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ABSTRACT: Covariance inflation plays an important role within the ensemble Kalman filter (EnKF) in preventing filter
divergence and handling model errors. However the inflation factor needs to be tuned and tuning a parameter in the EnKF
is expensive. Previous studies have adaptively estimated the inflation factor from the innovation statistics. Although the
results were satisfactory, this inflation factor estimation method relies on the accuracy of the specification of observation
error statistics, which in practice is not perfectly known. In this study we propose to estimate the inflation factor and
observational errors simultaneously within the EnKF. Our method is first investigated with a low-order model, the Lorenz-
96 model. The results show that the simultaneous approach works very well in the perfect model scenario and in the
presence of random model errors or a small systematic model bias. For an imperfect model with large model bias, our
algorithm may require the application of an additional method to remove the bias. We then apply our approach to a more
realistic high-dimension model, assimilating observations that have errors of different size and units. The SPEEDY model
experiments show that the estimation of multiple observation error parameters is successful in retrieving the true error
variance for different types of instruments separately. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

Data assimilation algorithms seek to find the optimal
combination of model forecast (‘background’) and avail-
able observations to generate improved initial condi-
tions (‘analysis’) for numerical weather predictions. Most
assimilation schemes are based on linear estimation the-
ory in which the background and the observations are
given weights proportional to the inverse of their spec-
ified error covariances. As such, the accuracy of a data
assimilation scheme relies highly on the accuracy of the
specification of the error statistics of both the background
and the observations. The observation error covariance
is usually assumed to be diagonal and time invariant
but the error variance can be incorrectly specified. The
background error covariance is actually flow-dependent.
Ensemble-based Kalman filter (EnKF) techniques esti-
mate the background error covariance from an ensemble
of forecasts allowing the inclusion of information on the
flow-dependent errors of the day that change both in space
and in time.

In the past ten years, EnKF methods have become
more mature. These methods have been implemented
in various models, from simple research models (e.g.
Whitaker and Hamill, 2002) to sophisticated operational
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models (e.g. Houtekamer et al., 2005), and from global-
scale (e.g. Whitaker et al., 2008; Szunyogh et al., 2008)
to regional-scale models (e.g. Snyder and Zhang, 2003;
Zhang et al., 2006; Torn et al., 2006), due to their
ease of implementation and the flow-dependent back-
ground error covariance. In practice, the flow-dependent
background error covariance estimated from the ensem-
ble perturbations in EnKF usually underestimates the
true forecast error, partly due to the limited number
of ensemble members and also due to the presence
of significant model errors, making the filter eventu-
ally diverge. Multiplicative and additive covariance infla-
tion schemes (Anderson and Anderson, 1999; Corazza
et al., 2002) are the easiest and prevailing techniques
to deal with the covariance underestimation. However
these inflation algorithms require considerable tuning in
order to obtain good performance of the filter. Tuning
the inflation parameter in EnKF is expensive, since it
requires many forecast–analysis cycles, especially if the
inflation factor is regionally and/or variable dependent.
Wang and Bishop (2003) adopted the maximum likeli-
hood parameter estimation theory of Dee (1995) to esti-
mate online an inflation factor ! from the innovation
statistics

dTd = trace(!HPbHT + R)

in their ensemble forecast scheme. (Symbols are defined
below.) Miyoshi (2005) reported the use of a similar
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method to estimate the covariance inflation factor within
the EnKF. Although both studies reported satisfactory
results, these estimations of the inflation factor rely on
the assumption that the observational error covariance,
R, is known. This assumption is valid for simulated
observations but not for real observations. Miyoshi and
Yamane (2007) reported that the adaptive covariance
inflation did not work when assimilating real data and
using the observational error standard deviations as spec-
ified in the Japan Meteorological Agency operational sys-
tem.

Additional information may be needed to obtain the
correct statistics of observation error if we want to apply
the inflation estimation scheme described above when
assimilating real observations. Desroziers and Ivanov
(2001) proposed an approach based on a consistency
check of analysis to adaptively estimate either observa-
tion or both observation and background error statistics,
assuming that the correlation lengths are very different
for observation and background errors. Chapnik et al.
(2006) applied this approach in an operational system
to tune observation error variance. Building on these
works, Desroziers et al. (2005, hereafter denoted DEA05)
developed a set of diagnostics based on the combina-
tions of observation-minus-analysis, observation-minus-
background and analysis-minus-background to adap-
tively tune observation and background errors. All these
studies have been done in a variational framework. Here
we investigate whether these diagnostics can be adapted
in an EnKF framework to tune the mis-specified obser-
vation error variance and simultaneously implement the
adaptive estimation of inflation. All observation errors in
this study are uncorrelated, normally distributed random
noise while the background errors have correlations in
physical space. Although observation errors can also be
spatially correlated (section 7 in DEA05), this case is
beyond the scope of this paper.

As will be discussed later, adaptive estimation of
inflation requires accurate observation error statistics and,
conversely, an accurate estimate of observation error
relies on the use of an optimal inflation factor in an EnKF.
In this study, we propose to estimate the inflation factor
and observation errors simultaneously within the analysis
cycle, for which we use the Local Ensemble Transform
Kalman Filter (LETKF; Hunt et al., 2007) as one efficient
representative among many EnKF schemes. We will use
the diagnostics of DEA05 to estimate the observation
errors, and the Wang and Bishop (2003) method (or other
diagnostics of DEA05) to estimate the inflation factor.
We compute estimates of observation errors and inflation
factor at every analysis cycle but allow the system to
slowly evolve until it converges to the optimal value for
observation error variance (or the optimal range for the
inflation factor).

This paper is organized as follows. Section 2 describes
the algorithms to adaptively estimate inflation and obser-
vation error variance separately and propose the simul-
taneous approach. Section 3 reviews the local ensemble
transform Kalman filter. Our simultaneous approach is
implemented on a low-order model in section 4 and a

global atmospheric general circulation model in section 5.
Conclusions are provided in section 6.

2. Simultaneous estimation of covariance inflation
and observation errors

2.1. Adaptive estimation of covariance inflation

For a system with correctly specified covariance of
background errors Pb and observational errors R, where
these errors are assumed to be uncorrelated, the well-
known relationship

< do−bdo−b
T >= HPbHT + R (1)

is satisfied (e.g. Houtekamer et al., 2005). Here the inno-
vation vector do−b is the difference between observations
yo and their corresponding background h(xb), where h
is the nonlinear observation operator projecting the back-
ground xb to the observation space and H is the linear tan-
gent matrix of the h operator. The < > brackets represent
an average over many cases or statistical expectation. The
classical innovation statistics shown in Equation (1) pro-
vides a global check on the specification of Pb and R.

Another diagnostic on background errors can be
obtained by the combination of innovation do−b and
analysis-minus-background da−b. DEA05 proved that the
relationship

< da−b(do−b)
T >= HPbHT (2)

is valid when the analysis is optimal and pointed out that
(2) can be used to check the optimality of an assimilation
scheme and provides a separate consistency diagnostic on
the background error covariance in observation space.

In the ensemble filter, Pb is updated from the back-
ground ensemble every analysis cycle as

Pb = 1
K − 1

K∑

k=1

(xb
k − xb)(xb

k − xb)T,

where k indexes the ensemble member, K is the ensemble
size, and the overbar is the ensemble mean. However, this
background error covariance tends to underestimate the
true background error covariance, partly due to sampling
errors associated with the use of a small ensemble size, as
well as due to the presence of model errors, and as a result
the filter gives too much credence to the background. This
can compound the underestimation in the next cycle, and
as a result may lead to filter divergence. Multiplicative
covariance inflation (Anderson and Anderson, 1999) is a
simple and widely used method to address this problem
by ‘inflating’ the prior ensemble: the background error
covariance is increased by a factor greater than one.

Pb ←− ! × Pb. (3)

Here ! is referred to as a covariance inflation factor
that needs to be tuned in order to obtain a good
performance of the ensemble filter. However, tuning
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the inflation parameter is expensive and, furthermore,
there is no reason why the inflation should be assumed
to be constant in space or time. Wang and Bishop
(2003) proposed adapting Equation (1) to estimate the
inflation factor in ensemble forecasting. Substituting the
background error covariance in (3) into Equation (1) and
considering only the diagonal term, they estimated the
inflation factor ! online by

!̃ =
dT

o−bdo−b − Tr(R)

Tr(HPbH)
, (4)

where Tr denotes the trace of a matrix.
Similarly, from Equations (2) and (3), we obtain

another equation to estimate the inflation factor:

!̃ =
dT

a−bdo−b

Tr(HPbH)
. (5)

We denote Equations (4) and (5) as OMB2 and
AMB × OMB estimation methods, respectively. An
accurate estimate of ! from these two methods requires
a correct observation error covariance R. This is obvi-
ous for Equation (4) but is also implicitly true for (5),
since da−b itself is based on the use of the (generally
incorrectly) specified R. In order to estimate online the
inflation factor using either the OMB2 or AMB × OMB
method, an additional method is necessary to estimate R
if it is not known accurately.

2.2. Adaptive estimation of observation errors

DEA05 showed that the relationship

< do−adT
o−b >= R (6)

is valid if the matrices specified in

HK = HPbHT(HPbHT + R)−1

are the true covariances for background and observation
error. Here K is the Kalman gain, and do−a(do−b) are the
difference between the observation and analysis (back-
ground) in observation space. This is a diagnostic provid-
ing a consistency check on observation error covariance,
but it also depends implicitly on the background error
covariance. One application of this relationship is to diag-
nose observation error variance offline (after the analysis
cycle has been completed) or to estimate it online (within
the cycle). For any subset of observations i with pi obser-
vations, it is possible to compute an estimate of the error
variance

(σ̃ 2
o)i = (do−a)

T
i (do−b)i

pi

=
pi∑

j=1

(yo
j − ya

j )(y
o
j − yb

j )

pi
, (7)

where yo
j is the value of observation j and ya

j , yb
j are

their analysis and background counterparts.

We denote Equation (7) as the OMA × OMB method.
The accuracy of this method relies on do−a and do−b
which in turn depend on the observation and background
error covariances, and therefore on the inflation factor in
EnKF.

2.3. Simultaneous approach

As indicated above, adaptive estimation of inflation
requires knowing the observation error variance σ 2

o, while
an accurate estimate of σ 2

o relies on using an optimal
inflation factor. When neither the optimal inflation factor
nor the true σ 2

o are known, and both of them need
to be estimated, this becomes a nonlinear problem. In
this study, we propose to estimate the inflation and
observation error variance simultaneously within the
EnKF at each analysis step and allow the system itself
to gradually converge to a consistent value (or range of
values) for the observation error variance and the inflation
factor consistent with (1), (2) and (6).

2.4. Temporal smoothing

We estimate the observation error variance and inflation
parameter adaptively at each analysis time step. However,
in the numerical examples shown in section 4 with a low-
order model, the number of samples available at each step
is relatively small, introducing large sampling error. To
reduce this problem, we use adaptive regression based on
a simple scalar Kalman Filter (KF) approach usually used
to postprocess model output (e.g. Kalnay, 2003, Appendix
C) to accumulate past information and make observation
error variance and inflation gradually converge to the
optimal value while still allowing for time variations. This
approach can be considered as a temporal smoother and
was used by Miyoshi (2005) in estimating the inflation.
We regard the estimated values directly obtained from
Equation (7) or (4) or (5) as an ‘observed’ estimate αo

(of either !̃
o

or σ̃ 2
o) for the current time step. Instead

of directly using it as the final estimate for that time
step, we use the simple scalar KF approach to optimally
combine αo and αf, the value derived by persistence from
the previous time step, to get a new estimate denoted as
the analysis αa:

αa = voαf + vfαo

vo + vf , (8)

where νf(νo) denotes the forecast (observational) error
variance weights for the adaptive regression. The error
variance of αa is given by

va =
(

1 − vf

vf + vo

)
vf. (9)

Assuming persistence as the forecast model for the
estimated variable, and allowing for some error in the
‘persistence forecast’ (Kalnay, 2003, Appendix C), we
have

αf
t+1 = αa

t , (10)
vf

t+1 = κva
t . (11)
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where κ > 1.0 is a ‘forgetting’ parameter which allows
for a slow increase of the forecast error. Although two
additional control parameters, the observation error vari-
ance νo and error growth parameter κ have been intro-
duced here, Miyoshi (2005) showed the final estimate is
not sensitive to their values. Following Miyoshi (2005),
we use νo = 1.0 and κ = 1.03 in this study.

3. LETKF data assimilation scheme

The LETKF (Hunt et al., 2007) belongs to the family
of ensemble square-root filters in which the observations
are assimilated to update only the ensemble mean and
the ensemble perturbations are updated by transforming
the background perturbations through a transform matrix.
The most important difference between LETKF and other
square-root filters (Tippett et al., 2003) is that LETKF
updates the model variables at each grid point simul-
taneously assimilating all observations in a predefined
local region centred at that point, rather than assimilating
observations sequentially.

Specifically, in the LETKF, the analysis mean is given
by

xa = xb + XbP̃a(HXb)TR−1[yo − h(xb)], (12)

where xa, xb are the ensemble mean of analysis and back-
ground respectively, and Xa, Xb the analysis and back-
ground ensemble perturbations (matrices whose columns
are the difference between the ensemble members and the
ensemble mean). The analysis ensemble perturbations are
updated by

Xa = Xb[(K − 1)P̃a]1/2 (13)

using the symmetric square root, and where P̃a, the
analysis error covariance in ensemble space, is given by

P̃a = [(K − 1)I + (HXb)TR−1(HXb)]−1 (14)

of rank K − 1, usually much smaller than the dimension
of both the model and the number of observations. As
a result, the LETKF performs the analysis in the space
spanned by the forecast ensemble members, which greatly
reduces the computational cost. More details about the
LETKF are available in Hunt et al. (2007) and Szunyogh
et al. (2008).

4. Implementation in the Lorenz-96 model

We first test our approach in the Lorenz-96 model (Lorenz
and Emanuel, 1998) which has been widely used to test
data assimilation methods:

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F, (15)

where, i = 1, · · ·N , and the boundary is cyclic. As in
Lorenz and Emanuel (1998), we choose N = 40 and

F = 8.0, in which case this model behaves chaotically.
Equation (15) is solved with a fourth-order Runge–Kutta
scheme using a time step of 0.05 non-dimensional units
that corresponds to about 6 hours in the atmosphere, as
shown by Lorenz and Emanuel (1998).

4.1. Perfect model experiments

First we test our approach in the perfect model scenario in
which the multiplicative inflation is used to prevent filter
divergence due to small ensemble size. We generate the
‘true’ state by integrating the Lorenz-96 model for 2000
steps. Normally distributed random noise with variance
σ 2

o = 1 is then added to the ‘truth’ to generate the
observations. Each state variable is observed so that the
observation number is p = 40 and no interpolation is
needed. We assimilate these observations every analysis
cycle using the LETKF with K = 10 ensemble members.
Following Ott et al. (2004), we use a cut-off-based
localization with a local patch l = 6 which covers 13
model grid points. The background error covariance Pb

is updated every analysis cycle from the background
ensemble spread. Since the normally distributed errors
are uncorrelated with each other and the error variance
is 1, the true observation error matrix is diagonal, i.e.
Rt = σ 2

o(t)I = I.
The LETKF is used to assimilate observations at each

analysis step and for a total of 2000 steps. Following
Whitaker and Hamill (2002), we ignore the first 1000
steps to allow for any spin-up and report the results only
for the last 1000 steps.

4.1.1. Correctly specified observation variance

We first assume that the observation error variance is per-
fectly known, i.e. the specified value is σ 2

o(s) = σ 2
o(t) = 1.

In this case we do not estimate the observation error
variance, but attempt to estimate online the inflation
parameter using this correctly specified observation error
variance. We found that the ‘observed’ inflation !̃

o

directly obtained from either OMB2 or AMB × OMB
has large oscillations at each analysis step due to
(i) sampling an insufficient number of observations and
(ii) the relative small background error variance in these
perfect model experiments, so that the results are very
sensitive to the denominator in Equation (4) or (5). Some
very unrealistic values of !̃

o
might occur, making the

temporal-smoothing strategy itself not sufficient to han-
dle the sampling error problem. To avoid the possibility
of such unrealistic estimation of !̃ that could ruin the
assimilation, we impose wide upper and lower limits in
the ‘observed’ inflation !̃

o
, e.g. 0.9 ! !̃

o ! 1.2 before
applying the simple scalar KF smoothing procedure.
The final estimation of !̃ after smoothing is then used
to inflate the background ensemble spread. In a more
realistic data assimilation system with a much larger
number of available observations and relatively big back-
ground error, Wang and Bishop (2003) have shown the
‘observed’ inflation !̃

o
calculated directly from OMB2

remained within a reasonable range. In that situation,
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as in the results presented in section 5, there is no need
to prescribe a range for !̃

o
but time smoothing of the

estimates might still be desirable. As for the estimation
of observational error variance in the latter experiments,
we only apply the temporal-smoothing strategy since
no large oscillations were found in the ‘observed’ σ 2

o
presumably because there is no division by a potentially
small number in Equation (7) as there is in (4) or (5).

Table I shows that OMB2 and AMB × OMB meth-
ods produce similar results with an estimated inflation
factor ! of about 1.04 and an analysis error of about 0.20.
These results are very similar to the best-tuned constant
inflation obtained from many tuning trials. The experi-
ments in Table I will serve as a benchmark for the latter
experiments where σ 2

o is not perfectly specified.

4.1.2. Incorrectly specified observation error variance

In reality we do not know exactly the true value of the
observation error variance, and the specified value in the
analysis is only an estimate. In our second experiment
with the Lorenz-96 model, we use an erroneously speci-
fied σ 2

o(s) which is either one quarter or four times the
size of the true σ 2

o(t), equivalent to one-half or twice
the true observational error standard deviation. With a
large σ 2

o(s) = 4.0, the estimated ! is smaller than its opti-
mal value (Table II), so that the LETKF gives too much
weight to the background and not enough to the observa-
tions, resulting in a very degraded analysis.

In the case of σ 2
o(s) = 0.25σ 2

o(t) we noticed that the
estimated ! is the upper limit 1.2 of the prescribed

Table I. Time mean of adaptive inflation factor ! and the
corresponding analysis RMS error, averaged over the last 1000
steps of a 2000-step assimilation in a perfect model scenario and
in the case when the observational error variance is perfectly
specified (σ 2

o(s) = 1). For comparison, the value of best-tuned
constant inflation and its resulting analysis error are also shown.

! method σ 2
o(s) ! RMSE

OMB2 1 1.044 0.202
AMB × OMB 1 1.042 0.202
(Tuned) constant 1 1.046 0.201

Table II. Time mean of adaptive inflation factor ! and the
resulting analysis RMS error, averaged over the last 1000 steps
of a 2000-step assimilation in a perfect model scenario and in
the case when the specified observation variance σ 2

o(s) is either
a quarter of or four times the true σ 2

o(t) but without attempting
to estimate and correct it. The inflation factor is constrained to
be within an interval 0.9 ! !̃

o ! 1.2. See text for the results
when this constraint is removed.

! method σ 2
o(s) ! RMSE

OMB2 0.25 1.2 0.265
AMB × OMB 0.25 1.2 0.262
OMB2 4.0 1.021 1.635
AMB × OMB 4.0 1.033 1.523

possible range, 0.9 ! !̃
o ! 1.2 (Table II). This happened

because the ‘observed’ inflation !̃
o

at each single analysis
time step was always larger than 1.2, and was then
forced to be 1.2. As a result it did not represent the
value estimated from equation OMB2 or AMB × OMB.
Removing this constraint, we obtained a value for ! of
8.70 (7.81) with the estimation method OMB2 (AMB ×
OMB) respectively and the resulting analysis RMS error
of 0.80 (0.79) – much worse than the optimal value
of 0.2.

4.1.3. Simultaneous estimation of the inflation and the
observation error variance

We have seen that neither OMB2 nor AMB ×
OMB work appropriately when estimating the infla-
tion parameter if the specified observation error vari-
ance is substantially wrong. In the third experiment,
we estimate the observation error variance and inflation
simultaneously by using OMA × OMB and OMB2 (or
AMB × OMB) followed by the simple KF method.

We start our experiment with the same initial mis-
specification of the observation error variance. Table III
shows that, even if the initial specification of the obser-
vation error variance σ 2

o(ini) is poor (one quarter of or
four times the true σ 2

o), the OMA × OMB method has
the ability to correct it. The time mean of estimated σ 2

o
over the last 1000 analysis steps is essentially the same
as the true σ 2

o. With the corrected R matrix, we obtain a
reasonable adaptive inflation ! of about 1.04 for all the
cases in Table III. The resulting analysis RMS errors are
also similar to that of the benchmark. The results are not
sensitive to the initial incorrect value of σ 2

o(ini), since σ 2
o

is gradually corrected and reaches its ‘true’ value after
an initial transition period no matter what initial value is
specified.

We have shown that the estimation of adaptive infla-
tion alone does not work with an incorrectly specified
observation error variance. By estimating the inflation and
observation errors simultaneously, our method has the
ability to retrieve both their ‘true’ values. We now check
whether OMA × OMB can retrieve a correct observa-
tion error variance if the inflation is wrongly specified.
From the previous experiments, we know the optimal
inflation factor is about 1.04. If we fix it and underspecify
it to be 1.01, we get an estimated σ 2

o = 10.33, confirm-
ing that the estimations of inflation factor and observation
errors depend on each other. Unless one of them is accu-
rately known, both of them need to be simultaneously
estimated.

4.2. Imperfect model experiments

We have tested our approach in the LETKF with the
simulated observations and shown its ability to retrieve
both the true observation error variance and the optimal
inflation parameter in a perfect model scenario. In this
section we focus on a more realistic situation by intro-
ducing model errors. Recall that our method is based on
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Table III. Time mean of adaptive inflation factor !, the estimated observation error variance σ 2
o and the resulting analysis RMS

error, averaged over the last 1000 steps of a 2000 step assimilation in a perfect model scenario and in the case of simultaneous
estimation of both the inflation and the observation error variance which is initially mis-specified.

R method ! method σ 2
o(ini) σ 2

o ! RMSE

OMA × OMB OMB2 0.25 1.002 1.046 0.208
AMB × OMB 0.25 1.003 1.043 0.205
OMB2 4.0 1.000 1.046 0.202
AMB × OMB 4.0 1.000 1.043 0.203

the assumption that the specified matrices Pb and R in

HK = HPbHT(HPbHT + R)−1

agree with the true covariances for background and obser-
vation. In the perfect model scenario, the required infla-
tion is small and the inflated background error covariance
with a reasonable number of ensemble members can usu-
ally approximate well the true background error covari-
ance, but this is not the case for an imperfect model in
the absence of additional methods to correct model error,
when only the covariance inflation algorithm is used to
account for the effect of model errors. In this case the
inflated background error covariance may not be good
enough to represent the true background error covariance.
Our goal in this subsection is to test whether our online
estimation algorithm will still work in a more realistic
situation with model errors.

4.2.1. Random model errors

First, we study our scheme in the presence of random
model errors in which the real atmosphere is assumed
to behave like a noisy version of the numerical fore-
cast model. The evolution of the ‘true’ atmosphere is
simulated by adding the zero-mean random noise to the
Lorenz-96 model at each model time step:

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F + α × εi , (16)

where εi ∼ N(0, 1) and α is a constant factor. Our
forecast model is the standard Lorenz-96 model shown
in (12), so that we now have (unbiased) random model
errors. Since more uncertainties are involved in the
imperfect model experiments, we increase the ensemble
size from 10 to 20.

Table IV shows the estimated values of observation
error, adaptive inflation and their resulting analysis errors
for different amplitudes α of the random model error. As
in benchmark, we manually tuned the system to find the
optimal time-constant inflation (case A), and estimated
online the inflation using the ‘true’ observation error vari-
ance (case B). For case C, we simultaneously estimated
the values of observation error and adaptive inflation. To
handle sampling errors in cases B and C, we did the tem-
poral smoothing for all the situations of different α and
set the lower limit of ‘observed’ !̃

o
to 1.0 when α = 100

(corresponding to very large random errors). In the per-
fect model experiments, we have seen our method is not
sensitive to the initial specification of the observational
error variance and the method to calculate the ‘observed’
inflation parameter, so that we only test our method with
σ 2

o(ini) = 0.25 and use the OMB2 method to estimate
the inflation parameter. As shown in Table IV, all three
cases give similar results, with the required inflation and
the resulting analysis error increasing with the amplitude
of the model random errors. When the observation error
is perfectly known (case B), adaptive inflation reaches
an analysis error similar to that obtained by tuning a
constant inflation. With wrong initial observation error
information (case C), we estimate it online together
with the estimation of inflation, and the ‘true’ σ 2

o is also
approximated. The resulting analyses are as good as
those from the best-tuned inflation. These results indicate
that the adaptive algorithm simultaneously estimating
inflation and observation errors is able to produce
successful assimilations over a wide range of random
model errors. By contrast, manually searching for the
optimal time-constant inflation factor (case A) requires a
considerable number of iterations for each value of α.

4.2.2. Systematic model bias

For our final experiment with the Lorenz-96 model, we
introduce a systematic model bias. In the linear estimation
theory, the basis of most data assimilation schemes, both
background and observation error vectors are assumed
to be unbiased. However in reality the background is
usually biased due to the imperfect model, and ideally the
model bias should be estimated and subtracted from the
biased forecast. Here we violate the assumption that the
background is unbiased in order to check the behaviour of
our method in a more realistic situation with model bias.

We generate the model bias as in Baek et al. (2006)
by adding a constant sine function to the forcing term in
the Lorenz-96 model.

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F + α × β i , (17)

where β i = 1.6 sin{2π(i − 1)/N} describes the spatial
structure of the model bias and α determines its size. In
Baek et al. (2006), α = 1, corresponding to a model bias
of bi = 1.6 sin{2π(i − 1)/N} × 0.05 = 0.08 sin{2π(i −
1)/N}. This is a relatively small bias compared with
the observation noise (1.0 in our experiments). Here we
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Table IV. Results in the presence of random model errors. Case A – value of best-tuned constant inflation
using true observation variance and the resulting analysis RMSE; Case B – time mean value of adap-
tive inflation using true observation variance and the resulting analysis RMSE; Case C – time mean val-
ues of simultaneous adaptive inflation and observation error, and the resulting analysis RMSE. Each case is
tested for a wide range of α, amplitude of random model errors. Results are averaged over the last 1000

analysis steps.

A: true σ 2
o = 1.0, B: true σ 2

o = 1.0, C: adaptive σ 2
o,

(tuned) constant ! adaptive ! adaptive !

Error amplitude, α ! RMSE ! RMSE ! RMSE σ 2
o

4 1.25 0.35 1.27 0.36 1.39 0.38 0.93
20 1.45 0.47 1.41 0.47 1.38 0.48 1.02

100 2.00 0.64 1.87 0.64 1.80 0.64 1.05

Table V. As Table IV, but in the presence of a constant model bias with different amplitudes, α.

A: true σ 2
o = 1.0, B: true σ 2

o = 1.0, C: adaptive σ 2
o,

(tuned) constant ! adaptive ! adaptive !

Error amplitude, α ! RMSE ! RMSE ! RMSE σ 2
o

1 1.35 0.40 1.31 0.42 1.35 0.41 0.96
4 2.00 0.59 1.78 0.61 1.77 0.61 1.01
7 2.50 0.68 2.11 0.71 1.81 0.80 1.36

examine a wider range of model bias by applying differ-
ent coefficients α. As in Baek et al. (2006) and in our
experiments with random model errors, we also test our
method with 20 ensemble members.

Table V shows the analysis results obtained from the
best-tuned inflation (case A), adaptive inflation using
the ‘true’ observation error variance (case B), adaptive
inflation and adaptive observation error variance (case C),
in the presence of model bias. A lower limit of ‘observed’
!̃

o
is set to 1.0 when α = 4 and α = 7 for cases B and C.

In general, the three cases give similar analysis accuracy
for small- and medium-sized model bias. When the bias
amplitude increases to α = 7, the simultaneous approach
does not work well, giving a relatively large estimate of
observational error variance and analysis error. The best-
tuned inflation yields the best results. The mean values
of adaptive inflation in case B are always smaller than
the best-tuned inflation (case A), presumably because the
ensemble does not ‘know’ about model errors.

To further explore the results with large model bias, we
compare the forecast ensemble spread (after inflation is
applied) with the forecast RMS error with respect to the
‘true’ state averaged over all 40 variables for all three
cases when the model bias is large, α = 7. Let us first
focus on cases A and B. As shown in Table VI, though
the spread agrees quite well with the forecast error in
case B compared to that in case A, the analysis error
(Table V) and forecast error (Table VI) themselves in case
B are bigger than those with best-tuned inflation. This
apparent contradiction can be attributed to the fact that
inflating the background error with a uniform inflation
factor is not good enough to parametrize large model
error. The multiplicative covariance inflation assumes
that the structure of model errors is the same as that of

background ensemble spread, but in general this is not
true. A systematic bias with a sine function in space as in
our experiments cannot be represented by the dynamical
growing error. The adaptive inflation estimation scheme
OMB2 ignores the spatial structure of model error since
it is only concerned about the trace of covariance rather
than the structure. Thus Equation (4) produces a single
value of inflation, which is optimal in the sense of
spatial average but not for individual observations. Thus,
although the spatially averaged spread in Table VI for
case B is consistent with the forecast error, it is not
optimal for the analysis. The tuned inflation result is
expected to be the best because the inflation factor is
repeatedly tuned in terms of the resulting analysis error.
The best-tuned result overcomes the errors in modelling
bias structure by overinflating the ensemble covariance to
give more weights to the observations.

As a result, the best-tuned inflation is always larger
than the adaptive inflation, and the bigger the model bias,
the bigger the overestimation (Table V). These results
are consistent with those of Anderson (2007), where an
adaptive inflation from a hierarchical Bayesian was com-
pared to the best-tuned time-constant inflation. With the
suboptimal inflation from OMB2 (actually underestimat-
ing the best-tuned inflation), it is not surprising that the
results in case C are even worse when the observational
errors are also estimated because the suboptimal inflation
could affect the accuracy of the estimated σ 2

o which fur-
ther gives a poor feedback to the adaptive inflation. This
failure happens when model bias is large. In order to get
the best estimation of both σ 2

o and the inflation factor, an
additional method is required to remove the model bias.
The reader is referred to Dee and da Silva (1998), Baek
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Table VI. Time mean of observation error variance σ 2
o, adaptive inflation !, the forecast ensemble mean RMS error in the presence

of bias (N.B. forecast error rather than analysis error as in Table V) and the forecast ensemble spread, with a model bias of
α = 7. Case A: best-tuned constant inflation; B: adaptive inflation estimated with true observation error variance; C: simultaneous

estimation of both σ 2
o and !. Results are reported as an average over the last 1000 steps of a 2000-step assimilation.

A: true σ 2
o (= 1.0), B: true σ 2

o (= 1.0), C: adaptive σ 2
o,

(tuned) constant ! adaptive ! adaptive !

σ 2
o 1.00 1.00 1.36

! 2.50 2.11 1.81
Error 0.94 0.99 1.11
Spread 1.16 0.98 0.95

et al. (2006), Danforth et al. (2007), and Li (2007) for
several successful methods to estimate the bias.

5. SPEEDY model results

In the previous section we have tested our algorithm in
a low-order model where we have only one set of obser-
vations with one ‘true’ observation error variance. In this
section we apply our approach to a more realistic model,
assimilating several types of observations. The size and
unit for the different sets of observations are differ-
ent. The SPEEDY (Simplified Parametrization, primitivE-
Equation DYnamics; Molteni, 2003) atmospheric general
circulation model, is used for this purpose. It solves the
primitive equation for prognostic variables of zonal wind,
u, meridional wind, v, temperature, T , specific humidity,
q, and surface pressure, ps , at the truncation of wavenum-
ber 30, corresponding to 96 × 48 grid points and 7 sigma
levels.

We perform an Observing System Simulation Exper-
iment (OSSE) in which the ‘true’ observation error is
known and can be used to verify the results. The obser-
vations are obtained by adding zero mean, normally dis-
tributed noise to the ‘true state’, defined as the two-month
integration of the SPEEDY model from 1 January to
28 February 1982. The observations are available on the
model grid at every other grid point for u, v, T , q, ps
in both zonal and meridional directions, i.e. at 25% of
the number of model grid points at every level. The stan-
dard deviations of the observation errors are 1 m s−1 for
u, v wind, 1 K for T , 10−4 kg kg−1 for q and 1 hPa
for ps . Whereas with the small Lorenz-96 model the
‘observed value’ of !̃

o
obtained from Equations (4) or

(5) showed large oscillations, in the SPEEDY model,
which has a much larger number of available observa-
tions (pi = 1152 × 7 for each variable), the oscillations
due to sampling in the ‘observed’ inflation !̃

o
were much

reduced (as was the case in Wang and Bishop, 2003), so
that we only set its lower limit to be 1.0.

We started the experiment by running 20 initial ensem-
bles at 0000 UTC on 1 January 1982. The 20 initial
ensembles are created by adding the random noise to the
‘true state’ at 0600 UTC on 1 January 1982. In this way,
the initial ensemble mean is 6 hours apart from the truth.
We doubled the true observational errors to get our first

guess of the observational errors. Within the LETKF, we
estimate and correct these initially incorrect observation
errors every analysis time step (6 hours). Since the value
and unit for different observed variables are all differ-
ent, we estimate the observational error variance for each
observed variable separately.

From the experiments of Lorenz-96 model, we have
seen that, as long as the observational error is recovered,
we can get similar results whether we use OMB2

or AMB × OMB to estimate the inflation parameter.
Therefore we only tested here the more widely used
OMB2 method.

Figure 1 shows the online estimated observational
errors for each observed variable. The experiment starts
from incorrectly specified observational errors with 2 m
s−1 for u and v, 2 K for T , 2 × 10−4 kg kg−1 for q and
2 hPa for ps . After only one week (30 analysis steps), the
estimated observational errors are all very close to their
corresponding true values. Of all the observation errors,
the estimated temperature error converges fastest (in only
2 days), presumably due to the dynamical constraints
imposed by geostrophic adjustment on long baroclinic
waves (e.g. Kalnay, 2003, pp. 186–190), with winds
and humidity taking longer to converge. This rate of
convergence is slower than that reported in DEA05,
where it takes about 5 cycles to get a close estimate to the
true error variance. Desroziers et al. (2005) tuned error
statistics iteratively within a variational data assimilation
cycle, which is time consuming but makes convergence
faster than our approach here. Another reason is that,
unlike an operational set-up, the initial background error
covariance in this cold-started experiment is unphysical,
since it is created from random fields added to the
mean state. The SPEEDY–LETKF system takes time to
adjust the structure of background error covariance from
the initial randomly perturbations towards the ‘errors
of the day’ during the spin-up, in addition to tuning
the observation error variance and inflation factor. An
iterative procedure recently proposed by Kalnay and
Yang (2009) to accelerate the spin-up of the LETKF
using a no-cost smoother (Kalnay et al., 2007) could
be adapted for the problem addressed in this paper.
Since the estimation of the inflation factor by OMB2

depends on the accuracy of the specified observation
error covariance R, there is a delay in the time needed
for the inflation factor to reach a stable optimal value
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Figure 1. Time series of online estimated observation errors of u, q, ps, and T, for the first 50 analysis time steps (corresponding to 00 UTC on
1 January to 06 UTC on 13 January 1982)

Figure 2. Time series of estimated inflation factor for 236 analysis time steps (corresponding to 00 UTC on 1 January to 18 UTC on 28 February
1982) when using a perfectly specified observation error variance (dashed-dotted line) and an initially erroneous observation error variance but

estimating it adaptively (solid line)

(about one month, solid curve in Figure 2) compared
to the case in which R is specified correctly (dashed-
dotted curve in Figure 2). This dashed-dotted curve can
be considered as the optimal choice of the adaptive
inflation at each time step, and after the spin-up, the
solid curve follows the dashed-dotted curve very well.
This indicates that no matter how poorly the observation
error statistics are specified initially, as long as we
estimate and correct this information we can obtain
an accurate adaptive inflation factor. As a result, the
obtained analysis is about as good as the one obtained
from the experiment in which R is perfectly known
(e.g. the one-month averaged analysis error after the

first month spin-up period for 500 hPa height is 2.9 m
and 2.7 m for the estimated and the true R cases,
respectively).

6. Conclusion

The accuracy of an analysis system depends on the use
of appropriate statistics of observation and background
errors. For an ensemble-based Kalman filter, tuning the
covariance inflation factor is expensive, especially if it
depends on space and on the type of variables. The online
estimation method can objectively estimate the covari-
ance inflation factor but requires accurate information on
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observational errors. In this study, we apply the obser-
vation error estimation method in DEA05 into an EnKF
system and estimate observational errors and the infla-
tion coefficient simultaneously. First we examine our
approach in the Lorenz-96 model, a low-order model
where only one type of observation is available. The
results show that the estimation of inflation alone does
not work appropriately without accurate observation error
statistics, and vice versa. By simultaneously estimating
both inflation and observation error variance online, our
approach works well in a perfect model scenario, as
well as with random model errors or small bias. The
estimated observation error variances are very close to
their true values, and the resulting analyses are as good
as those obtained from the best tuned inflation value.
When the forecast model has a large systematic bias,
our simultaneous estimation algorithm tends to over-
estimate the observation error variance and results in
a sub-optimal analysis, indicating that a separate algo-
rithm is required to handle model bias (e.g. Dee and da
Silva, 1998; Baek et al., 2006; Danforth et al., 2007; Li,
2007).

We then applied our approach to a more realistic high-
dimension model, assimilating several types of observa-
tion that have errors of different sizes and units. The
SPEEDY model experiments show that the approach
is able to retrieve the true observation error variance
for different types of instruments separately. Because
the number of observations was much larger, we found
that the ‘observed’ inflation factor was much more
stable in the SPEEDY model than in the Lorenz-96
model.

In the experiments in this study, we have used a glob-
ally uniform inflation factor, which is clearly not a good
assumption in reality where the observations are non-
uniformly distributed. With a spatially dependent infla-
tion, we may be able to better deal with an irregularly
observing network. Offline tuning the spatially dependent
inflation is practically infeasible whereas adaptive infla-
tion can be explored for this purpose, as long as there are
enough observations in each subdomain.

We also note that in this study we have focused on
multiplicative covariance inflation, but that our simulta-
neous approach is equally applicable to adaptively esti-
mating the scale of the additive noise in additive infla-
tion schemes (Corazza et al., 2002; Whitaker et al.,
2008).

So far we have addressed the issue of observation error
variance but the presence of observational error correla-
tions is another concern, especially for satellite observa-
tions. Though it would not work when the observation
error carries the same correlation structure as the back-
ground error, the method of DEA05 is at least able to
recover the interchannel error cross-correlations (section
6 in DEA05), a usual case for satellite observations. In
the next step, we plan to investigate if this statement is
still valid in the EnKF application.
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