time-mean effect
on SST throughout the Indonesian Seas owing to the presence of ocean mixing, tidal or
otherwise, and not the very localized fluctuations at the fortnightly period. The latter,
however, are indisputably from tidal mixing, since only tides can induce a signal at exactly
that period.
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Figure 1. Indonesia throughflow pathways (ITF) (purple lines) overlaid with sea surface tempera-
ture anomaly in the Indo-Pacific region during (A) the 1997 El Niño and (B) the 2015 La Niña. 
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Figure 1. Indonesia throughflow pathways (ITF) (purple lines) overlaid with sea surface temperature
anomaly in the Indo-Pacific region during (A) the 1997 El Niño and (B) the 2015 La Niña.

Using a numerical model that includes tides, Nugroho et al. [22] show a similar map
of fortnightly variability in SST. All the mixing hotspots occur in regions that display strong
M2 current velocities [23] and where the model of Nagai and Hibiya [24] predicts significant
dissipation of baroclinic tidal energy.

Throughout this paper, we will use MSf as shorthand for the 14.77-days beat period
between the M2 and S2 semidiurnal tides (i.e., spring-neap cycle). The long-period MSf
tidal constituent has the same frequency, but it plays no role here as it is very weak [21,25].
Even when appearing as a nonlinear compound tide, MSf tidal currents are far too weak to
affect stratification. Any mixing at the MSf period is the result of nonlinearity arising from
the fortnightly modulations of M2 by the solar S2.
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At longer periods, ocean-atmosphere dynamics of the Indo-Pacific Maritime continent
are strongly affected by oceanic/atmospheric climatic processes associated with Madden–
Julian Oscillation (MJO), monsoon, ENSO, and the Indian Ocean Dipole (IOD). The most
substantial SST variability is associated with the Asian–Australian monsoon [5,26,27]. Strat-
ification in this region is highly dependent on these climatic conditions, such as the phase
of ENSO or the phase of the monsoon season. Any stratification changes will, of course,
potentially change tidal mixing. Although previous studies have shown intense mixing
occurrences within the Indonesian seas and their impacts of water mass transformation
into the Indian Ocean, little effort has been made to investigate the modulation of monsoon
and ENSO on tidal mixing. Our understanding of tidal mixing within the Indonesian seas
has been hampered by a lack of in situ and long-term observational time series.

Here we use long-term, high-spatiotemporal resolution SST to investigate monsoon
and ENSO modulation of tidal mixing within the Indonesian seas. Our previous re-
sults [16,21] primarily show the mean mixing signal. Fortunately, the SST time series are
now sufficiently long that we can begin to investigate some of these monsoon and ENSO
modulations, at least in regions where the mixing signal is robust.

2. Expected Tidal Mixing Frequencies in Sea Surface Temperature

The primary approach of analysis of SST for tidal mixing signature is to decompose
SST time series using harmonic analysis and search for spring-neap and monthly cycles.
Under an assumption that the nonlinear product (e.g., quadratic) of tidal current velocities
is proportional to changes in ocean temperature due to tidal mixing, the more intense
the tidal current, the colder the SST [15,16,21,28]. Suppose the temperature of a region is
influenced by the interaction between two tidal constituents with combined currents:

A1cos(ωM2)t + A2cos(ωS2)t, (1)

Taking the square of this time series will generate a nonlinear term with new frequen-
cies of 2ωM2, 2ωS2, (ωM2 + ωS2), and |ωM2 −ωS2|:

0.5(A2
1 + A2

2) + 0.5 (A2
1cos2 ωM2t + A2

2 cos2ωS2t) + A1A2cos(ωM2 + ωS2)t + A1A2cos(ωM2 −ωS2)t (2)

where A1 and A2 are the amplitudes of M2 and S2, respectively, and ωM2 and ωS2 are
the angular frequency of M2 and S2, respectively. The lower frequency |ωM2 −ωS2| has
a period of 14.77 days (fortnightly, MSf). Similarly, the square of SST time series of the
diurnal luni-solar tide (K1) and diurnal lunar tide (O1) will have a modulation envelope
with a period of 13.66 days (near-fortnightly signal, Mf).

The strength of semidiurnal and diurnal cycles in the region dictates the spring-neap
cycle of either MSf or Mf signals. For example, Indonesian seas exhibit mostly an MSf
signal while the South China Sea displays a substantial Mf signal. For some regions, such
as New England’s coast, the N2 tidal constituent is larger than S2. Therefore, the square of
N2 and M2 would generate a monthly tidal envelope with 27.55 days [16].

The following section discusses the harmonic analysis of SST to extract spring-neap
MSf tidal signals and determine monsoon and ENSO modulations.

3. Sea Surface Temperature Data and Method

In remote sensing of SST, there are generally two types of sensors: infrared and
microwave. The infrared measurements provide high spatial resolutions on the order
of 1–2 km, i.e., the Multiscale Ultrahigh Resolution SST (MURSST) product [29]. These
data were used by Ray and Susanto [16,21] and Susanto et al. [28] to extract tidal mixing
signals in Indonesian seas and Hong Kong coastal waters, respectively. However, infrared
measurements are often obstructed by clouds, which can be problematic in some regions
such as Southeast Asia.
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Microwave sensors provide data in nearly all weather conditions but provide consid-
erably coarser spatial resolution on the order of 25–50 km [30]. They require a mask of
50–75 km around the land, depending on the sensor specifics, owing to the large microwave
footprint and the possible contamination when land falls within the antenna sidelobes,
e.g., [31].

This study uses the global daily gridded compilation from the Group for High-
Resolution Sea Surface Temperature (GHRSST) [32,33]. The GHRSST products aim to
achieve the best combination of these different systems, a combination of infrared and
microwave sensors with a spatial resolution of 0.09◦ × 0.09◦. The data were available from
the NASA-PODAAC from June 2002 to the present [34] and were accessed on 28 July 2021.

The SST time series from June 2002 to June 2021 were partitioned into segments
according to the monsoon or ENSO phases, and then harmonic analysis was applied
separately to each. Within the Indonesia Maritime Continent, the monsoon phase is usually
defined based on the combination of annual rainfall patterns and winds, i.e., [35]. Southeast
monsoon (SEM) is defined as April to September, characterized by dry air and less rainfall.
Meanwhile, the northwest monsoon (NWM) is characterized by high humidity and wet
conditions from October to March. For the ENSO phase, we use the Oceanic Niño Index
(ONI; https://www.cpc.ncep.noaa.gov/data/indices/and accessed on 1 September 2021).
El Niño defines as ONI ≥ 0.5 ◦C and La Niña defines as ONI ≤ −0.5 ◦C. Figure 2 shows an
average SST from 2002 to 2017, during (a) the southeast monsoon, (b) during the northwest
monsoon, (c) El Niño, (d) La Niña, and (e) Neutral year.
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4. Results

Figure 3 shows the main results of extracting 14.77-day MSf amplitude from the SST
time series from June 2002 to June 2021 for the southeast monsoon (boreal summer) and
northwest monsoon (boreal winter). During southeast monsoon, easterly wind-induced up-
welling occurs along the southern coasts of the Lesser Sunda Island chain from Java to Timor
and Banda Sea with clearly distinctive SST pattern (Figure 2A). Hence, stronger stratifica-
tions in the exit passages of ITF in the Lombok, Sape, and Ombai Straits translate to stronger
mixing signatures, as seen in Figure 3A. Meanwhile, during the northwest monsoon, the
westerly winds from Asia/South China Sea do not generate a distinct pattern within the
Indonesia seas (except in the South China Sea). The relationship between SST, monsoonal
winds, and tidal mixing has been investigated using a numerical model [27,36,37]. Their
results (especially Nagai and Hibiya) [37] suggested that strong tidal mixing in the narrow
tidal straits between the Lesser Sunda Islands creates a cold SST signal that propagates as
baroclinic Kelvin waves along the Lesser Sunda Islands. The Ekman transport associated
with monsoonal winds regulates the northward and/or southward propagation of these
baroclinic Kelvin waves. Their results are consistent with our results.

Figure 3 shows stronger tidal mixing signatures during the boreal summer than in
the boreal winter. The vigorous mixing locations are consistent with previous results [16].
They are primarily concentrated in the narrow exit passages of ITF into the Indian Ocean
along the Lesser Sunda Island chain and Sulu Sill. Moderate mixings are observed around
Halmahera/Ceram Sea, Lifamatola passage, and Manipa Strait. Meanwhile, the interior
Banda Sea shows a weak mixing signature.

These results are consistent with in situ data of stratification based on historical
Indonesian throughflow measurements of Conductivity Temperature and Depth (CTD)
taken in June 2005 to represent the southeast monsoon (Figure 4A), and in December
2019 to represent the northwest monsoon (Figure 4B). The southward ITF flow of waters
entering the Lombok Strait is strongest and stratified during the southeast monsoon. Along
pathways in the Lombok Strait from the northern entrance to the southern side of the
sill, TS profiles are nearly the same. However, when the water reaches south of Lombok
Strait’s sill, the temperature-salinity (TS) properties become nearly linear, with the salinity
maximum and the deeper salinity minimum mixed away, especially from σθ = 23.5 kg/m3

to σθ = 27.25 kg/m3. On the other hand, ITF southward flow to the Indian Ocean is the
lowest during the northwest monsoon, even sometimes undergoing northward flow from
the Indian Ocean into the Indonesian seas [38–41]. The TS properties are nearly linear from
the north to the south of the Lombok Strait.

The main ITF pathway from the western Pacific enters the Sulawesi Sea into the
Makassar Strait. It then splits into two pathways: the direct exit into the Indian Ocean via
the Lombok Strait and the rest toward the Banda Sea (Figure 5). In situ observations show
significant water-mass modification occurring in the narrow southern passages where the
flow exits the Indonesian archipelago, i.e., [40]. TS curves from CTD measurements show
a continual erosion of a salinity maximum centered around σθ = 24 kg/m3 from north to
south through the Makassar and Lombok Straits (Figure 5B,C). Between the CTD taken in
the middle of Lombok Strait and one south of Lombok Strait, the TS properties become
nearly linear, with the salinity maximum and the deeper salinity minimum (centered on σθ

= 26.5 kg/m3) having been mixed away. This abrupt change in water-mass properties indi-
cates elevated mixing over the sills at the southern end of Lombok Strait. Remote sensing
and numerical simulations strongly suggest that this mixing is tidally-driven [16,21,22,24].
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Figure 5. (A) Map of the main ITF pathways from the Pacific to Indian Oceans (adopted from
Susanto et al. [42]). Numbers denote annual mean ITF transports in each strait with negative values
representing transport toward the Indian Ocean; (B) Map of the Makassar and Lombok Straits
showing the location of the stations used in (C); (C) TS diagram of the evolution of water masses from
north of Makassar Strait through Lombok Strait into the Indian Ocean taken during the Indonesian
throughflow monitoring program, revealing vigorous mixing in Makassar and Lombok Straits for
potential densities σθ = 23–27 kg m–3.

Note that a relatively strong signature is seen in Figure 3 at the southern sill of the
Sulu Sea for both seasons, but unlike the Lesser Sunda Island chain, the signature is more
pronounced in the northwest season.

At Lombok Strait, the largest spring-neap SST amplitudes during the southeast mon-
soon (Figure 3A) and the annual average occur almost 75 km south of the sill. SST spectra
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south of Lombok and Alas Straits show narrow MSf peaks well above the background
(Figure 6A). However, an SST spectrum at the northern end of Lombok Strait shows no
fortnightly enhancement (green line in Figure 6A), despite there being a clear MSf signal
in velocity at the INSTANT (International Nusantara Stratification and Transport) [38]
mooring (Figure 6B). Aiki et al. [42] argued that the southward ITF causes the asymmetry
by displacing internal tides generated at the sill southward. If southward throughflow
currents are stronger than the tidal group speed at the sill, they will block propagation to
the north to produce the north-south asymmetry observed in the fortnightly SST signatures.
When coastal-trapped Kelvin waves propagate from the west along the south coast of Java,
ITF diminishes and even reverses [43]. Figure 3B shows that the internal tide SST signature
is substantially more symmetric during the northwest monsoons.
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Niño, La Niña, and Neutral, based on the ONI value of ± 0.5 °C threshold. Figure 7 shows 
the MSf amplitude of SST during the (a) El Niño year, (b) La Niña year, and (c) Neutral 
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Figure 6. (A) SST spectrum based on 20 years of daily GHRSST data south of Lombok and Alas Straits
(red and blue curves), and at the location of the INSTANT mooring at the northern end of Lombok
Strait (green curve). Note that the strong MSf peaks in the red and blue curves are accompanied by
two side-peaks, which are precisely one cycle-per-year (cpy) from the central MSf peaks [21], thus
indicating substantial annual modulation, which Figure 3 explicitly shows; (B) Velocity spectrum of
the INSTANT time series. Labeled vertical dashed lines mark frequencies Mf (T = 13.66-days); MSf
(T = 14.77-days), and Mm (T = 27.55-days); the two lines at the far left mark annual and semiannual
frequencies (Sa and Ssa); (C) Estimates of fortnightly (MSf) SST amplitude in milli ◦C (zoom in
Figure 3A). Locations of observations for the spectrum analysis (red, green, and blue curves).

To determine the ENSO/IOD modulations of tidal mixing in the Indonesian seas,
similar to our monsoon approach, we divided the SST time series into three classes, El
Niño, La Niña, and Neutral, based on the ONI value of ± 0.5 ◦C threshold. Figure 7 shows
the MSf amplitude of SST during the (a) El Niño year, (b) La Niña year, and (c) Neutral
year. Figure 7 shows that the tidal mixings in the Sulu Sill and exit passages of ITF into
the Indian Ocean are more vigorous during the El Niño year than during La Niña and
Neutral years.
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Based on Hybrid Coordinate Ocean Model (HYCOM), South China Sea throughflow
is increased through the Sulu Sill during El Niño, inhibiting surface injection of tropical
Pacific water into the Makassar Strait [44], and enhancing the stratification and the tidal
mixing over the Sulu Sill (Figure 7). For the Lesser Sunda Island chain/exit passages of ITF
into the Indian Ocean, more vigorous mixing occurs during El Niño and Neutral years, and
is weaker during La Niña. Even though ITF in the Makassar Strait is weaker during El Niño
and stronger during La Niña [44–46], ITF transport in the exit passages to the Indian Ocean
remains strong during El Niño, concurrent with IOD positive. There is phase delayed of
ITF transport in the outflow passage relative to the inflow passage due to ENSO variability,
i.e., [47,48].

During the concurrent El Niño and IOD positive events, an anomalously strong east-
erly wind occurs along the southern coast of the Lesser Sunda Island chain, inducing intense
upwelling, colder temperature, shallower thermocline depth, lower sea surface height, and
high chlorophyll-a concentration, i.e., [39,49–55]. For example, prolonged anomalously
early winds during concurrent El Niño 2006 and IOD events lowered sea level on the Indian
Ocean side, and enhanced and extended the ITF southward flow until December 2006,
i.e., [38,39,49]. This suggests that Indian Ocean dynamics may be more important than the
Pacific Ocean dynamics in controlling the outflow transport and stratification during the
concurrent El Niño and IOD events [13]. Therefore, these interannual events may suppress
the intraseasonal and seasonal signals, and induce stronger stratification and tidal mixing
signatures, as seen during the boreal summer in Figure 3A.

The aforementioned suggests that ENSO classification may not always be the most
appropriate in all regions, e.g., [35]. Indonesian seas are affected by both ENSO and IOD
events, and Indian Ocean dynamics may, at times, win over the Pacific Ocean dynamics [13].
Generally, El Niño is concurrent with IOD positive, and La Niña is concurrent with IOD
negative. However, both events do not always remain in phase or perfectly aligned
(Figure 8). Analysis based on IOD alone may be useful in some regions. As the SST time
series continues to lengthen, we may classify the interannual variability based on IOD only
and both ENSO and IOD conditions.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 15 
 

 

Based on Hybrid Coordinate Ocean Model (HYCOM), South China Sea throughflow 
is increased through the Sulu Sill during El Niño, inhibiting surface injection of tropical 
Pacific water into the Makassar Strait [44], and enhancing the stratification and the tidal 
mixing over the Sulu Sill (Figure 7). For the Lesser Sunda Island chain/exit passages of ITF 
into the Indian Ocean, more vigorous mixing occurs during El Niño and Neutral years, 
and is weaker during La Niña. Even though ITF in the Makassar Strait is weaker during 
El Niño and stronger during La Niña [44–46], ITF transport in the exit passages to the 
Indian Ocean remains strong during El Niño, concurrent with IOD positive. There is 
phase delayed of ITF transport in the outflow passage relative to the inflow passage due 
to ENSO variability, i.e., [47,48].  

During the concurrent El Niño and IOD positive events, an anomalously strong east-
erly wind occurs along the southern coast of the Lesser Sunda Island chain, inducing in-
tense upwelling, colder temperature, shallower thermocline depth, lower sea surface 
height, and high chlorophyll-a concentration, i.e., [39,49–55]. For example, prolonged 
anomalously early winds during concurrent El Niño 2006 and IOD events lowered sea 
level on the Indian Ocean side, and enhanced and extended the ITF southward flow until 
December 2006, i.e., [38,39,49]. This suggests that Indian Ocean dynamics may be more 
important than the Pacific Ocean dynamics in controlling the outflow transport and strat-
ification during the concurrent El Niño and IOD events [13]. Therefore, these interannual 
events may suppress the intraseasonal and seasonal signals, and induce stronger stratifi-
cation and tidal mixing signatures, as seen during the boreal summer in Figure 3A.  

The aforementioned suggests that ENSO classification may not always be the most 
appropriate in all regions, e.g., [35]. Indonesian seas are affected by both ENSO and IOD 
events, and Indian Ocean dynamics may, at times, win over the Pacific Ocean dynamics 
[13]. Generally, El Niño is concurrent with IOD positive, and La Niña is concurrent with 
IOD negative. However, both events do not always remain in phase or perfectly aligned 
(Figure 8). Analysis based on IOD alone may be useful in some regions. As the SST time 
series continues to lengthen, we may classify the interannual variability based on IOD 
only and both ENSO and IOD conditions. 

 
Figure 8. Niño3.4 index (magenta line) and Dipole Mode Index (DMI) (gray line). Values above and 
below 0.5 are shaded (blue for El Niño and magenta for La Niña). Shaded in cyan denotes Indian 
Ocean Dipole Mode (IOD) positive, while shaded in gray denotes IOD negative. Blue vertical lines 
denote El Niño and magenta vertical lines denote La Niña. 

5. Conclusions and Discussions 
With their complex geography and narrow passages, the Indonesian seas provide the 

only pathway for low-latitude Pacific Ocean water to flow into the Indian Ocean. 
Transport and water-mass transformation associated with the ITF directly impacts the 
heat and freshwater budgets of the Pacific and the Indian Ocean. In situ observations show 
extensive water-mass modification occurring in the narrow southern passages where the 
flow exits the Indonesian archipelago.  

The influence of significant climatic phenomena associated with Southeast Asia mon-
soon and longer time scales associated with ENSO or Indian Ocean Dipole can be expected 
to affect tidal mixing in the Indonesian seas. In fact, Koch-Larrouy et al. [7] show that the 

Figure 8. Niño3.4 index (magenta line) and Dipole Mode Index (DMI) (gray line). Values above and
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Ocean Dipole Mode (IOD) positive, while shaded in gray denotes IOD negative. Blue vertical lines
denote El Niño and magenta vertical lines denote La Niña.

5. Conclusions and Discussions

With their complex geography and narrow passages, the Indonesian seas provide the
only pathway for low-latitude Pacific Ocean water to flow into the Indian Ocean. Transport
and water-mass transformation associated with the ITF directly impacts the heat and
freshwater budgets of the Pacific and the Indian Ocean. In situ observations show extensive
water-mass modification occurring in the narrow southern passages where the flow exits
the Indonesian archipelago.

The influence of significant climatic phenomena associated with Southeast Asia mon-
soon and longer time scales associated with ENSO or Indian Ocean Dipole can be expected
to affect tidal mixing in the Indonesian seas. In fact, Koch-Larrouy et al. [7] show that the
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interaction goes both ways: they show that mixing in the Indonesian seas affects eastern
equatorial Pacific temperature and thereby affects ENSO itself.

This paper has attempted to identify monsoon and ENSO influence on tidal mixing
in the Indonesian seas using high-resolution SST. The GHRSST data from 2002 to 2021
provides a map of seasonal and interannual variability of tidal mixing signatures in the
Indonesian seas, which reconfirm average tidal mixing signatures derived from Multi-Ultra
High-Resolution SST (MURSST) [16,21].

The most robust SST signatures are all localized to narrow straits and sills where the
semidiurnal currents are very strong [23]. These regions are primarily associated with
the exit passages of ITF into the Indian Ocean along the Lesser Sunda Island chain from
Bali to Timor Islands, Sulu Sill, Lifamatola passage, and Manipa Strait. Most of these
regions show vigorous tidal mixing during both seasons (boreal summer and winter), but
boreal summer shows a stronger signal. For interannual variability, stronger tidal mixing
signatures are observed during the El Niño and Neutral years, while the La Niña year
shows moderate signals.

While the boreal summer finds a more significant tidal mixing signature in the Lombok
Strait than boreal winter, tidal mixing signatures in the Sulu Sill are the opposite. More
vigorous mixing was observed in the Sulu during boreal winter than in summer. This
is consistent with remote sensing observations of tidally-induced internal waves in the
two regions, i.e., [56,57]. Higher internal wave activities were observed in Sulu Sill during
boreal winter than in the boreal summer, i.e., [58]. The Sebutu passage over the Sulu
Sill exhibits stronger southward flow toward the Sulawesi Sea from August to December.
Reversal northward flow was observed from December to July [59]. Tidally-generated
solitons near exit passage sills of the Indonesian seas [14,42,56,60,61] may be responsible for
the tidal mixing inferred from satellite SST. Isopycnal heaving can exceed 100 m in 6 min
([56] their Figure 3). Based on synthetic aperture radar (SAR) data, arc-like internal waves
are frequently detected during boreal winter to spring when the southward throughflow is
low or absent [61]. The waves may be responsible for the nearly linear stratification seen in
Figure 4B. On the other hand, during boreal summer, when the southward throughflow is
strongest, irregular internal waves frequently occur, which may enhance more vigorous
mixing [61].

The analysis of Ray and Susanto [16], as well as the figures shown here, identified
little significant fortnightly SST signal in the central Banda Sea, which is consistent with in
situ microstructure measurements of weak mixing in the Banda Sea [17,19,20]. Moderate
fortnightly SST signals in the Lifamatola Passage and Manipa Strait during both monsoons
are consistent with in situ measurements showing intense tidal mixing with dissipation
rates ranging from 10−7 to 10−6 W kg−1 [18,19]. Along the southern coasts of the Nusa
Tenggara Island chain, especially south of the Lombok Strait, Sape Strait/Sumba Sea,
and Alor/Savu Sea, even stronger fortnightly SST signals can be seen. Lombok Strait is
collocated with the most significant water-mass changes (Figures 4A and 5C). This result is
consistent with in situ measurements in the Lombok Strait and Sape Strait [19].

Although there is compelling remote sensing evidence for vigorous tidal mixing along
the exit passages of ITF or the Nusa Tenggara Island chain, this critical process has not
been sufficiently explored with in situ observations. Nagai et al. [19] measured mixing in
the Lombok and Sape Straits using a microstructure profiler, although their measurements
were limited to two or three profiles at each station (ten near the Lombok Sill), so did
not cover a complete spring-neap cycle as observed by Alford et al. [17] in the Banda Sea.
Recently, Susanto led extensive tidal mixing measurements in collaboration with scientists
from Indonesia and China in the south of the Lombok Strait for fifteen consecutive days.
The data are being analyzed and will be reported in future publications. It would be ideal to
use shipboard and moored observations that cover boreal summer and winter to similarly
explore in more detail the underlying processes and variability. Validating these results
in the Lombok Strait will open up the possibility of using remotely sensed SST data to
estimate tidal mixing in other regions around the global ocean.
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