
ar
X

iv
:p

hy
sic

s/0
51

12
36

 v
1

 2
8

N
ov

 2
00

5

Efficient Data Assimilation for Spatiotemporal Chaos: a
Local Ensemble Transform Kalman Filter

Brian R. Hunt
Institute for Physical Science and Technology and Department of Mathematics

University of Maryland, College Park MD 20742

November 28, 2005

Abstract

Data assimilation is an iterative approach to the problem of estimating the state of a dynam-
ical system using both current and past observations of the system together with a model for the
system’s time evolution. Rather than solving the problem from scratch each time new obser-
vations become available, one uses the model to “forecast” the current state, using a prior state
estimate (which incorporates information from past data) as the initial condition, then uses cur-
rent data to correct the prior forecast to a current state estimate. This Bayesian approach is most
effective when the uncertainty in both the observations and in the state estimate, as it evolves
over time, are accurately quantified. In this article, I describe a practical method for data assim-
ilation in large, spatiotemporally chaotic systems. The method is a type of “Ensemble Kalman
Filter”, in which the state estimate and its approximate uncertainty are represented at any given
time by an ensemble of system states. I discuss both the mathematical basis of this approach
and its implementation; my primary emphasis is on ease of use and computational speed rather
than improving accuracy over previously published approaches to ensemble Kalman filtering.

1 Introduction

Forecasting a physical system generally requires both a model for the time evolution of the system
and an estimate of the current state of the system. In some applications, the state of the system can be
measured accurately at any given time, but in other applications, such as weather forecasting, direct
measurement of the system state is not feasible. Instead, the state must be inferred from available
data. While a reasonable state estimate based on current data may be possible, in general one can
obtain a better estimate by using both current and past data. “Data assimilation” provides such an

1

estimate on an ongoing basis, iteratively alternating between a forecast step and a state estimation
step; the latter step is often called the “analysis”. The analysis step combines information from
current data and from a prior short-term forecast (which is based on past data), producing a current
state estimate. This estimate is used to initialize the next short-term forecast, which is subsequently
used in the next analysis, and so on. The data assimilation procedure is itself a dynamical system
driven by the physical system, and the practical problem is to achieve good “synchronization” [33]
between the two systems.

Data assimilation is widely used to study and forecast geophysical systems [10, 21]. The analy-
sis step is generally a statistical procedure (specifically, a Bayesian maximum likelihood estimate)
involving a prior (or “background”) estimate of the current state based on past data, and current data
(or “observations”) that are used to improve the state estimate. This procedure requires quantifi-
cation of the uncertainty in both the background state and the observations. While quantifying the
observation uncertainty can be a nontrivial problem, in this article I will consider that problem to be
solved, and instead concentrate on the problem of quantifying the background uncertainty.

There are two main factors that create background uncertainty. One is the uncertainty in the
initial conditions from the previous analysis, which produced the background state via a short-term
forecast. The other is “model error”, the unknown discrepancy between the model dynamics and
actual system dynamics. Quantifying the uncertainty due to model error is a challenging problem,
and while this problem generally can’t be ignored in practice, I will discuss only crude ways of
accounting for it in this article. For the time being, let us consider an idealized “perfect model”
scenario, in which there is no model error.

The main purpose of this article is to describe a practical framework for data assimilation that
is both relatively easy to implement and computationally efficient, even for large, spatiotemporally
chaotic systems. (By “spatiotemporally chaotic” I mean a spatially extended system that exhibits
temporally chaotic behavior with weak long-range spatial correlations.) The emphasis here is on
methodology that scales well to high-dimensional systems and large numbers of observations, rather
than on what would be optimal given unlimited computational resources. Ideally one would keep
track of a probability distribution of system states, propagating the distribution using the Fokker-
Planck-Kolmogorov equation during the forecast step. While this approach provides a theoretical
basis for the methods used in practice [18], it would be computationally expensive even for a low-
dimensional system and not at all feasible for a high-dimensional system. Instead one can use
a Monte Carlo approach, using a large ensemble of system states to approximate the distribution
(see [5] for an overview), or a parametric approach like the Kalman Filter [19, 20], which assumes
Gaussian distributions and tracks their mean and covariance. (The latter approach was derived
originally for linear problems, but serves as a reasonable approximation for nonlinear problems
when the uncertainties remain sufficiently small.)

2

The methodology of this article is based on the Ensemble Kalman Filter [6, 8], which has ele-
ments of both approaches: it uses the Gaussian approximation, and follows the time evolution of
the mean and covariance by propagating an ensemble of states. The ensemble can be reasonably
small relative to other Monte Carlo methods because it is used only to parametrize the distribution,
not to sample it thoroughly. The ensemble should be large enough to approximately span the space
of possible system states at a given time, because the analysis essentially determines which linear
combination of the ensemble members form the best estimate of the current state, given the current
observations.

Many variations on the Ensemble Kalman Filter have been published in the geophysical liter-
ature, and this article draws ideas from a number of them [1, 2, 3, 12, 14, 15, 23, 29, 30, 38, 40].
These articles in turn draw ideas both from earlier work on geophysical data assimilation and from
the engineering and mathematics literature on nonlinear filtering. For the most part, I will limit my
citations to ensemble-based articles rather than attempt to trace all ideas to their original sources. I
call the method described here a Local Ensemble Transform Kalman Filter (LETKF), because it is
most closely related to the Ensemble Transform Kalman Filter [3] and the Local Ensemble Kalman
Filter [29, 30].

In Section 2, I start by posing a general problem about which trajectory of a dynamical system
“best fits” a time series of data; this problem is solved exactly for linear problems by the Kalman Fil-
ter and approximately for nonlinear problems by ensemble Kalman filters. Next I derive the Kalman
Filter equations as a guide for what follows. Then I discuss ensemble Kalman filters in general and
the issue of “localization”, which is important for applications to spatiotemporally chaotic systems.
Finally, I develop the basic LETKF equations, which provide a framework for data assimilation that
allow a system-dependent localization strategy to be developed and tuned. I discuss also several
options for “covariance inflation” to compensate for the effects of model error and the deficiencies
of small sample size and linear approximation that are inherent to ensemble Kalman filters.

In Section 3, I give step-by-step instructions for efficient implementation of the approach devel-
oped in Section 2, and discuss options for further improving computational speed in certain cases.
Then in Section 4, I present a generalization that allows observations gathered at different times to
be assimilated simultaneously in a natural way. Finally, in Section 5 I briefly discuss preliminary
results and work in progress with the LETKF approach. The notation in this article is based largely
on that proposed in [17], with some elements from [30].

3

2 Mathematical Formulation

Consider a system governed by the ordinary differential equation

dx

dt
= F (t,x), (1)

where x is an m-dimensional vector representing the state of the system at a given time. Suppose
we are given a set of (noisy) observations of the system made at various times, and we want to
determine which trajectory {x(t)} of (1) “best” fits the observations. For any given t, this trajectory
gives an estimate of the system state at time t.

To formulate this problem mathematically, we need to define “best fit” in this context. Let us
assume that the observations are the result of measuring quantities that depend on the system state
in a known way, with Gaussian measurement errors. In other words, an observation at time tj is a
triple (yo

j , Hj,Rj), where yo
j is a vector of observed values, and Hj and Rj describe the relationship

between yo
j and x(tj):

yo
j = Hj(x(tj)) + εj,

where εj is a Gaussian random variable with mean 0 and covariance matrix Rj. Notice that I am
assuming a perfect model here: the observations are based on a trajectory of (1), and our problem
is simply to infer which trajectory produced the observations. In a real application, the observations
come from a trajectory of the physical system for which (1) is only a model. So a more realistic (but
more complicated) problem would be to determine a pseudo-trajectory of (1), or a trajectory of an
associated stochastic differential equation, that best fits the observations. Formulating this problem
mathematically then requires some assumption about the size and nature of the model error. I will
use the perfect model problem as motivation and defer the consideration of model error until later.

Given our assumptions about the observations, we can formulate a maximum likelihood estimate
for the trajectory of (1) that best fits the observations at times t1 < t2 < · · · < tn. The likelihood of
a trajectory x(t) is proportional to

n
∏

j=1

exp(−[yo
j − Hj(x(tj))]

TR−1
j [yo

j − Hj(x(tj))]).

The most likely trajectory is the one that maximizes this expression, or equivalently minimizes the
“cost function”

Jo({x(t)}) =
n

∑

j=1

[yo
j − Hj(x(tj))]

TR−1
j [yo

j − Hj(x(tj))]. (2)

Thus, the “most likely” trajectory is also the one that best fits the observations in a least square
sense.

4

Notice that (2) expresses the cost Jo as a function of the trajectory {x(t)}. To minimize the cost,
it is more convenient to write it as a function of the system state at a particular time t. Let Mt,t′ be
the map that propagates a solution of (1) from time t to time t′. Then

Jo
t (x) =

n
∑

j=1

[yo
j − Hj(Mt,tj (x))]TR−1

j [yo
j − Hj(Mt,tj (x))] (3)

expresses the cost in terms of the system state x at time t. Thus to estimate the state at time t, we
attempt to minimize Jo

t .
For a nonlinear model, there is no guarantee that a unique minimum exists. And even if it does,

evaluating Jo
t is apt to be computationally expensive, and minimizing it may be impractical. But

if both the model and the observation operators Hj are linear, the minimization is quite tractable,
because Jo

t is then quadratic. Furthermore, one can compute the minimum by an iterative method,
namely the Kalman Filter [19, 20], which I will now describe. This method forms the basis for the
approach we will use in the nonlinear scenario.

2.1 Linear Scenario: the Kalman Filter

In the linear scenario, we can write Mt,t′(x) = Mt,t′x and Hj(x) = Hjx where Mt,t′ and Hj

are matrices. Using the terminology from the introduction, we now describe how to perform a
forecast step from time tn−1 to time tn followed by an analysis step at time tn, in such a way that
if we start with the most likely system state, in the sense described above, given the observations
up to time tn−1, we end up with the most likely state given the observations up to time tn. The
forecast step propagates the solution from time tn−1 to time tn, and the analysis step combines the
information provided by the observations at that time with the propagated information from the
prior observations. This iterative approach requires that we keep track not only the most likely
state, but also its uncertainty, in the sense described below. (Of course, the fact that the Kalman
Filter computes the uncertainty in its state estimate may be viewed as a virtue.)

Suppose the analysis at time tn−1 has produced a state estimate x̄a
n−1 and an associated covari-

ance matrix Pa
n−1. In probabilistic terms, x̄a

n−1 and Pa
n−1 represent the mean and covariance of a

Gaussian probability distribution that represents the relative likelihood of the possible system states
given the observations from time t1 to tn−1. Algebraically, what we assume is that for some constant
c,

n−1
∑

j=1

[yo
j − HjMtn−1,tjx]TR−1

j [yo
j − HjMtn−1,tjx] = [x − x̄a

n−1]
T (Pa

n−1)
−1[x − x̄a

n−1] + c. (4)

In other words, the analysis at time tn−1 has “completed the square” to express the part of the
quadratic cost function Jo

tn−1
that depends on the observations up to that time as a single quadratic

5

form plus a constant. The Kalman Filter determines x̄a
n and Pa

n such that an analogous equation
holds at time tn.

First we propagate the analysis state estimate x̄a
n−1 and its covariance matrix Pa

n−1 using the
forecast model to produce a background state estimate x̄b

n and covariance Pb
n for the next analysis:

x̄b
n = Mtn−1,tnx̄

a
n−1, (5)

Pb
n = Mtn−1,tnP

a
n−1M

T
tn−1,tn . (6)

Under a linear model, a Gaussian distribution of states at one time propagates to a Gaussian dis-
tribution at any other time, and the equations above describe how the model propagates the mean
and covariance of such a distribution. (Often a constant matrix is added to the right side of (6) to
represent additional uncertainty due to model error.)

Next, we want to rewrite the cost function Jo
tn given by (3) in terms of the background state

estimate and the observations at time tn. (This step is often formulated as applying Bayes’ Rule to
the corresponding probability density functions.) In (4), x represents a hypothetical system state at
time tn−1. In our expression for Jo

tn , we want x to represent instead a hypothetical system state at
time tn, so we first replace x by Mtn,tn−1

x = M−1
tn−1,tnx in (4). Then using (5) and (6) yields

n−1
∑

j=1

[yo
j −HjMtn,tjx]TR−1

j [yo
j − HjMtn,tjx] = [x − x̄b

n]T (Pb
n)

−1[x − xb
n] + c.

It follows that

Jo
tn(x) = [x − x̄b

n]T (Pb
n)

−1[x − x̄b
n] + [yo

n − Hnx]TR−1
n [yo

n −Hnx] + c. (7)

To complete the data assimilation cycle, we determine the state estimate x̄a
n and its covariance

Pa
n so that

Jo
tn(x) = [x − x̄a

n]T (Pa
n)

−1[x − x̄a
n] + c′

for some constant c′. Equating the terms of degree 2 in x, we get

Pa
n =

[

(Pb
n)

−1 + HT
nR−1

n Hn

]

−1
. (8)

Equating the terms of degree 1, we get

x̄a
n = Pa

n

[

(Pb
n)−1x̄b

n + HT
nR−1

n yo
n

]

. (9)

This equation in some sense (consider, for example, the case where Hn is the identity matrix)
expresses the analysis state estimate as a weighted average of the background state estimate and the
observations, weighted according to the inverse covariance of each.

6

Equations (8) and (9) can be written in many different but equivalent forms, and it will be useful
later to rewrite both of them now. Using (8) to eliminate (Pb

n)
−1 from (9) yields

x̄a
n = x̄b

n + Pa
nH

T
nR−1

n (yo
n − Hnx̄

b
n). (10)

The matrix Pa
nH

T
nR−1

n is called the “Kalman gain”. It multiplies the difference between the ob-
servations at time tn and the values predicted by the background state estimate to yield the incre-
ment between the background and analysis state estimates. Next, multiplying (8) on the right by
(Pb

n)−1Pb
n and combining the inverses yields

Pa
n = (I + Pb

nH
T
nR−1

n Hn)−1Pb
n. (11)

This expression is better than the previous one from a practical point of view, since it does not
require inverting Pb

n.

Initialization. The derivation above of the Kalman Filter avoided the issue of how to initialize the
iteration. In order to solve the best fit problem we originally posed, we should make no assumptions
about the system state prior to the analysis at time t1. Formally we can regard the background
covariance Pb

1 to be infinite, and for n = 1 use (8) and (9) with (Pb
1)

−1 = 0. This works if there are
enough observations at time t1 to determine (aside from the measurement errors) the system state;
that is, if H1 has rank equal to the number of model variables m. The analysis then determines
x̄a

1 in the appropriate least-square sense. However, if there are not enough observations, then the
matrix to be inverted in (8) does not have full rank. To avoid this difficulty, one can assume a prior
background distribution at time t1, with Pb

1 reasonably large but finite. This adds a small quadratic
term to the cost function being minimized, but with sufficient observations over time, the effect of
this term on the analysis at time tn decreases in significance as t increases.

2.2 Nonlinear Scenario: Ensemble Kalman Filtering

Many approaches to data assimilation for nonlinear problems are based on the Kalman Filter, or at
least on minimizing a cost function similar to (7). At a minimum, a nonlinear model forces a change
in the forecast equations (5) and (6), while nonlinear observation operators Hn force a change in the
analysis equations (10) and (11). The Extended Kalman Filter (see, for example, [18]) computes
x̄b

n = Mtn−1,tn(x̄a
n−1) using the nonlinear model, but computes Pb

n using the linearization Mtn−1,tn

of Mtn−1,tn around x̄a
n−1. The analysis then uses the linearization Hn of Hn around x̄b

n. This
approach is problematic for complex, high-dimensional models such as a global weather model for
(at least) two reasons. First, it is not easy to linearize such a model. Second, the number of model
variables m is several million, and as a result the m × m matrix inverse required by the analysis
cannot be performed in a reasonable amount of time.

7

Approaches used in operational weather forecasting generally eliminate for pragmatic reasons
the time iteration of the Kalman Filter. The U.S. National Weather Service performs data assimila-
tion every 6 hours using the “3D-VAR” method [25, 31], in which the background covariance Pb

n

in (7) is replaced by a constant matrix B representing typical uncertainty in a 6 hour forecast. This
simplification allows the analysis to be formulated in a manner that does not require a large matrix
to be inverted each time. The 3D-VAR cost function also includes a nonlinear observation operator
Hn, and is minimized numerically to produce the analysis state estimate xa

n.
The “4D-VAR” method [24, 35] used by the European Centre for Medium-Range Weather Fore-

casts uses a cost function that includes a constant-covariance background term as in 3D-VAR to-
gether with a sum like (2) accounting for the observations collected over a 12 hour time span. Again
the cost function is minimized numerically; this procedure is computationally intensive, because
both the the nonlinear model and its linearization must be integrated over the 12 hour interval to
compute the gradient of the 4D-VAR cost function, and this procedure is repeated until a satisfac-
tory approximation to the minimum is found.

The key idea of ensemble Kalman filtering [6] is to choose at time tn−1 an ensemble of initial
conditions whose spread around x̄a

n−1 characterizes the analysis covariance Pa
n−1, propagate each

ensemble member using the nonlinear model, and compute Pb
n based on the resulting ensemble at

time tn. Thus like the Extended Kalman Filter, the (approximate) uncertainty in the state estimate is
propagated from one analysis to the next, unlike 3D-VAR (which does not propagate the uncertainty
at all) or 4D-VAR (which propagates it only for a limited time). Furthermore, it does this without
requiring a linearized model. While these are advantages over the other methods, there are some
potential disadvantages as well.

Perhaps the most important difference between ensemble Kalman filtering and the other meth-
ods described above is that it only quantifies uncertainty in the space spanned by the ensemble.
Assuming that computational resources restrict the number of ensemble members k to be much
smaller than the number of model variables m, this can be a severe limitation. On the other hand, if
this limitation can be overcome (see the section on “Localization” below), then the analysis can be
performed in a much lower-dimensional space (k versus m). Thus, ensemble Kalman filtering has
the potential to be more computationally efficient than the other methods. Indeed, the main point
of this article is to describe how to do ensemble Kalman filtering efficiently without sacrificing
accuracy.

Notation. We start with an ensemble {xa(i)
n−1 : i = 1, 2, . . . , k} of m-dimensional model state

vectors at time tn−1. One approach would be to let one of the ensemble members represent the
best estimate of the system state, but here we assume the ensemble to be chosen so that its average
represents the analysis state estimate. We evolve each ensemble member according to the nonlinear

8

model to obtain a background ensemble {xb(i)
n : i = 1, 2, . . . , k} at time tn:

xb(i)
n = Mtn−1,tn(xa(i)

n−1).

For the rest of this article, I will discuss what to do at the analysis time tn, and so I now drop the
subscript n. Thus, for example, H and R will represent respectively the observation operator and the
observation error covariance matrix at the analysis time. Let " be the number of scalar observations
used in the analysis.

For the background state estimate and its covariance we use the sample mean and covariance of
the background ensemble:

x̄b = k−1
k

∑

i=1

xb(i),

Pb = (k − 1)−1
k

∑

i=1

(xb(i) − x̄b)(xb(i) − x̄b)T = (k − 1)−1Xb(Xb)T , (12)

where Xb is the m × k matrix whose ith column is xb(i) − x̄b. The analysis must determine not
only an state estimate x̄a and covariance Pa, but also an ensemble {xa(i) : i = 1, 2, . . . , k} with the
appropriate sample mean and covariance:

x̄a = k−1
k

∑

i=1

xa(i),

Pa = (k − 1)−1
k

∑

i=1

(xa(i) − x̄a)(xa(i) − x̄a)T = (k − 1)−1Xa(Xa)T , (13)

where Xa is the m × k matrix whose ith column is xa(i) − x̄a.
In Section 2.3, I will describe how to determine x̄a and Pa for a (possibly) nonlinear observation

operator H in a way that agrees with the Kalman Filter equations (10) and (11) in the case that H is
linear.

Choice of analysis ensemble. Once x̄a are Pa specified, there are still many possible choices of
an analysis ensemble (or equivalently, a matrix Xa that satisfies (13) and the sum of whose columns
is zero). A variety of ensemble Kalman filters have been proposed, and one of the main differences
among them is how the analysis ensemble is chosen. The simplest approach is to apply the Kalman
filter update (10) separately to each background ensemble member (rather than their mean) to get
the corresponding analysis ensemble member. However, this results in an analysis ensemble whose
sample covariance is smaller than Pa, unless the observations are artificially perturbed so that each
ensemble member is updated using different random realization of the perturbed observations [4,
14]. Ensemble square-root filters [1, 38, 3, 36, 29, 30] instead use more involved but deterministic
algorithms to generate an analysis ensemble with the desired sample mean and covariance. As such,

9

their analyses coincide exactly with the standard Kalman Filter in the linear scenario of the previous
section. I will use this deterministic approach below.

Localization. Another important issue in ensemble Kalman filtering of spatiotemporally chaotic
systems is spatial localization. If the ensemble has k members, then the background covariance
matrix Pb given by (12) describes nonzero uncertainty only in the k-dimensional subspace spanned
by the ensemble, and a global analysis will allow adjustments to the system state only in this sub-
space. If the system is high-dimensionally unstable, then forecast errors will grow in directions not
accounted for by the ensemble, and these errors will not be corrected by the analysis. On the other
hand, in a sufficiently small local region, the system may behave like a low-dimensionally unsta-
ble system driven by the dynamics in neighboring region; such behavior was observed for a global
weather model in [32]. Performing the analysis locally requires only that the ensemble in some
sense span the local unstable space; by allowing the local analyses to choose different linear com-
binations of the ensemble members in different regions, the global analysis is not confined to the
k-dimensional ensemble space and instead explores a much higher dimensional space [9, 29, 30].
Another view on the necessity of localization for spatiotemporally chaotic systems is that the limited
sample size provided by an ensemble will produce spurious correlations between distant locations
in the background covariance matrix Pb [14, 12]. Unless they are suppressed, these spurious cor-
relations will cause observations from one location to affect, in an essentially random manner, the
analysis an arbitrarily large distance away. If the system has a characteristic “correlation distance”,
then the analysis should ignore ensemble correlations over much larger distances. In addition to
providing better results in many cases, localization allows the analysis to be done more efficiently
as a parallel computation [23, 29, 30].

Localization is generally done either explicitly, considering only the observations from a region
surrounding the location of the analysis [22, 14, 23, 1, 29, 30], or implicitly, by multiplying the
entries in Pb by a distance-dependent function that decays to zero beyond a certain distance, so
that observations do not affect the model state beyond that distance [15, 12, 38]. I will follow the
explicit approach here, doing a separate analysis for each spatial grid point of the model. (My use of
“grid point” assumes the model to be a discretization of a partial differential equation, or otherwise
be defined on a lattice, but the method is also applicable to systems with other geometries.) The
choice of which observations to use for each grid point is up to the user of the method, and a
good choice will depend both on the particular system being modeled and the size of the ensemble
(more ensemble members will generally allow more distant observations to be used gainfully). It is
important however to have significant overlap between the observations used for one grid point and
the observations used for a neighboring grid point; otherwise the analysis ensemble may change
suddenly from one grid point to the next. For an atmospheric model, a reasonable approach would

10

be to use observations within a cylinder of a given radius and height and determine empirically
which values of these two parameters work best. At its simplest, the method I describe gives all of
the chosen observations the same weight, but I will also describe how to make the weights given to
the observations decay more smoothly to zero as the distance from the analysis location.

2.3 LETKF: A local ensemble transform Kalman filter

I will now describe an efficient means of performing the analysis that transforms a background
ensemble {xb(i) : i = 1, 2, . . . , k} into an appropriate analysis ensemble {xa(i) : i = 1, 2, . . . , k},
using the notation defined above. I assume that the number of ensemble members k is smaller than
both the number of model variables m and the number of observations ", even when localization has
reduced the effective values of m and " considerably compared to a global analysis. (In this section
I will assume the choice of observations to use for the local analysis to have been performed already,
and consider yo, H and R to be truncated to these observations; as such, correlations between errors
in the chosen observations and errors in other observations are ignored.) Most of the analysis will
take place in a k-dimensional space, with as few operations as possible in the model and observation
spaces.

Formally, we want the analysis mean x̄a to minimize the Kalman filter cost function (7), modi-
fied to allow for a nonlinear observation operator H:

J(x) = (x − x̄b)T (Pb)−1(x − x̄b) + [yo − H(x)]TR−1[yo − H(x)]. (14)

However, the m×m background covariance matrix Pb = (k−1)−1Xb(Xb)T can have rank at most
k−1, and is therefore not invertible. Nonetheless, its inverse is well-defined on the space S spanned
by the background ensemble perturbations, that is, the columns of Xb. Thus J is also well-defined
for x − x̄b in S, and the minimization can be carried out in this subspace.1 As we have said, this
reduced dimensionality is an advantage from the point of view of efficiency, though the restriction
of the analysis mean to S is sure to be detrimental if k is too small.

In order to perform the analysis on S, we must choose an appropriate coordinate system. A
natural approach is to use the singular vectors of Xb (the eigenvectors of Pb) to form a basis for S

[1, 29, 30]. Here we avoid this step by using instead the columns of Xb to span S, as in [3]. One
1Considerably more general cost functions could be used in the relatively low-dimensional ensemble space S. In

particular, one could consider non-Gaussian background distributions as follows. Given a distribution that can be
parametrized solely by a mean and covariance matrix, substitute the negative logarithm of its probability distribution
function for the first term on the right side of (14). Though the formulas below that determine the analysis mean and
covariance would not be valid, one could numerically determine the appropriate mean and covariance. In principle,
distributions that are parametrized by higher order moments could be considered, but this would require significantly
larger ensembles.

11

conceptual difficulty in this approach is that the sum of these columns is zero, so they are necessarily
not linearly independent. We could assume the first k − 1 columns to be independent and use them
as a basis, but this assumption is unnecessary and clutters the resulting equations. Instead, we regard
Xb as a linear transformation from a k-dimensional space S̃ onto S, and perform the analysis in S̃.
Let w denote a vector in S̃; then Xbw belongs to the space S spanned by the background ensemble
perturbations, and x = x̄b + Xbw is the corresponding model state.

Notice that if w is a Gaussian random vector with mean 0 and covariance (k − 1)−1I, then
x = x̄b + Xbw is Gaussian with mean x̄b and covariance Pb = (k − 1)−1Xb(Xb)T . This motivates
the cost function

J̃(w) = (k − 1)wTw + [yo − H(x̄b + Xbw)]TR−1[yo − H(x̄b + Xbw)] (15)

on S̃. In particular, I claim that if w̄a minimizes J̃ , then x̄a = x̄b + Xbw̄a minimizes the cost
function J . Substituting the change of variables formula into (14) and using (12) yields the identity

J̃(w) = (k − 1)wT (I − (Xb)T [Xb(Xb)T]−1Xb)w + J(x̄b + Xbw). (16)

The matrix I − (Xb)T [Xb(Xb)T]−1Xb is the orthogonal projection onto the null space N of Xb.
(Generally N will be one-dimensional, spanned by the vector (1, 1, . . . , 1)T , but it could be higher-
dimensional.) Thus, the first term on the right side of (16) depends only on the component of w in
N , while the second term depends only on its component in the space orthogonal to N (which is in
one-to-one correspondence with S under Xb). Thus if w̄a minimizes J̃ , then it must be orthogonal
to N , and the corresponding vector x̄a minimizes J .

Nonlinear Observations. The most accurate way to allow for a nonlinear observation operator H

would be to numerically minimize J̃ in the k-dimensional space S̃, as in [40]. If H is sufficiently
nonlinear, then J̃ could have multiple minima, but a numerical minimization using w = 0 (corre-
sponding to x = x̄b) as an initial guess would still be a reasonable approach. Having determined
w̄a in this manner, one would compute the analysis covariance P̃a in S̃ from the second partial
derivatives of J̃ at w̄a, then use Xb to transform the analysis results into the model space, as below.
But in order to formulate the analysis more explicitly, we now linearize H about the background
ensemble mean x̄b. Of course, if H is linear then we will find the minimum of J̃ exactly. And if the
spread of the background ensemble is not too large, the linearization should be a decent approxima-
tion, similar to the approximation we have already made that a linear combination of background
ensemble members is also a plausible background model state.

Since we only need to evaluate H in the ensemble space (or equivalently to evaluate H(x̄b +

Xbw) for w in S̃), the simplest way to linearize H is to apply it to each of the ensemble members
xb(i) and interpolate. To this end, we define an ensemble yb(i) of background observation vectors by

yb(i) = H(xb(i)). (17)

12

We define also their mean ȳb, and the " × k matrix Yb whose ith column is yb(i) − ȳb. We then
make the linear approximation

H(x̄b + Xbw) ≈ ȳb + Ybw. (18)

The same approximation is used in, for example, [15], and is equivalent to the joint state-observation
space method in [1].

Analysis. The linear approximation we have just made yields the quadratic cost function

J̃∗(w) = (k − 1)wTw + [yo − ȳb − Ybw]TR−1[yo − ȳb − Ybw]. (19)

This cost function is in the form of the Kalman filter cost function (7), using the background mean
w̄b = 0 and background covariance matrix P̃b = (k − 1)−1I, with Yb playing the role of the
observation operator. The analogues of the analysis equations (10) and (11) are then

wa = P̃a(Yb)TR−1(yo − ȳb), (20)

P̃a = [(k − 1)I + (Yb)TR−1Yb]−1. (21)

In model space, the analysis mean and covariance are then

x̄a = x̄b + Xbw̄a, (22)

Pa = XbP̃a(Xb)T . (23)

In order to initiate the ensemble forecast that will produce the background for the next analysis, we
must choose an analysis ensemble whose sample mean and covariance are equal to x̄a and Pa. As
mentioned above, this amounts to choosing a matrix Xa so that the sum of its columns is zero and
(13) holds. Then one can form the analysis ensemble by adding x̄a to each of the columns of Xa.

Symmetric Square Root. Our choice of analysis ensemble is described by Xa = XbWa, where

Wa = [(k − 1)P̃a]1/2 (24)

and by the 1/2 power of a symmetric matrix we mean its symmetric square root. Then P̃a =

(k−1)−1Wa(Wa)T , and (13) follows from (23). The use of the symmetric square root to determine
Wa from P̃a (as compared to, for example, a Cholesky factorization, or the choice described in [3]),
is important for two main reasons. First, as we will see below, it ensures that the sum of the columns
of Xa is zero, so that the analysis ensemble has the correct sample mean (this is also shown for the
symmetric square root in [37]). Second, it ensures that Wa depends continuously on P̃a; while this

13

may be a desirable property in general, it is crucial in a local analysis scheme, so that neighboring
grid points with slightly different matrices P̃a do not yield very different analysis ensembles.

Another potentially desirable property of the symmetric square root is that it minimizes the
(mean-square) distance between Wa and the identity matrix [29, 30], though because of the dif-
ferent choice of basis, it does not minimize the same quantity, and thus does not yield the same
analysis ensemble, as in that article. Numerical experiments to be published elsewhere produce
similar quality results to other reasonable choices of the analysis ensemble in a square-root filter;
see Section 5.

To see that the sum of the columns of Xa is zero, we express this condition as Xav = 0, where
v is a column vector of k ones: v = (1, 1, . . . , 1)T . Notice that by (21), v is an eigenvector of P̃a

with eigenvalue (k − 1)−1:

(P̃a)−1v = [(k − 1)I + (Yb)TR−1Yb]v = (k − 1)v,

because the sum of the columns of Yb is zero. Then by (24), v is also an eigenvector of Wa with
eigenvalue 1. Since the sum of the columns of Xb is zero, Xav = XbWav = Xbv = 0 as desired.

Finally, notice that we can form the analysis ensemble first in S̃ by adding w̄a to each of the
columns of Wa; let {wa(i)} be the columns of the resulting matrix. These “weight” vectors specify
what linear combinations of the background ensemble perturbations to add to the background mean
in order to get the analysis ensemble in model space:

xa(i) = x̄b + Xbwa(i), (25)

Local Implementation. Notice that once the background ensemble has been used to form ȳb

and Yb, it is no longer needed in the analysis, except in (25) to translate the results from S̃ to
model space. This point is useful to keep in mind when implementing a local filter that computes
a separate analysis for each model grid point. In principle, one should form a global background
observation ensemble y

b(i)
[g] from the global background vectors, though in practice this can be done

locally when the global observation operator H[g] uses local interpolation. After the background
observation ensemble is formed, the analyses at different grid points are completely independent
of each other and can be computed in parallel. The observations chosen for a given grid point will
dictate which coordinates of y

b(i)
[g] are used to form the local background observation ensemble yb(i)

for that analysis, and the analysis in S̃ will produce the weight vectors {wa(i)} for that grid point.
Thus computing the analysis ensemble {xa(i)} for that grid point using (25) requires only using the
background model states at that grid point.

As long as the sets of observations used at a pair of neighboring grid points overlap heavily,
the linear combinations used at the two grid points will be similar, and thus the global analysis
ensemble members formed by these spatially varying linear combinations will change slowly from

14

one grid point to the next. In a local region of several grid points, they will approximately be
linear combinations of the background ensemble members, and thus should represent reasonably
“physical” initial conditions for the forecast model. However, if the model requires of its initial
conditions high-order smoothness and/or precise conformance to an conservation law, it may be
necessary to post-process the analysis ensemble members to smooth them and/or project them onto
the manifold determined by the conserved quantities before using them as initial conditions (this
procedure is often called “balancing” in geophysical data assimilation).

In other localization approaches [15, 12, 38], the influence of an observation at a particular point
on the analysis at a particular model grid point decays smoothly to zero as the distance between the
two points increases. A similar effect can be achieved here by multiplying the entries in the inverse
observation error covariance matrix R−1 by a factor that decays from one to zero as the distance of
the observations from the analysis grid point increases. This “smoothed localization” corresponds
to gradually increasing the uncertainty assigned to the observations until beyond a certain distance
they have infinite uncertainty and therefore no influence on the analysis.

Covariance Inflation. In practice, an ensemble Kalman filter that adheres strictly to the Kalman
Filter equations (10) and (11) may fail to synchronize with the “true” system trajectory that produces
the observations. One reason for this is model error, but even with a perfect model the filter will tend
to underestimate the uncertainty in its state estimate [38]. Regardless of the cause, underestimating
the uncertainty leads to overconfidence in the background state estimate, and hence underweighting
of the observations by the analysis. If the discrepancy becomes too large over time, the observations
are essentially ignored by the analysis, and the dynamics of the data assimilation system become
decoupled from the truth.

Generally this effect is countered by an ad hoc procedure (with at least one tunable parameter)
that inflates either the background covariance or the analysis covariance during each data assimi-
lation cycle. One “hybrid” approach adds a multiple of the background covariance matrix B from
the 3D-VAR method to the background covariance prior to the analysis [11]. “Multiplicative infla-
tion” [2, 12] instead multiplies the background covariance matrix (or equivalently, the differences
or “perturbations” between the background ensemble members and their mean) by a constant factor
larger than one. “Additive inflation” adds a small multiple of the identity matrix to either the back-
ground covariance or the analysis covariance during each cycle [29, 30]. Finally, if one chooses the
analysis ensemble in such a way that each member has a corresponding member of the background
ensemble, then one can inflate the analysis ensemble by “relaxation” toward the background en-
semble: replacing each analysis perturbation from the mean by a weighted average of itself and the
corresponding background perturbation [39].

Within the framework described in this article, the hybrid approach is not feasible because it

15

requires the analysis to consider uncertainty outside the space spanned by the background ensem-
ble. However, once the analysis ensemble is formed, one could develop a means of inflating it in
directions (derived from the 3D-VAR background covariance matrix B or otherwise) outside the
ensemble space so that uncertainty in these directions is reflected in the background ensemble at
the next analysis step. Additive inflation is feasible, but requires substantial additional computation
in order to determine the adjustment necessary in the k-dimensional space S̃ that corresponds to
adding a multiple of the identity matrix to the model space covariance Pb or Pa. Relaxation is
simple to implement, and is most efficiently done in S̃ by replacing Wa with a weighted average of
it and the identity matrix.

Multiplicative inflation can be performed most easily on the analysis ensemble by multiply-
ing Wa by an appropriate factor (namely √

ρ in order to multiply the analysis covariance by ρ).
To perform multiplicative inflation on the background covariance instead, one should theoretically
multiply Xb by such a factor, and adjust the background ensemble {xb(i)} accordingly before ap-
plying the observation operator H to form the background observation ensemble {yb(i)}. However,
a more efficient approach, which is equivalent if H is linear, and is a close approximation even for
nonlinear H if the inflation factor ρ is close to one, is simply to replace (k − 1)I by (k − 1)I/ρ

in (21), since (k − 1)I is the inverse of the background covariance matrix P̃b in the k-dimensional
space S̃. One can check that this has the same effect on the analysis mean x̄a and covariance Pa as
multiplying Xb and Yb by √

ρ.

3 Efficient Computation of the Analysis

Here is a step-by-step description of how to perform the analysis described in the previous sec-
tion, designed for efficiency both in ease of implementation and in the amount of computation and
memory usage. Of course there are some trade-offs between these objectives, so in each step I first
describe the simplest approach and then in some cases mention alternate approaches and possible
gains in computational efficiency. I also give a rough accounting of the computational complexity
of each step, and at the end discuss the overall computational complexity. After that, I describe
an approach that in some cases will produce a significantly faster analysis, at the expense of more
memory usage and more difficult implementation, by reorganizing some of the steps. As before,
I will use “grid point” in this section to mean a spatial location in the forecast model, whether or
not the model is actually based on a grid geometry; I will use “array” to mean a vector or matrix.
The use of “columns” and “rows” below is for exposition only; one should of course store arrays in
whatever manner is most efficient for one’s computing environment.

The inputs to the analysis are a background ensemble of m[g]-dimensional model state vec-
tors {xb(i)

[g] : i = 1, 2, . . . , k}, a function H[g] from the m[g]-dimensional model space to the "[g]-

16

dimensional observation space, an "[g]-dimensional vector yo
[g] of observations, and an "[g] × "[g]

observation error covariance matrix R[g]. The subscript g here signifies that these inputs reflect
the global model state and all available observations, from which a local subset should be chosen
for each local analysis. How to choose which observations to use is entirely up to the user of this
method, but a reasonable general approach is to choose those observations made within a certain
distance of the grid point at which one is doing the local analysis and determine empirically which
value of the cutoff distance produces the “best” results. If one deems localization to be unnecessary
in a particular application, then one can ignore the distinction between local and global, and skip
Steps 3 and 9 below.

Steps 1 and 2 are essentially global operations, but may be done locally in a parallel implemen-
tation. Steps 3–8 should be performed separately for each local analysis (generally this means for
each grid point, but see the parenthetical comment at the end of Step 3). Step 9 simply combines
the results of the local analyses to form a global analysis ensemble {xa(i)

[g] }, which is the final output
of the analysis.

1. Apply H[g] to each x
b(i)
[g] to form the global background observation ensemble {yb(i)

[g] }, and
average the latter vectors to get the "[g]-dimensional column vector ȳb

[g]. Subtract this vector
from each {yb(i)

[g] } to form the columns of the "[g] × k matrix Yb
[g]. (This subtraction can be

done “in place”, since the vectors {yb(i)
[g] } are no longer needed.) This requires k applications

of H , plus 2k"[g] (floating-point) operations. If H is an interpolation operator that requires
only a few model variables to compute each observation variable, then the total number of
operations for this step is proportional to k"[g] times the average number of model variables
required to compute each scalar observation.

2. Average the vectors {xb(i)
[g] } to get the m[g]-dimensional vector x̄b

[g], and subtract this vector
from each x

b(i)
[g] to form the columns of the m[g] × k matrixXb

[g]. (Again the subtraction can be
done “in place”; the vectors {xb(i)

[g] } are no longer needed). This step requires a total of 2km[g]

operations. (If H is linear, one can equivalently perform Step 2 before Step 1, and obtain ȳb
[g]

and Yb
[g] by applying H to x̄b

[g] and Xb
[g].)

3. This step selects the necessary data for a given grid point (whether it is better to form the local
arrays described below explicitly or select them later as needed from the global arrays depends
on one’s implementation). Select the rows of x̄b

[g] and Xb
[g] corresponding to the given grid

point, forming their local counterparts: the m-dimensional vector x̄b and the m × k matrix
Xb, which will be used in Step 8. Likewise, select the rows of ȳb

[g] and Yb
[g] corresponding to

the observations chosen for the analysis at the given grid point, forming the "-dimensional
vector ȳb and the "×k matrixYb. Select the corresponding rows of yo

[g] and rows and columns
of R[g] to form the "-dimensional vector yo and the " × " matrix R. (For a high-resolution

17

model, it may be reasonable to use the same set of observations for multiple grid points, in
which case one should select here the rows of Xb

[g] and x̄b
[g] corresponding to all of these grid

points.)

4. Compute the k × " matrix C = (Yb)TR−1. Since this is the only step in which R is used,
it may be most efficient to compute C by solving the linear system RCT = Yb rather than
inverting R. In some applications, R may be diagonal, but in others R will be block diagonal
with each block representing a group of correlated observations. As long as the size of each
block is relatively small, inverting R or solving the linear system above will not be computa-
tionally expensive. Furthermore, many or all of the blocks that make up R may be unchanged
from one analysis time to the next, so that their inverses need not be recomputed each time.
Based on these considerations, the number of operations required (at each grid point) for this
step in a typical application should be proportional to k", multiplied by a factor related to the
typical block size of R.

5. Compute the k × k matrix P̃a =
[

(k − 1)I/ρ + CYb
]

−1
, as in (21). Here ρ > 1 is a multi-

plicative covariance inflation factor, as described at the end of the previous section. Though
trying some of the other approaches described there may be fruitful, a reasonable general ap-
proach is to start with ρ > 1 and increase it gradually until one finds a value that is optimal
according to some measure of analysis quality. Multiplying C and Yb requires less than 2k2"

operations, while the number of operations needed to invert the k × k matrix is proportional
to k3.

6. Compute the k × k matrix Wa = [(k − 1)P̃a]1/2, as in (24). Again the number of operations
required is proportional to k3; it may be most efficient to compute the eigenvalues and eigen-
vectors of

[

(k − 1)I/ρ + CYb
]

in the previous step and then use them to compute both P̃a

and Wa.

7. Compute the k-dimensional vectorwa = P̃aC(yo− ȳb), as in (20), and add it to each column
of Wa, forming a k × k matrix whose columns are the analysis vectors {wa(i)}. Computing
the formula for wa from right-to-left, the total number of operations required for this step is
less than 3k(" + k).

8. Multiply Xb by each wa(i) and add x̄b to get the analysis ensemble members {xa(i)} at the
analysis grid point, as in (25). This requires 2k2m operations.

9. After performing Steps 3–8 for each grid point, the outputs of Step 8 form the global analysis
ensemble {xa(i)

[g] }.

18

We now summarize the overall computational complexity of the algorithm described above. If
p is the number local analyses performed (equal to the number of grid points in the most basic
approach), then notice that pm = m[g], while p"̄ = q"[g], where "̄ is the average number of obser-
vations used in a local analysis and q is the average number of local analyses in which a particular
observation is used. If "̄ is large compared to k and m, then the most computationally expensive step
is either Step 5, requiring approximately 2k2p"̄ = 2k2q"[g] operations over all the local analyses, or
Step 4, whose overall number of operations is proportional to kp"̄ = kq"[g], but with a proportional-
ity constant dependent on the correlation structure of R[g]. In any case, as long as the typical number
of correlated observations in a block of R[g] remains constant, the overall computation time grows at
most linearly with the total number "[g] of observations. It also grows at most linearly with the total
number m[g] of model variables; if this is large enough compared to the number of observations,
then the most expensive step is Step 8, with 2k2m[g] overall operations. The computation time tends
to be roughly quadratic in the number k of ensemble members, though for a very large ensemble
the terms of order k3 above would become significant.

Batch Processing of Observations. Some of the steps above have a q-fold redundancy, in that
computations involving a given observation are repeated over an average of q different local analy-
ses. For a general observation error covariance matrix R[g] this redundancy may be unavoidable, but
it can be avoided as described below if the global observations can be partitioned into local groups
(or “batches”) numbered 1, 2, . . . that meet the following conditions. First, all of the observations
in a given batch must be used in the exact same subset of the local analyses. Second, observations
in different batches must have uncorrelated errors, so that each batch j corresponds to a block Rj

in a block diagonal decomposition of R[g]. (These conditions can always met if R[g] is diagonal, by
making each batch consist of a single observation. However, as explained below, for efficiency one
should make the batches as large as possible while still meeting the first condition.) Then at Step 3,
instead of selecting (overlapping) submatrices of ȳb

[g], Yb
[g], yo

[g], and R[g], for each grid point, let ȳb
j ,

Yb
j , yo

j , represent the rows corresponding to the observations in batch j, and do the following for
each batch. Compute and store the k × k matrix CjY

b
j and the k-dimensional vector Cj(yo

j − ȳb
j),

where Cj = (Yb
j)

TR−1
j as in Step 4. (This can be done separately for each batch, in parallel,

and the total number of operations is roughly 2k2"[g].) Then do Steps 5–8 separately for each local
analysis; when CYb and C(yo − ȳb) are required in Steps 5 and 7, compute them by summing the
corresponding arrays CjY

b
j and Cj(yo

j − ȳb
j) over the batches j of observations that are used in the

local analysis. To avoid redundant addition in these steps, batches that are used in exactly the same
subset of the local analyses should be combined into a single batch. The total number of operations
required by the summations over batches roughly k2ps, where s is the average number of batches
used in each local analysis. Both this and the 2k2"[g] operations described before are smaller than

19

the roughly 2k2p"̄ = 2k2q"[g] operations they combine to replace.
This approach has similarities with the “sequential” approach of [15] and [38], in which ob-

servations are divided into uncorrelated batches and a separate analysis is done for each batch; the
analysis is done in the observation space whose dimension is the number of observations in a batch.
However, in the sequential approach, the analysis ensemble for one batch of observations is used
as the background ensemble for the next batch of observations. Since batches with disjoint local
regions of influence can be analyzed separately, some parallelization is possible, though the LETKF
approach described above is more easily distributed over a large number of processors. For a serial
implementation, either approach may be faster depending on the application and the ensemble size.

4 Asynchronous Observations: 4D-LETKF

In theory, one can perform a new analysis each time new observations are made. In practice, this
is a good approach if observations are made at regular and sufficiently infrequent time intervals.
However, in many applications, such as weather forecasting, observations are much too frequent
for this approach. Imagine, for example, a 6 hour interval between analyses, like at the National
Weather Service. Since weather can change significantly over such a time interval, it is important
to consider observations taken at intermediate times in a more sophisticated manner than to pretend
they occurred at the analysis time (or to simply ignore them). Operational versions of 3D-VAR and
4D-VAR (see Section 2.2) do take into account the timing of the observations, and one of the primary
strengths of 4D-VAR is that it does so in a precise manner, by considering which forecast model
trajectory best fits the observations over a given time interval (together with assumed background
statistics at the start of this interval).

We have seen that the analysis step in an ensemble Kalman filter considers model states that
are linear combinations of the background ensemble states at the analysis time, and compares these
model states to observations taken at the analysis time. Similarly, we can consider approximate
model trajectories that are linear combinations of the background ensemble trajectories over an
interval of time, and compare these approximate trajectories with the observations taken over that
time interval. Instead of asking which model trajectory best fits the observations, we ask which
linear combination of the background ensemble trajectories best fits the observations. As before, this
is relatively a low-dimensional optimization problem that is much more computationally tractable
than the full nonlinear problem.

This approach is similar to that of an ensemble Kalman smoother [7, 8], but over a much shorter
time interval. As compared to a “filter”, which estimates the state of a system at time t using
observations made up to time t, a “smoother” estimates the system state at time t using observations
made before and after time t. Over a long time interval, one must generally take a more sophisticated

20

approach to smoothing than to simply consider linear combinations of an ensemble of trajectories
generated over the entire interval, both because the trajectories may diverge enough that linear
combinations of them will not approximate model trajectories, and because in the presence of model
error there may be no model trajectory that fits the observations over the entire interval. Over a short
enough time interval however, the approximation of true system trajectories by linear combinations
of model trajectories with similar initial conditions is quite reasonable.

While this approach to assimilating asynchronous observations is suitable for any ensemble
Kalman filter [16], it is particularly simple to implement in the LETKF framework; I will call this
extension 4D-LETKF. To be specific, suppose that we have observations (τj ,yo

τj
) taken at various

times τj since the previous analysis. Let Hτj
be the observation operator for time τj and let Rτj

be
the error covariance matrix for these observations. In Section 2.3, we mapped a vector w in the
k-dimensional space S̃ into observation space using the formula ȳb + Ybw, where the background
observation mean ȳb and perturbation matrix Yb were formed by applying the observation operator
H to the background ensemble at the analysis time. So now, for each time τj , we apply Hτj

to the
background ensemble at time τj , calling the mean of the resulting vectors ȳb

τj
and forming their

differences from the mean into the matrix Yb
τj

.
We now form a combined observation vector yo by concatenating (vertically) the (column) vec-

tors yo
τj

, and similarly by vertical concatenation of the vectors ȳb
τj

and matrices Yb
τj

respectively, we
form the combined background observation mean ȳb and perturbation matrix Yb. We form the cor-
responding error covariance matrix R as a block diagonal matrix with blocks Rτj

(this assumes that
observations taken at different times have uncorrelated errors, though such correlations if present
could be included in R).

Given this notation, we can then use the same analysis equations as in the previous sections,
which are based on minimizing the cost function J̃∗ given by (19). (We could instead write down
the appropriate analogue to (15) and minimize the resulting nonlinear cost function J̃ ; this would be
no harder than in the case of synchronous observations.) Referring to Section 3, the only change is
in Step 1, which one should perform for each observation time τj (using the background ensemble
and observation operator for that time) and then concatenate the results as described above. Step 2
still only needs to be done at the analysis time, since its output is used only in Step 8 to form the
analysis ensemble in model space. All of the intermediate steps work exactly the same, in terms of
the output of Step 1.

In practice the model will be integrated with a discrete time step that in general will not coincide
with the observation times τj . One should either interpolate the background ensemble trajectories
to the observation times, or simply round the observation times off to the nearest model integration
time. In either case, one must either store the background ensemble trajectories until the analysis
time, or perform Step 1 of Section 3 during the model integration and store its results. The latter

21

approach will require less storage if the number of observations per model integration time step is
less than the number of model variables.

5 Summary, Results, and Acknowledgments

In this article I have described a general framework for data assimilation in spatiotemporally chaotic
systems using an ensemble Kalman filter that in its basic version (Section 3) is relatively efficient
and simple to implement. In a particular application, one may be able to improve accuracy by
experimenting with different approaches to localization (see the discussion in Sections 2.2 and 2.3),
covariance inflation (see the end of Section 2.3), and/or asynchronous observations (Section 4). For
very large systems and/or when maximum efficiency is important, one should consider carefully the
comments about implementation in Section 3 (and at the end of Section 4, if applicable). One can
also apply this method to low-dimensional chaotic systems, without using localization.

Results using the LETKF approach will be reported elsewhere. The quality of these results is
similar to other published results for square-root ensemble Kalman filters [38, 30, 34]. In particular,
J. Harlim has obtained results [13] comparable to those in [38, 30] for a perfect model scenario, us-
ing a system with one spatial dimension proposed by E. Lorenz in 1995 [26, 27]. Also, E. Kostelich
and I. Szunyogh have obtained preliminary results comparable to those in [34] using the LEKF ap-
proach of [29, 30] for the National Weather Service’s global forecast model, again in a perfect model
scenario, with the LETKF approach running several times faster. Thus, this article does not describe
a fundamentally new method for data assimilation, but rather a refinement of existing approaches
that combines simplicity with the flexibility to adapt to a variety of applications.

I thank my collaborators for their ideas and encouragement. In particular, E. Kostelich, I. Szun-
yogh, and G. Gyarmati have put considerable effort into a parallel LETKF implementation for global
forecast models. J. Harlim has performed a 4D-LETKF implementation and done extensive testing
on several models. E. Fertig has tested the approach described here for a nonlinear observation op-
erator, and is working with H. Li and J. Liu on applying our parallel LETKF implementation to the
NASA global forecast model. M. Cornick has done an LETKF implementation for Rayleigh-Bénard
convection. Using the LEKF of [29, 30], T. Miyoshi has tested the smoothed localization described
in Section 2.3 [28], and T. Sauer helped develop and test the 4D extension described here [16]. E.
Kalnay, E. Ott, D. Patil, and J. Yorke have provided numerous insights that form the basis for this
work. I am grateful to all for their feedback, which has helped to refine the approach described in
this paper.

22

References

[1] J. L. Anderson, An ensemble adjustment Kalman filter for data assimilation, Mon. Wea. Rev.
129, 2884–2903 (2001).

[2] J. L. Anderson & S. L. Anderson, A Monte Carlo implementation of the nonlinear filtering prob-
lem to produce ensemble assimilations and forecasts, Mon. Wea. Rev. 127, 2741–2758 (1999).

[3] C. H. Bishop, B. J. Etherton, S. J. Majumdar, Adaptive sampling with the ensemble transform
Kalman filter. Part I: Theoretical aspects, Mon. Wea. Rev. 129, 420–436 (2001).

[4] G. Burgers, P. J. van Leeuwen, G. Evensen, Analysis scheme in the ensemble Kalman filter,
Mon. Wea. Rev. 126, 1719–1724 (1998).

[5] A. Doucet, N. de Freitas, N. Gordon, eds., Sequential Monte Carlo Methods in Practice,
Springer-Verlag, 2001.

[6] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte
Carlo methods to forecast error statistics, J. Geophys. Res. 99, 10143–10162 (1994).

[7] G. Evensen & P. J. van Leeuwen, An ensemble Kalman smoother for nonlinear dynamics, Mon.
Wea. Rev. 128, 1852–1867 (2000).

[8] G. Evensen, The ensemble Kalman filter: theoretical formulation and practical implementation,
Ocean Dynam. 53, 343–367 (2003).

[9] I. Fukumori, A partitioned Kalman filter and smoother, Mon. Wea. Rev. 130, 1370–1383 (2002).

[10] M. Ghil & P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography, Adv.
Geophys. 33, 141–266 (1991).

[11] T. M. Hamill & C. Snyder, A hybrid ensemble Kalman filter–3D variational analysis scheme
Mon. Wea. Rev. 128 2905–2919 (2000).

[12] T. M. Hamill, J. S. Whitaker, and C. Snyder, Distance-dependent filtering of background error
covariance estimates in an ensemble Kalman filter, Mon. Wea. Rev. 129, 2776–2790 (2001).

[13] J. Harlim & B. R. Hunt, A local ensemble transform Kalman filter: an efficient scheme for
assimilating atmospheric data, preprint.

[14] P. L. Houtekamer & H. L. Mitchell, Data assimilation using an ensemble Kalman filter tech-
nique, Mon. Wea. Rev. 126, 796–811 (1998).

23

[15] P. L. Houtekamer & H. L. Mitchell, A sequential ensemble Kalman filter for atmospheric data
assimilation, Mon. Wea. Rev. 129, 123–137 (2001).

[16] B. R. Hunt, E. Kalnay, E. J. Kostelich, E. Ott, D. J. Patil, T. Sauer, I. Szunyogh, J. A. Yorke,
A. V. Zimin, Four-dimensional ensemble Kalman filtering, Tellus A 56, 273–277 (2004).

[17] K. Ide, P. Courtier, M. Ghil, A. C. Lorenc, Unified notation for data assimilation: operational,
sequential, and variational, J. Meteo. Soc. Japan 75, 181–189 (1997).

[18] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press (1970).

[19] R. E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME, Ser.
D: J. Basic Eng. 82, 35–45 (1960).

[20] R. E. Kalman & R. S. Bucy, New results in linear filtering and prediction theory, Trans. ASME,
Ser. D: J. Basic Eng. 83, 95–108 (1961).

[21] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge Univ.
Press (2002).

[22] E. Kalnay & Z. Toth, Removing growing errors in the analysis, Proc. of the 10th Conf. on
Numerical Weather Prediction, Amer. Meteo. Soc., Portland, Oregon (1994).

[23] C. L. Keppenne, Data assimilation into a primitive-equation model with a parallel ensemble
Kalman filter, Mon. Wea. Rev. 128, 1971–1981 (2000).

[24] F.-X. Le Dimet & O. Talagrand, Variational algorithms for analysis and assimilation of mete-
orological observations: theoretical aspects, Tellus A 38, 97–110 (1986).

[25] A. C. Lorenc, A global three-dimensional multivariate statistical interpolation scheme, Mon.
Wea. Rev. 109, 701–721 (1981).

[26] E. N. Lorenz, Predictability: a problem partly solved, in Proc. of the ECMWF Seminar on
Predictability, vol. 1, Reading, UK (1996).

[27] E. N. Lorenz & K. A. Emanuel, Optimal sites for supplementary weather observations: simu-
lation with a small model, J. Atmos. Sci. 55, 399–414 (1998).

[28] T. Miyoshi, Ensemble Kalman filter experiments with a primitive-equation global model,
Ph.D. dissertation, University of Maryland (2005).

24

[29] E. Ott, B. R. Hunt, I. Szunyogh, M. Corazza, E. Kalnay, D. J. Patil, J. A. Yorke, A. V. Zimin,
E. J. Kostelich, Exploiting Local Low Dimensionality of the Atmospheric Dynamics for Efficient
Ensemble Kalman Filtering, arXiv:physics/0203058v3 (2002).

[30] E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J.
Patil, J. A. Yorke, A local ensemble Kalman filter for atmospheric data assimilation, Tellus A 56,
415–428 (2004).

[31] D. F. Parrish & J. C. Derber, The National Meteorological Center’s spectral statistical-
interpolation analysis system, Mon. Wea. Rev. 120, 1747–1763 (1992).

[32] D. J. Patil, B. R. Hunt, E. Kalnay, J. A. Yorke, E. Ott, Local low dimensionality of atmospheric
dynamics, Phys. Rev. Lett. 86, 5878–5881 (2001).

[33] L. M. Pecora & T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64, 821–824
(1990).

[34] I. Szunyogh, E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. Ott, J. A.
Yorke, Assessing a local ensemble Kalman filter: perfect model experiments with the National
Centers for Environmental Prediction global model, Tellus A 57, 528–545 (2005).

[35] O. Talagrand & P. Courtier, Variational assimilation of meteorological observations with the
adjoint vorticity equation I: theory, Quart. J. Roy. Meteo. Soc. 113, 1311–1328 (1987).

[36] M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, J. S. Whitaker, Ensemble square-
root filters, Mon. Wea. Rev. 131, 1485–1490 (2003).

[37] X. Wang, C. H. Bishop, S. J. Julier, Which is better, an ensemble of positive-negative pairs or
a centered spherical simplex ensemble?, Mon. Wea. Rev. 132, 1590–1605 (2004).

[38] J. S. Whitaker, T. M. Hamill, Ensemble data assimilation without perturbed observations, Mon.
Wea. Rev. 130, 1913–1924 (2002).

[39] F. Zhang, C. Snyder, J. Sun, Impacts of initial estimate and observation availability on
convective-scale data assimilation with an ensemble Kalman filter, Mon. Wea. Rev. 132, 1238–
1253 (2004).

[40] M. Zupanski, Maximum likelihood ensemble filter: theoretical aspects, Mon. Wea. Rev. 133,
1710–1726 (2005).

25

http://arxiv.org/abs/physics/0203058

