METO630 STATISTICAL METHODS IN METEOROLOGY AND OCEANOGRAPHY (3)

Updated January 2004 (Eugenia Kalnay/Huug vanden Dool)

Prerequisite: STAT 400 or equivalent. Tests of significance; time series analysis; multiple regression and screening multiple regression; statistical weather and climate prediction.

- 1. Introduction, probability distributions, tests of significance (3 weeks)
 - (1) Introduction concepts of probability, random variables and probability distributions. Wilks: Chapters 2, 3, 5.1
 - (2) Probability distributions, discrete, continuous the normal distribution, Central Limit theorem, χ^2 -distribution, t-distribution, and Fisher's F-distribution. Gumbel, Gamma and other distributions. Wilks: 4.1-4.5; 4.7
 - (3) Tests of hypothesis Type I error, Type II error, level of significance, one tailed tests and two tailed tests. Parametric tests of significance against non-parametric tests and Monte Carlo methods. Bootstrapping. Wilks: 5.1-5.4
- II. Statistical Weather forecasting (3.0 weeks) Wilks: Chapter 6; other refs.
 - (1) Simple regression estimation of regression line, analysis of variance, confidence interval for regression coefficients, and confidence band for regression line.
 - (2) Multiple regression estimation of regression plane, partial correlation, and multiple correlation.
 - (3) Screening regression explained variance and incrementally explained variance, all possible regression, forward selection, stepwise regression, and stagewise regression.
 - (4) Model Output Statistics, Perfect Prog, Adaptive Regression (Kalman Filtering). Guest Lecturer: Paul Dallavalle or Mark Antolik.
 - (5) Nonlinear regression, neural networks (guest lecturer, V. Krasnopolsky).
 - (6) Probabilistic forecasting and verification from ensembles (guest lecturer, Zoltan Toth).
- III. Time series (3.0 weeks) Wilks: Chapter 8, plus additional refs.
 - (1) Introduction definitions of stochastic processes: purely random process, stationary process, auto-regressive process and non-stationary process.
 - (2) Analysis of discrete time series harmonic analysis, smoothing and filtering, frequency response of smoothing and filtering functions, and construction of low-pass, band pass and high-pass filters.
 - (3) Power spectrum analysis Methods of estimating power spectra: Lag-correlation, Fast Fourier Transform, Maximum Entropy. Aliasing.
 - (4) Cross-spectrum analysis Estimation of co-spectrum, quadrature-spectrum and coherence.
 - (5) Wavelets (guest lecturer: S. Schubert)
- IV. Statistical methods for climate prediction (5.0 weeks, lecturer: Huug vanden Dool)
 - Introduction: Empirical orthogonal functions (principal components) rotated and complex empirical orthogonal functions. Canonical correlation analysis. Discriminant analysis, clustering (Wilks, Chapter 9)
 - (2) Applications developed at CPC: Empirical Wave Propagation; Natural analogues; Constructed analogues; Empirical Basis Functions; Teleconnections; Empirical Orthogonal Teleconnections: examples from reanalysis; Empirical Orthogonal Functions; Compact representation of data sets

- V. Forecast verification (0.5 week)
 - (1) Currently used operational forecast scores

Required Text:

Daniel Wilks: Statistic Methods in Atmospheric Sciences (1995) Academic Press. ISBN 0-12-751965-3

Recommended reference textbook:

Hans von Storch and Francis Zwiers (1999): Statistical Analysis in Climate Research. Cambridge University Press (now in paperback).