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Abstract. TOPEX/POSEIDON (T/P) sea level devi-
ation (SLD) time series from October 3, 1992 to May
15, 1997 combined with upper ocean thermal structures
are used to observe the characteristics and analyze the
dynamics of equatorial waves in the Pacific Ocean. The
evolution of the Kelvin wave propagating along an east-
ward shoaling thermocline in the equatorial Pacific is
investigated. The behavior of this wave as it propa-
gates eastward can be approximately described with the
solutions of the perturbed Korteweg-de Vries (PKdV)
equation and modified Green’s Law. Assuming that the
nonlinear term and dispersive term of this equation are
balanced, the amplitude increases as the thermocline de-
creases to the power —3/8. Approaching the eastern Pa-
cific, the nonlinearity increases and the relation changes
to the power —9/8. The dispersion relation, and mass
and energy conservations arc investigated. The results
indicate that under a varying thermocline, the nonlinear
Kelvin solitary waves indeed exist in the real ocean.

1 Introduction

Linear equatorial waves theories (i.e. Moore and Phi-
lander, 1977; Pedlosky, 1987; Philander, 1990} have as-
sumed that these waves propagate in an ocean with a
horizontally uniform stratification. Hydrographic ob-
servations indicate that the density field in the tropical
oceans varies not only vertically, but also horizontally.
A prominent feature in the equatorial Pacific Ocean
is an eastward shoaling thermocline depth (Gill, 1982;
Cushman-Roisin, 1994). As a first approximation, this
tilted thermocline can be thought of as a result of a
simple balance between the zonal wind forcing and the
pressure gradient (Long and Chang, 1990).

Hughes (1981) has studied the influcnce of a zonal
slepe in the thermoeline on both wave- and wind-induced
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equatorial upwelling using a linear lé—layer reduced grav-
ity model. He derived a simple relation between the
amplitude of a Kelvin wave and the thermocline depth
based on the energy conservation law. The zonal veloc-
ity and the wave height vary as the thermocline depth
to the power —7/8 and —3/8, respectively. Using a
linear 2%-]ayer reduced gravity model, Gill and King
(1985) investigated the energy transfer between Kel-
vin wave vertical modes as the wave propagates into a
shoaling thermocline. Using a numerical approach, they
concluded that, for the high frequency waves, there is
very little energy Lransfer between modes. However, for
the low frequency waves that are associated with an El
Nifio event, there is significant energy transfer between
modes. Busalacchi and Cane (1988) have investigated
the same problem using a linear continuously-stratified
model. They concluded that the zonally varying ther-
mocline does not preduce significant changes in the en-
ergy flux, but can cause significant change in the ampli-
tudes of equatorial waves.

It is worth noting that the studies described above
have assumed that the equatorial waves are linear and
periodic in time. In the real ocean, however, the ob-
served Kelvin waves are closely correlated with impul-
sive changes in the wind forcing, and thus propagate in
the form of wave fronts (Ripa and Hayes, 1981; Knox
and Halpern, 1982; Eriksen et al., 1983; Lukas ct al.,
1984). The fundamental difference between a periodic
wave and a wave front is that a wave front carries both
energy and mass, whereas a periodic wave does not
carry mass. A number of theoretical studies, reviewed
by Boyd (1990), have predicted that equatorial waves
may exist in the frame of the nonlinear shallow water
equations. Boyd (1980) indicated that weakly nonlin-
ear equatorial Rossby waves satisfy either the Korteweg-
de Vries (KdV) equation or the modified Korteweg-de
Vries (MKdV) equation, which are derived from the non-
linear shallow water equations and have soliton solu-
tions. Boyd (1983) showed that equatorial Rossby en-
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velope solitons exist theoretically; the meridional struc-
ture is the same as that of linear waves and the zonal-
temporal structure behaves as a single soliton that sat-
isfies the nonlinear Schodinger equation. Marshall and
Boyd (1987) extended Boyd’s studies to include the ef-
fects of continuous vertical stratification. Boyd (1984)
and Greatbatch (1985) indicated that the equatorial Kel-
vin solitons ¢can be derived from the shallow water equa-
tions if a shear mean flow is included in the zonal com-
ponent of the velocity.

Kindle {1983) demonstrated that equatorial Rossby
solitary waves can be excited by a relaxation of the equa-
torial winds in a nonlinear, one-layer, reduced-gravity
model of the tropical Pacific Ocean. Greatbatch (1985)
simulated the generation of equatorial Rossby waves by
a sudden omset of spatially-uniform winds in a model
equatorial ocean basin. These numerical simulations
show an agreement with theoretical predictions by Boyd
(1980, 1984). Long and Chang (1990) considered the ef-
fect of a slow zonal variation in thermocline depth on
the propagation of a finite-amplitude Kelvin wave pulse
0 a single layer model, and showed that the amplitude
of the pulse satisfies the perturbed KdV {PKdV) equa-
tion, which has a solitary solution (Newell, 1985). They
also gave the visualized forms of the solution using nu-
merical methods. Glazman et al. (1996) observed a non-
linear feature of baroclinic Rossby waves from the T/P
sea level data.

Solitary internal Kelvin waves have also been simu-
lated in the laboratory. Maxworthy (1983} simulated
solitary internal Kelvin waves using a rotating channel
with a stratified shallow fluid and measured the struc-
ture and properties of the waves, Renouard et al, (1987)
and Melville et al. (1990) also simulated the generation
and evolution of nonlinear internal Kelvin waves with a
two-layer flow in the Jaboratory. These laboratory sim-
ulations showed that solitary Kelvin waves are a stable
oscillation mode.

The above-mentioned results, however, are restricted
to theoretical prediction and numerical or laboratory
simulations. The modeled or simulated equatorial Kel-
vin solitary waves have never been observed in the real
ocean. Probably the main reason for this is the lack of
measurements of the real ocean with the accuracy, and
the temporal and spatial resolutions, necessary for these
kinds of abservations.

Data from the T/P altimeter, the most accurate al-
timeter ever flown with unprecedented orbit and altime-
ter accuracies, are available. We will verify, using the ap-
proach of Long and Chang (1990), and the T/P sea level
deviation data, that there are indeed nonlinear equato-
rial Kelvin solitary waves in the Pacific Ocean.
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2 Equatorial Solitary Kelvin Waves in a Slowly
Varying Thermocline

The eastward shoaling thermocline depth along the equa-
torial Pacific Ocean is a prominent feature. However,
traditional equatorial wave theorics were derived based
on an assumption that the ocean has a horizontally
uniform thermocline. Thus the effects of the shoaling
thermocline on the waves in the real ocean were disre-
garded (for example Moore and Philander, 1977; Ped-
losky, 1987; Philander, 1990}.

Using first order perturbation equations for a two-
layer model ocean, Hughes (1981) found that, based on
the energy conservation law, the amplitude of linear Kel-
vin waves increases as the thermocline depth decreases
to the power —3/8. The wave amplitude has to increase
as the thermochne depth decreases in order to conserve
energy. Hence, the nonlinearities will be enhanced as the
wave propagates through a shoaling thermocline depth.
However, Hughes (1981) ignored the nonlinearity effect.
Long and Chang (1990) examined the effects of the ther-
mocline on the propagation of the equatorial Kelvin
waves in the Pacific Ocean while including the nonlin-
earity effect. They found that the Kelvin waves evolve
into solitary waves of Korteweg-de Vries (KdV) type, as
they propagate in the occan with an eastward shoaling
thermocline, if the dispersion caused by the meridional
variation of the layer depth 1s considered.

In this research, following Long and Chang (1990},
field data of both zonal and meridional thermocline
depths combined with T/P SLD data are used to investi-
gate thermocline effects on the Kelvin wave propagation
in the equatorial Pacific Ocean.

2.1 Governing Equations and Solutions

The model geometry adopted in this research is a lé—-
layer model which consists of one active layer of density
1 above a resting infinitely deep layer ol density ps,
with p; < p2. To simplify the analysis, the equations
are nondimenstonalized by choosing C, = /¢’ H,, the
internal phase speed of the upper layer, as the unit ve-
locity., H, is the equilibrium of the upper active layer
thickness. L. = \/C,/f, the equatorial Rossby radius
of deformation, as the unit of length. The study area
is in the equatorial Pacific Ocean, therefore the Coriolis
parameter f(y) can be approximated by the equatorial
B-plane, ie. f(y) = By.

The nondimensionalized nonlinear shallow water wave
equations, under a Boussinesq, hydrostatic, reduced grav-
ity ocean, on the equatorial 3-plane that are wind forced,
are given in the following form:

_h'.'.!‘ + Txa
—hy, + 7Y, (1N
0,

Uy + Ulp + VUy — YU =
U+ Uty + Uy + Yy =
hy + (uh)z + (vh)y

where w and v are zonal and meridional components of
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velocity fields, respectively, h is the total upper layer
thickness, 7° and 7¥ are the zonal and meridional com-
ponent of wind forcings, respectively. The subscripts
denote differentiation with respect to the subscripted
variable.

Since the objective of this research is to investigate the
effects of a shoaling thermochne on Kelvin wave prop-
agation along the equatorial Pacific Ocean, the back-
ground current that might aflect the waves propagation
is neglected. Thus, the momentum equations are a bal-
ance between wind forcings and the pressure gradient.

Following a model by Long and Chang (1990) who
introduced a small amplitude parameter € for wave dis-
turbances, and assuming that the amplitude of the zonal
and meridional wind forcings are of O(1) and O(€1/2),
respectively, then the basic state solution can be written
as follows:

: @)
H{z) + /2w (y),

1
Il
oo

o
Il

with H, = r* and ¢'/2¥, = ¥, where both H(z) and
W(y) are of O(1). One can write u,v, and h as their
mean values plus a small perturbation of O(e}. The
perturbation equations for Eqgs. (1) become

u +  e(uugy + vuy) —yv = —h,,
vy +  e(uvy +vvy) +yu = —hy, (3)
By + (CF+ W) (ug + vy) + 2CC,u + €/, v

+  e{(hu), + (Av),] =0,

where C(x) = [H(z)]'/? is the local shallow water wave
speed in the absence of meridional variation ¥. The to-
tal shallow water wave speed C; is give by Cy = vk =
(C? + 51/2‘1!)1/2. One can see that an O(¢'/?) merid-
ional variation in the layer depth contributes an O(e!/?)
correction to the local shallow water phase speed C(z),
if there is no meridional variation of thermocline depth
.

A multiple scale analysis (Shen, 1993) is used to solve
Eqs. (3) by introducing fast and slow scales for both
time and spatial scales,

t= i+t dewst+. . =ttt m Fwat...,(4)
2= ztex+...zx+x+..., (5)
where w,, are the corrections of phase speed C(z), and a
proper characteristic coordinate for wave propagations.

One may assume that a wave propagating to the right
and left will have a form,

n=flC, x, @),

n= flo,x, @),

(6)
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respectively, where
{= / kde —wt,

(M)
a‘:/kd:r:+wt,

and where y and w represent slow variation in z and ¢.
Noting that k& = eIl where C(z) = H(;r)l’lz, and one
may alternatively define ¢ and ¢ as,

=1 ] de 1 f% dx

T ey T T R
a_t+fz_ﬂ_t+l *_dx
- Clez) ") H(y)

where H(z) = H(cy) is the thermocline depth, which is
a slowly-varying function of z.

After applying the derivatives of these fast and slow
variables using the chain rule, Eqgs. (3) become

u+h
C [ed

(8)

h
+ (u——) — v+ e Pwi(u, + uc)
C/¢

1
+ fwg(ug+u§)+ehx+r:6u(u0 —ug)
+  evuy + fuuy = 0. (9)

(vt ve) + yu+hy + 200 (v, + ve) + cwelve + ve)
1
-+ 65’&(‘00 —ve) + vy + Cuv, = 0. (10)

h h e ]
(U+ 6)0 — (U—E)C+va+f le(hg'ic)

kg
1/2
+ ¢ roc]

+ ewgé(h,, + he) + eCuy, + 2eCln

1
(s — ug) + €'/ (o),

1 1
+ el(uh), = (uh)] + e (vh),
1 1
+ 53/25\I:ux + fzg(uh)x =0. (11)

Equations (9) to (11) represent the perturbed equa-
tions of motion in the new coordinate system, where
the approximate solutions can be determined using an
asymptotic expansion.

Collecting all the terms of O(1) in Egs. (9) to (11),
the lowest order solutions are:

h, ho 3
(uo+6>g+(uo_‘6)c_yvo - 0!

v, + v, 4 4 % _ 0
80’ BC yuD ay - H (12)

ho ho dv,
(4 2), - (w-8) +e5 -
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These are the equations governing linear equatorial
waves. Since the objective of this research is to in-
vestigate the equatorial Kelvin waves propagating east-
ward along the characteristic ¢ constant {which means
-(.;a-; = 0) and admits a solution with zero meridional flow
(v = 0), then Egs. {12) have solutions in the following
form :

Up = A(C)X)e_%YZ(X’ y)a
v, = 0, (13)
ho = CLOA( y)e™ 37700 9),

where ¥ = [2/C(x)]1/2y, and A is amplitude. One can
see that these are exactly the same as the solutions of
linear Kelvin wave theory. Thus, a linear Kelvin wave in
the presence of a varying thermocline can be obiained
at the lowest order solution.

After calculating the higher orders O(e!/2) and O(¢),

the perturbed KdV equation is obtained (Long and Chang,

1990),
34  TC 3\Y21 94 834
4+ A= —A— M — =10 1
“5x T 15y (2) oA ~MpE =0 (9
with

1 OQ
M = EZ(H—U!%?, and (15)

n=1

1 o0
n = ——— | Du(Y)(Y)D,(Y)dY. 16
on = == [ DuV)e(NDAY) (16)

where D, (Y') are parabolic cylinder functions and @(Y')
isthe variation of meridional thermocline depth.

Equation (14) is the final form of the perturbed KdV
(PKdV) equation in a varying thermocline depth which
includes both zonal and meridional variations of thermo-
cline depth. The first two terms represent the shoaling
of the thermocline, the third term is the nonlinearity
effect, and the last term represents the dispersion effect.
One can see that the nonlinearity and dispersion terms
both appear at O(c). This is the reason why an O(e'/?)
of the meridional variation in the thermocline depth is
chosen.

Equation (14) can be transformed to the form of the
PKdV equation by introducing a transform

o\ 12
a0 = (3) e, a7)
where
1 f% :
T o= E/ Hllzdx, {18)
_ _ 1 X dy
8 = —C——t+gf HTz(x) (19)

Zheng, et al.: Observation of equatorial Kelvin solitary waves
Then we have

gr + 6qgp + %M;%ee = —-ISE%Q- (20)
The evolution amplitude g depends on zonal thermocline
depth HI. 7 is a rescaled zonal distance coordinate and
# is a negative retarded time.

The standard form of the PKdV equation for nonlin-
ear surface gravity waves in a shoaling beach is given by
Newell (1985)

+ Bgqs + L (21)
adr qqe T qape = 4Hq,

Comparing with Eq. (21), let the coefficient of the
third term on the left hand side of Eq. (20) be 1, which
yields a confined condition

H C?
M=—==—. 22
raal (22)

Finally, the PKdV equation for a nonlinear Kelvin

solitary wave is

19 H
gr + 6990 + qo9 = —— —

s 0 (23)
One can see that there is a slightly different coefficient
on the right hand side of Egs. (23) and (21). The coef-
ficient in Eq. (23) is 5.5% larger than that in Eq. (21).
The standard PKdV equation in Eq. (21) has an ana-
lytical solution (Newell, 1985), and therefore, in the fol-
lowing analysis, the wave solution of Eq. (21) is a good
approximation of the solution to Eq. (23). In addition,
it is suitable for comparison with satellite observations,
The analytical solution of Eq. (21), with %ﬁ is of order
pwhere 0 < e p<€l,is

a8, 7) =900, 1)+ ugM, 1) + .., (24)
and the O0—order solution is
g0, 1) = 2nsech®n(8 ~ 457 — 8o, (25)

while the 1—order solution is
gt = %{_1 + tanh(n¢) + sech?né[3 — 3n¢ tanh(7n¢)
+ 29¢ — 2n°€? tanh(nf)]}

+ 5[1 — tanh(né)]sech®né, (26)

where the relation of the moving coordinate system with
the fixed one is

6, = 4n* 4 O(n),
9 H,

r = ———.
4+ H
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2.2 Dispersion relation

Using an assumption that the meridional thermocline
depth (¥) is constant, the total phase speed is

C, = (O 42w

~ C’(l—i—elﬂzg2 —e%—{»...).

(28)

In this research, however, the effect of the meridional
variation of thermocline depth that causes dispersion in
the Kelvin wave propagation i1s considered. The total
phase speed becomes

Cy = C+ My 4 ewy +..), (29)
where wy, ate the corrections of phase speed C(z). From

the asymptotic solutions of orders O(¢!/?) and O(¢), it
can be shown that :

1 * _Llyz .
W = W—ﬂm[mﬁ 2 (I’(Y) dY, and (50)
Wwg = —(.u‘12 + ‘8—"6:1* n'[(n+ ].)(,On+2 + (,Dn]z, Wlth(3l)
n=0
1 oo
. = D, (Y)®(Y)D,(Y) dY, 32
on = == [ DunIB) DY) (32)

where ®(Y) = ¥(y) is the meridional variation of ther-
mocline depth.
If the meridional thermocline depth is constant,

Eqgs. (29) through (32) reduce to Eq. (28). One can see
that the meridional variation of thermocline depth plays
an important role in the dispersion of equatorial Kelvin
waves. As discussed later, a function symametrical to the
equator will constitute a favorable condition for forcing
the Kelvin wave to be dispersive.

2.3 Modified Green’s Law

As in the case of shallow .water waves impinging on
a shoaling beach, the wave amplitude increases as the
depth becomes shallower. The relation between ampli-
tude and depth has been known for more than 150 years
as Green’s Law.

Following the same procedure as in the case of a shoal-
ing beach, from Eq. (20) yields a relation (Susanto,
1998)

19 H. .
or
H8(x)q = 1(¢), (34)

which is a function of ¢ only. Applying a relation of
sea level deviation as h = H?q, Green's Law for an
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equatorial Kelvin wave in a slowly varying thermocline
18

RH3(x) = 1(¢). (35)

This result 1s the same as a modified Green’s Law pre-
dicted by Long and Chang (1990), for linear and nondis-
persive equatorial waves.

2.4 FEnergy Conservation Law

Long and Chang (1990) concluded that, based on the
full energy equation and the direct integration of the
PKdV equation, Eq. (14), in a reduced gravity ocean,
the net energy at any given z is conserved. Hence, the
energy conservation law at any given x is in the following
form:

8

-B_EEtOt = 0, (36)

with

Etot = / / (uhH) dtdy, (37)
0 — 00

where E,.; is the net energy transport at fixed z. Sub-
stituting the linear equatorial Kelvin wave solution in

Eqs. (13) into Eq. (37) yields

3 00 OO
E / / (uohoH) dtdy,
0 —00

Vag [ v o (38)

Erewin =

This result is the same as that of multiplying Eq. (14)
by A and then integrating with respect to ¢ from —co
to oo,

& [ _
5 | HAG0d =0 (39)

Therefore, energy carried by a Kelvin wave is indeed
conserved to the lowest order.

2.6 Mass Conservation Law

Unlike a periodic wave, a nonlinear equatorial wave not
only transports energy, but also transports the water
mass. Following a similar procedure to the conservation
of energy given above, and using the linear equatorial
Kelvin wave solution in Egs. (13), the mass transport
equation becomes (Long and Chang, 1990),

8 8 il o
—M . =
Sz Kelvin 31‘[; \[,m(u‘?ho) dtdy,

8 oo
Varo- ] CHAC K (0
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Fig. 1. Longitude-time contour plot of low-pass-filtered TOPEX/POSEIDON sea level deviation (SLD). The interval between two
adjacent contours is 1 cm. The major positive peaks are coded by capital letters.

A straightforward integration of the PKdV equation,
Eq. (14), with respect to ¢ from —oo to oo, however,
gives

9 [7 gus _
o [ g ac=o (1)

One can see that there is a different power of H in
Egs. (40) and (41), implying that Eq. (40) will not be
zero. This means that an equatorial Kelvin wave prop-
agating in a slowly varying thermocline depth does not
conserve its total mass at the lowest order (Long and
Chang, 1990); part of the mass is reflected.

3 Comparisons of T/P Observations with Soli-
ton Solutions of the PKdV Equation

Theories given in Section 2 will be used for comparing
with T/P sea level variability signals during the period
from March to June 1993 shown in Fig. 1.

From Egs. (13) to (17), a complete expression of the
upper layer thickness variability has been obtained,

1/2
h(x,Y;0,7) = (%) H%(x)q(8, 7)e~5Y". (42)

Previous investigators (for example Rebert et al., 1985;

Zheng et al., 1995) indicate that in the equatorial oceans,

the upper layer thickness variability or changes in the

upper layer depth of thermocline h have a direct corre-

lation with' the sea level variability or the SLD h:

h=h2L | (43)
p

where Ap/p is the relative density difference between
the two layers above and below the thermocline.

The sea level variability can be determined by T/P
satellite altimeters up to an accuracy of 2-3 cm. This
accuracy allows the use of T/P SLD data in comparisons
with theoretical predictions.

3.1 Zonal Structure

The zonal structure of SLD time series for peak B (Fig. 1)
along the equator from March 1 to June 8, 1993 are
shown in Fig. 2. In order to compare with the theoret-
ical predictions in Eq. (42) and Egs. (25) through (27),
it is necessary to transform these curves plotted using
the data observed in the geographic coordinate system
into the new dynamical coordinate system using trans-
formation relations Egs. (8), (18), and (19), and x = ez.
To perform this transformation, the thermocline depth
H(x) must first be determined. The monthly zonal and
meridional thermocline depth data from November 1992
to June 1993 are shown in Figs. 3a and 3b, respectively.
These data are obtained from The Bureau of Meteorol-
ogy Research Center (BMRC) Australia which originally
derived from XBT and TOGA-TAO data.

The normalized zonal thermocline depth data in March,
April and May 1993 shown in Fig. 3a can be approxi-
mated by an hyperbolic tangent function (Susanto, 1998),

H(x) = ho{l — §tanh [(x_—ix_)] } (44)

The value of h, depends on the choice of thermocline
depth scale, H,. For convenience in calculation, h, =
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Fig. 2. The evolution of zonal SLD structure of peak B in Fig. 1
from March 1, 1993 to June 8, 1993.

1. Using a curve-fitted method, the best-fitted line is
achieved for the values of § = 0.484, y. = 0 at 134° W,
‘the zonal length scale L = 30°, and depth scale H, =
103 m. The results are shown in Fig. 4. In this research,
this hyperbolic tangent function is used in the transfor-
mation in comparing the zonal and temporal structures
of solitons between the analytical solution and observa-
tlon.

Comparisons of zonal T/P SLD along the equatorial
Pacific of three curves in April and May 1993, with a
solitary wave solution Eq. (42) and Eqgs. (25) through
(27) are shown in Fig. 5 and 6, respectively. The plot-
ted symbols are derived from the T/P SLD data, while
the solid lines are the theoretical results. One can see an
excellent agreement between the two. Not only the ma-
Jor sclitons fit each other, but also a tail as predicted by
the l-order solution, is seen to occur on their lee sides.

3.2 Meridional Structure

Equation (42) indicates that, like the linear cquatorial
Kelvin mode, the solitary Kelvin wave also has a Gaus-
sian meridional structure. In the real ocean, however,
the equatorial Kelvin wave coexists with the Rossby
waves, rather than being the sole component. In order
to determine the wave components in the sea level ob-

159

244000+

OW 150W 140W 130W 120W 110W 100

00 L
140E 150E 160E 170E 180 170W 16

Longitude(®}
b
) T T T T T T T T T
3
+ ..
Fars
50 1 -?'.o 4
g 100 E
£
H
180y = Nov-9z |]
+ +  Dec-92
@ +  Jan-893
L] s Feb-53
200 o T Mar-93 | o
v v  Apr-83
* *  May-93
. *  Jun-93
250 . L L \ 1 ) L . T I T

-30 -25 -20 -15  -~10 -5 o 5 10
Latitude?) N

o

20 25 30

Fig. 3. Monthly mean (a) zonal and {b) meridional thermocline
structures along 110° W in the equatorial Pacific from November
1992 to Jume 1993 obtained from BMRC-Australia. The original
data derived from XBT’s and TOGA-TAO data.
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servations, a theoretical Kelvin-Rossby wave mode de-
composition is used to expand the meridional sea level
structure into parabolic cylinder functions. For SLD
peak B shown in Fig. 1, the wave components in March,
April, and May 1993 are computed. The parabolic cylin-
der functions, up to the Tth-order, are used to fit the
meridional structure of the SLD. The results are given
in Fig. 7.

The amplitudes of the wave modes and phase speeds
of the Kelvin mode obtained are listed in Table 1. One
can see that the equatorial Kelvin mode is the primary
component, and high order Rossby modes (for n > 3)
are negligible, implying that the Kelvin wave is a dom-
inant feature of peak B. In this table, the sea level for
May 29 and June 8 are included in order to show that
the amplitude of the Kelvin wave varies as it propagates
eastward. The amplitude peaks at 103°W on May 9,
1993 and then it decays, at the same time the ampli-
tude of Rossby mode 2 increases. This is probably due
to the Kelvin wave transformation into westward prop-
agating Rossby waves (Susanto et al., 1998).

Table 1. Kelvin-Rossby mode decomposition of meridional struc-
ture of sea level at locations of the peak of the solitons. K denotes
the Kelvin mode and R the Rossby modes.

Date Long. Speed Amplitude (cmn)

1993 (°*W) | (ms™1) K R-1 R-2 R-3
March 1 122 3.1 3.26  -1.22 072 -1.01
March 10 120 3.2 369 -1.52 .12 097
March 20 115 3.2 585 -1.56 -1.22 —0.84
March 30 110 3.3 932 -2.00 -246 -047
April 9 108 3.2 9.89 ~-1.40 -1.84 -0Q.50
April 19 106 3.2 9,58 0.00 0.8 —0.85
April 29 104 3.3 10.19 1.54 —0.57 -0.93
May 9 103 3.3 10.44 2.11 0.11  -0.80
May 19 102 3.3 9.186 2.16 1.04 —0.67
May 29 100 3.2 7.72 1.24 203 -0.24
June 8 100 3.1 5.85 1.64 2.52 -0.24

3.3 Time Domain Structure

Solitary wave solutions in Eq. (42) and Egs. (25) through
(27) can also be used for comparing with sea level time
series observations at a given location. Tn this case, the
given longitude is chosen as an origin of the spatial coor-
dinate systemn to simplify computing and plotting pro-
cesses. Comparisons are made between sea level time
series measured at three locations, 107.6° W, 104.8°'W,
and 102.0° W longitude and the theoretical solution at
the equator, which is determined with the same param-
cters as used for zonal structure solution, as shown in
Fig. 8. Noting that, in contrast to zonal structure, the
tall of the soliton in the time domain is on the right side
of the major soliton. One can see again that the obser-
vations and the theoretical solution agree very well.
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Fig. 7. The Kelvin-Rossby mode anal-
ysis for the meridional SLD structure
of peak B shown in Fig. 1 from March
1, 1993 to May 19, 1993. The data
points are TOPEX/POSEIDON ob-
servations, and the curves are a super-
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Fig. 8. Comparison of normalized SLD time series of peak B
shown in Fig. 1 measurcd at crossings of three longitudes with
the equator (data points) with the time domain solitary solution
of the PKdV equation (curve).

3.4 Dispersion Relations

The meridional structure of the thermocline depth shown
in Fig. 3b causes a dispersive effect in the propagation
of equatorial Kelvin waves. In order to compare the
dispersion relations in Egs. (29) through (32) with sea
level observations, the functional form of the meridional
variation of thermocline depth ®(Y) must first be de-
termined. This can also be obtained by fitting the mea-
surements. In this research, the variability of meridional
thermocline depth is expressed in the form of an expan-
sion of the parabolic cylinder functions D,(Y').

o(¥)e”3Y =3 puba(Y). (45)

Latitude {°) N

position of the Kelvin and the first six
Rossby modes.

Using the orthogonality of parabolic cylinder functions,

ifm=n.
otherwise.

j_o; Don(Y)Da(Y) dY = { nv (46)

Therefore,

&5} 1 oG o0
f Dad(¥)e™ 1Y dy / DuS" 0mDm(Y) dY
- m=0
= n!\/'é?‘npm (47)

and hence,
1 oo
o= e /_m Da(Y)®(Y)Do(Y) dY. (48)

Using Eq. (48), ¢, can be determined. Based on the
maximum peak B, which is at 110° W (Fig. 1), the vari-
ation of the meridional thermocline depth at this longi-
tude for March, April, and May 1993, are expanded into
parabolic cylinder functions up to the 7th-order to ap-
proximate the definite integral in Eq. (48). The results
are shown in Fig. 9. The meridional variation of thermo-
cline depth is multiplied by a filter function D, = e~ ¥ /4
as in Eq. (45) prior the parabolic cylinder function de-
composition. The values of ¢g to g3 for March, April,
and May 1993 are listed in Table 2.

Table 2. Decomposition of meridional thermocline depth into
parabolic cylinder functions (Dgn) with a filter function D, -=
exp(~-3Y3),

Month Amplitude M
1993 Yo ¥1 Y2 w3

March 0.7539 -0.127 0.094 -0.018 | 0.021

April 0.7540 -0.105 0.102 -0.019 | 0.018

May 0.7655 —0.100 0.094 -0.020 | 0.016
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Fig. 9. Parameterization of the meridional structure of the ther-
mocline along 110°W. (a) For the thermocline depth in March
1993, (b) April 1993, and (c) May 1993. The curves are a super-
position of the first four parabolic cylinder functions.

From Table 2, one can see that ¢, is most dominant,
while ¢, , for » > 3, are negligible. The averaged values
of ¢, to w3 are 0.76, -0.11, 0.10, -0.02, respectively. M
measures the dispersion strength, which is calculated
using Egs. (15) and (16) or Eq. (48) and its average
value is 0.018.

Applying the relation in Eq. (47} to Eq. (30) yields,

o

= 49
w1 20’ ( )

hence, the dispersion relations in Eqs. (29) through (32)
can be expressed as (Susanto, 1998)

C = VAWt g+ e =2
F— Y 02
- H(X)[l+ H{x) +%H2(x)]’ (50)
where
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& =
2
v
A = —9), 51
(- 61
o0
v = Zn![(n+l)cpn+2+gon]").
n=0

Equation (50) represents a family of curves with o
as a parameter as shown in Fig. 10. Based on the val-
ues of @, through @z, v = 0.7850,0.7961,0.7999 and
A = —0.6190, —0.5996, —0.6351 for March, April, and
May 1993, respectively. The data points represent nor-
malized phase speeds determined with meridional vari-
ations of the sea level shown in Fig. 7. Normalized ther-
mocline depth is calculated with measurements shown
in Fig. 3 in March, April, and May 1993, and at the
locations where the peaks of solitons are located, One
can see that the data points determined with measure-
ments are close to those on the theoretical curve with
e = 0.475, implying the solitary nature of studied equa-
torial Kelvin waves. From the values of o and @,, we
have ¢ = 0.0326, which indeed satisfies ¢ < 1. Hence,
the assumption of the perturbation expansion holds.

3.5 Modified Green’s Law

Equation (35) indicates that, for a given initial condi-
tion I(¢), the amplitude of a soliton should be inverse
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Fig. 11. Dependence of the amplitude of Kelvin soliton on ther-
meocline depth. The data points are determined by observations:
SLD amplitudes of Kelvin solitons and thermocline depths at the
locations of the peaks of solitons. The solid line is Green's Law.
The dashed line is the curve-fit for April and May 1993.

proportionality to H3/2  This inverse proportionality
relation can be shown as curves in the Fig. 11. I({) is
chosen as 0.472 for fitting the data of March 1993. The
measured data, the amplitudes of solitons from Fig. 2,
and the thermocline depths from Fig. 3a, are shown in
Fig. 11 as different symbols. One can see that the data
of March 1993 agree very well with the theoretical curve.

It seems that, for the early development of a solitary
wave, an inverse proportionality relationship between
sea level and thermocline depth H3/3 holds. However,
for further development, data from April and May 1993
do not follow the same trend. As expected, the shal-
lower the thermocline depth, the higher SLD and the
higher the nonlinearity effect. Green’s Law of hH3/8
constant is obtained based on the linear approximation
of the nonlinear equation of PKdV, Eq. (20). There-
fore, this relation works well in the early development
of a solitary equatorial wave or at a location where the
thermocline starts to change. For the shallower region,
the power of H should increase. Based on the curve-
fitted data, the relation should be H%/® and I{¢) = 0.8,
which is shown as the dashed line in Fig. 11. In the
case of gravity waves approaching a beach with a slowly
changing water depth, this phenomenon has been pre-
dicted by many investigators (for example, Shuto, 1974;
Miles, 1977, 1979), where the relation of the normalized
wave amplitude and depth, 7! is constant.

3.6 Energy Conservation Law
Equations (38) and (39) indicate that the net energy

transport carried by the equatorial Kelvin wave at any
given z is constant. As mentioned earlier, the T/P

163

& an =] o
a 8§ 8 3 8 8
T T T T T

Net energy transport

o
=]
T

I L L L ; \ ) 1 1 . " ; "
180W 155W 150W 145W 140W 135W 130W 125W 120W 115W 110W 105W 100w
Longitude ()

Fig. 12. Energy Variability. In the early development of an equa-
torial sclitary Kelvin wave, the net energy transport increases,
then starting from 140° W the energy gradually decays.

SLD data during the period of March to June 1993
shown in Fig. 1 will be used to compare with the theory.
Therefore, the time integration limit from —oo to oo in
Egs. (38) and (39) are approximated by a summation of
nine data points from March 1 to May 19, 1993. In order
to investigate the energy conservation, first the merid-
ional structure of SLD during this time period is de-
composed into Kelvin-Rossby wave modes and then the
Kclvin mode amplitude and its normalized phase speed
are obtained. This decomposition is carried out for each
longitude from 158°W to 99.2° W with an increment
of 2.8° longitude. Hence, we have Kelvin wave com-
ponent f,; and its normalized phase speed ¢, where
t=1,...,9 for each given longitude. The next step is
calculate the normalized thermocline depth for March,
April, and May 1993 at each longitude given ahove.
Since only a monthly thermocline depth is available,
we have to assurne that there is no thermocline depth
change within a month. Then Zﬁvﬂ (hm-/c‘,,-z)hﬁ-7”4 is
calculated. The results are shown in Fig. 12. One can
see thatl at westside of 140° W a Kelvin wave starts to be
generated, hence, the cnergy increases. However, from
140° W to the east the net energy transport of the Kel-
vin wave is not constant, implying that its cncrgy is
not conserved. This result indicates that the net energy
transport carried by the Kelvin wave gradually decays
as it propagates eastward. This does not agree with that
predicted by Long and Chang (1990). The encrgy loss is
may due to the encrgy transfer between vertical modes
as predicted by Gill and King (1985).

3.7 Mass Conservation Law.
As in the energy conservation law, the mass transport

is calenlated based on Eqgs. (40} and (41). The results
are shown in Fig. 13. One can see that in the early
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Fig. 13. Mass Variability. Based on the mass conservation law
(open-circle curve) and based on the PKdV equation (asterisks
curve}.

development of a Kelvin wave, the mass transport in-
creases and both equations give the same results. Then,
as the the thermocline depth becomes shallower, the
difference between those equations becomes larger in-
dicating that the reflected water mass increases. Hence,
these results agree well with that predicted by Long and
Chang (1990). ’

4 Disscussions and Conclusions

TOPEX/POSEIDON altimeter sea level deviation time
series data and thermocline denth data derived from
XBT and TOGA-TAO measurements are used to inves-
tigate the behaviors of equatorial Kelvin solitary wave
along an eastward shoaling thermocline in the equatorial
Pacific during the 1992-1993 El Nifio. Our results show
is that under a varying thermocline, the equatorial Kel-
vin solitary waves, which were theoretically predicted
by Boyd (1984) and Greatbatch (1985), indeed exist in
the real ocean.

The hyperbolic tangent function is used to approxi-
mate the zonal shoaling thermocline along the equator.
Following Long and Chang (1990}, a 1%—layer reduced-
gravity ocean model with no mean background current
is used for simnlating the equatorial Pacific. Applying
multiple scale and perturbation expansion analyses, the
solutions using an asymptotic expansion up to second
order are obtained. The behaviors of the waves ob-
scrved as they propagate along the eastward shoaling
thermocline depth can be approximately described with
the solutions of the PKAV equation and the modified
Green’s Law. They are characterized by the following
points: (1) The meridional sea level structure can he
described by the Gaussian function, the same as that
of linear Kelvin waves; (2) The zoual sea level structure
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conssts of a single major soliton, which can be described
by a hyperbolic secant function, and a tail in the lee side
of the major soliton; (3) The structure in the time do-
main is the same as the zonal structure; (4) The phase
speed depends on the local thermocline depth and its
meridional variation; (5) In the early stages, the am-
plitude increases as the thermocline depth decreases to
the power —3/8. Qur observations show that the rela-
tion between the amplitude of solitary Kelvin wave and
the thermocline depth does follow Green’s Law, only be-
fore the wave approaches a very shallow thermocline. In
that case, the power of H determined by curve fitting is
—9/8, which is much higher than —3/8 given by Green’s
Law. This phenomenon may be explained by the in-
crease of nonlinear effects with thermocline’s shoaling.
Neither mass nor energy are conserved; part of the wa-
ter mass is reflected. The energy likely transfers from
lower mode to higher modes as predicted numerically by
Gill and King {1985).

The T/P SLD observations shown in Fig. 2 also sug-
gest that the eastern houndary of the ocean basin may
have an influence on the evolution of equatorial 'Kelvin
waves. Examining the figure and Table 1, one can see
that the amplitude of the soliton gradually decreased
after May 9, 1993. This phenomenon indicates that the
wave began decaying. A parallel study shows the reason
for this decay is the transfer of ¢cnergy and mass to the
Rossby waves due to the reflectance of the wave at the
eastern boundary (Susanto et al., 1998).
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