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ABSTRACT

In this paper, we introduce a new, local formulation of the ensemble Kalman Filter

approach for atmospheric data assimilation. Our scheme is based on the hypothesis

that, when the Earth’s surface is divided up into local regions of moderate size, vectors

of the forecast uncertainties in such regions tend to lie in a subspace of much lower

dimension than that of the full atmospheric state vector of such a region. Ensemble

Kalman Filters, in general, take the analysis resulting from the data assimilation to

lie in the same subspace as the expected forecast error. Under our hypothesis the

dimension of the subspace is low. This is used in our scheme to allow operations only

on relatively low dimensional matrices. The data assimilation analysis is done locally in

a manner allowing massively parallel computation to be exploited. The local analyses

are then used to construct global states for advancement to the next forecast time. One

advantage, that may take on more importance as ever-increasing amounts of remotely-

sensed satellite data become available, is the favorable scaling of the computational

cost of our method with increasing data size, as compared to other methods that

assimilate data sequentially. The method, its potential advantages, properties, and

implementation requirements are illustrated by numerical experiments on the Lorenz-

96 model. It is found that accurate analysis can be achieved at a cost which is very

modest compared to that of a full global ensemble Kalman Filter.
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2 E. Ott et al.

1. Introduction

The accuracy of a data assimilation scheme strongly depends on the accuracy of the as-

sumed background error statistics. Since the true background errors are not known, the

implementation of a data assimilation system requires the development of statistical models

that provide an estimate of the background error covariance matrix (e.g., Lorenc 1986; Daley

1991; Kalnay 2002).

In the case of linear dynamics, the mathematically consistent technique to define a back-

ground error covariance matrix is the Kalman Filter (Kalman 1960; Kalman and Bucy 1961)

which utilizes the dynamical equations to evolve the most probable state and the error co-

variance matrix in time. In the case of linear systems with unbiased normally distributed

errors the Kalman Filter provides estimates of the system state that are optimal in the

mean square sense. The method has also been adapted to nonlinear systems, but, in this

case, optimality no longer applies.

Although the Kalman Filter approach has been successfully implemented for a wide range

of applications and has long been considered for atmospheric data assimilation (e.g., Ghil et

al. 1981), the computational cost involved does not allow for an operational implementation

for weather forecasting in the foreseeable future (see Daley 1991, for details). The recognition

of this computational constraint led to the development of reduced-sate estimates of the

background error covariance matrix. Essentially, there are two ways to obtain a reduced

rank estimate of the background error covariance matrix. Schemes based on linearizing the

model dynamics reduce the rank of the background error covariance matrix by projecting

the model state on a basis that is much lower dimensional than the full model space (e.g.,

Fukumori and Malanotte-Rizzoli 1995; Cane et al. 1996; Pham et al. 1998; Tangborn 2004).

[In a more recent paper Fukumori (2002) also showed that this approach can be extended to

obtain a high-rank estimate of the background error covariance matrix by partitioning the

full Kalman filter into a series of reduced rank problems.]

Another approach toward reducing the cost of the Kalman Filter is to use a relatively

small ensemble of forecasts to estimate the forecast error covariance (e.g., Evensen 1994;

Houtekamer and Mitchell 1998, 2001; Anderson 2001; Bishop et al. 2001; Hamill et al.

2001; Whitaker and Hamill 2002; Keppenne and Rienecker 2002). In ensemble-based data

assimilation schemes, the ensemble of (background) forecasts is generated by evolving an

ensemble of initial conditions distributed according to the result of the previous analysis.
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Local Ensemble Kalman Filter 3

This approach has the advantage of not requiring the labor-consuming development and

maintenance of a linearized forecast model.

The main difference between the existing ensemble-based schemes is in the generation of

the analysis ensemble. One family of schemes is based on perturbed observations (Evensen

and van Leeuwen 1996; Houtekamer and Mitchell 1998, 2001; Hamill and Snyder 2000;

Hamill et al. 2001; Keppenne and Rienecker 2002). In this approach, the analysis ensemble

is obtained by assimilating a different set of observations to each member of the background

ensemble. The different sets of observations are created by adding random noise to the real

observations, where the random noise component is generated according to the observational

error covariance matrix. Such a system has been developed at the Canadian Meteorological

Service and was recently reported to break even with the operational 3D-Var scheme (Peter

Houtekamer et al., 2003, personal communication).

The other family of schemes, the Kalman square-root filters, uses a different approach to

reduce the size of the ensemble. These techniques do the analysis only once, to obtain both

the mean analysis and the analysis error covariance matrix. Then the analysis ensemble per-

turbations (to the mean analysis) are generated by transforming the background ensemble

perturbations to a set of vectors that can be used to represent the analysis error covariance

matrix. Thus, the analysis is confined to the subspace of the ensemble. Since there is an

infinite set of analysis perturbations that can be used to represent the analysis error co-

variance matrix, many different schemes can be derived following this approach (Tippett et

al. 2002). Existing examples of the square root filter approach are the Ensemble Transform

Kalman Filter (Bishop et al. 2001), the Ensemble Adjustment Filter (Anderson 2001), and

the Ensemble Square-root Filter (Whitaker and Hamill 2002).

A key practical aspect of most atmospheric ensemble Kalman filters is “covariance lo-

calization” which restricts the use of the ensemble based covariance information to small

subsets of variables defined at model grid points within local regions much smaller than the

surface of the Earth. The local approach makes possible a high-dimensional estimate of the

global background error covariance statistics based on a small ensemble. In the sequential

data assimilation schemes, proposed in the earlier papers, observations are treated one at

a time. The localizations is done by updating the analysis at all grid points within a pre-

defined correlation length from each observation. The scheme we propose (Ott et al. 2002)

is a Kalman square-root filter, but not a sequential scheme. The basic idea is that we do

the analysis at each grid point simultaneously using the state variables and all observations
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4 E. Ott et al.

in the local region centered at that point. The possibility of a similar computational model

was mentioned in Anderson (2001), while Kalnay and Toth (1994, personal communication)

used this kind of a local method and a single bred vector to increment the state along the

direction determined by the difference between the bred vector and the background. In a

sense, our technique is related to previous work that attempted to construct a simplified

Kalman filter by explicitly taking into account the dominant unstable directions of the state

space (Fisher 1998).

In the following sections we describe and test our scheme, which we call a Local Ensemble

Kalman Filter (LEKF). Section 2 is an outline of the algorithm, while section 3 defines our

local regions and explains how the dimension of the local state vector can be further reduced.

Specifically, we discuss the possibility of approximating the covariance as being restricted

to a subspace whose dimension may be substantially lower than the number of ensemble

members. We speculate that this may be computationally advantageous and, at the same

time, may not noticably degrade the accuracy of the assimilation. Section 4 explains the

analysis scheme for the local regions. These local analyses can be processed in parallel,

involve relatively small matrices, and treat all data simultaneously. These features suggest

the potential for the LEKF method in rapidly and efficiently assimilating large amounts of

data (e.g., as will become available from future satellite observing systems.) In section 5,

the local analyses are pieced together to obtain the ensemble of analysis fields. In particular,

we discuss a novel consideration for achieving a smooth physical ensemble of analysis fields

by minimization of the distance between the analysis and background ensembles (see also

the Appendix). Section 6 illustrates our data assimilation scheme by numerical experiments

applying it to a toy spatio-temporally chaotic model system introduced by (Lorenz 1996;

Lorenz and Emanuel 1998). Among other things, these numerical experiments confirm and

quantify the possible advantage of localization in allowing reduced ensemble size; test the

efficiency of a new variance inflation technique (section 4.4); and show LEKF accuracy

similar to that of a full Kalman filter, but at much lower computational cost.

2. Outline of the algorithm

An outline of the algorithm is as follows.

(i) Advance the analysis ensemble of global atmospheric states to the next analysis time,

thus obtaining a new background ensemble of global atmospheric states.
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(ii) Associate a local region with each grid point, and, for each local region and each

member of the background ensemble, form vectors of the atmospheric state information in

that local region. (Section 3)

(iii) For each local ensemble member vector obtained in step 2, obtain its perturbation

from the mean over the background ensemble, and project these perturbations onto the low

dimensional subspace that best represents the ensemble in that region. (Section 3)

(iv) Do the data assimilation in each of the local low dimensional subspaces, obtaining

the analysis mean and covariance in each local region. (Section 4)

(v) From the local analysis mean and covariance, obtain a suitable local analysis ensemble

of local atmospheric states. (Sections 5.1 and 5.2)

(vi) Use the local analyses, obtained in step 5, to form a new global analysis ensemble.

(This is where the square root filter comes in.) (Section 5.3)

(vii) Go back to step 1.

These steps are summarized, along with a key of important symbols that we use, in Figure 1

and its caption.

3. Local vectors and their covariance

A model state of the atmosphere is given by a vector field x(r, t) where r is two dimensional

and runs over discrete values rmn (the grid in the physical space used in the numerical com-

putations). Typically, the two components of r are the geographical longitude and latitude,

and x at a fixed r is a vector of all relevant physical state variables of the model (e.g.,

wind velocity components, temperature, surface pressure, humidity, etc., at all height levels

included in the model). Let u denote the dimensionality of x(r, t) (at fixed r); e.g., when

five independent state variables are defined at 28 vertical levels, u = 140.

Data assimilation schemes generally treat x(r, t) as a random variable characterized by

a probability distribution. The characterization of x is updated over time in two ways: (i) it

is evolved according to the model dynamics; and (ii) it is modified periodically to take into

account recent atmospheric observations.

We do our analysis locally in model space. In this section we introduce our local co-

ordinate system and the approximations we make to the local probability distribution of

x(r, t). Since all the analysis operations take place at a fixed time t, we will suppress the t

dependence of all vectors and matrices introduced henceforth.
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6 E. Ott et al.

Motivated by the work of Patil et al. (2001) we introduce at each point local vectors

xmn of the information x(rm+m′,n+n′) for −l 6 m′, n′ 6 l. That is, xmn specifies the model

atmospheric state within a (2l + 1) by (2l + 1) patch of grid points centered at rmn. The

particular shape of the local region was chosen to keep the notations as simple as possible,

but different (e.g., circular) shape regions and localization in the vertical direction can also

be considered.) The dimensionality of xmn is (2l + 1)2u. We now consider local vectors

obtained from the model as forecasts, using initial conditions distributed according to the

result of the previous analysis, and we denote these by xb
mn (where the superscript b stands

for “background”). Let Fmn(xb
mn) be our approximation to the probability density function

for xb
mn at the current analysis time t. A fundamental assumption is that this probability

distribution can be usefully approximated as Gaussian,

Fmn(xb
mn) ∼ exp [− 1

2
(xb

mn − x̄b
mn)T (Pb

mn)−1(xb
mn − x̄b

mn)], (1)

where Pb
mn and x̄b

mn are the local background error covariance matrix and most probable

state associated with Fmn(xb
mn). We emphasize that the Gaussian form for the background

probability distribution, Fmn(xb
mn), is rigorously justifiable only for a linear system, but not

for a nonlinear system such as the atmosphere.

As explained subsequently, the rank of the (2l + 1)2u by (2l + 1)2u covariance matrix

Pb
mn for our approximate probability distribution function Fmn is much less than (2l +1)2u.

Let

k = rank(Pb
mn). (2)

Thus Pb
mn has a (2l + 1)2u − k dimensional null space S̄mn and the inverse (Pb

mn)−1 is

defined for the component of the vectors (xb
mn − x̄b

mn) lying in the k dimensional subspace

Smn orthogonal to S̄mn

In the data assimilation procedure we describe in this paper, the background error co-

variance matrix Pb
mn and the most probable background state x̄b

mn are derived from a k′ +1

member ensemble of global state field vectors {xb(i)(r)}, i = 1, 2, · · · , k′ +1; k′ > k > 1. The

most probable state is given by

x̄b
mn = (k′ + 1)

−1
k′+1∑
i=1

xb(i)
mn, (3)

where x
b(i)
mn is the local vector for the patch centered at rmn and the ensemble member xb(i)(r)

To obtain the local background error covariance matrix Pb
mn that we use in our analysis, we

first consider a matrix Pb′
mn given by
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Pb′

mn = Xb
mnX

bT
mn. (4)

where the superscribed T denotes transpose, and

Xb
mn = (k′)−1/2[δxb(1)

mn | δxb(2)
mn | · · · | δxb(k′+1)

mn ], (5)

δxb(i)
mn = xb(i)

mn − x̄b
mn. (6)

We assume that forecast uncertainties tend to lie in a low dimensional subset of the (2l+1)2u

dimensional local vector space. (Preliminary results with an implementation of our data

assimilation scheme on the NCEP GFS supports this view). Thus we anticipate that we

can approximate the background error covariance matrix by one of much lower rank than

(2l + 1)2u, and this motivates our assumption that an ensemble of size of k′ + 1, where

k′ + 1 is substantially less than (2l + 1)2u, will be sufficient to yield a good approximate

representation of the background covariance matrix. Typically, Pb′
mn has rank k′, i.e., it has

k′ positive eigenvalues. Let the eigenvalues of the matrix Pb′
mn be denoted by λ

(j)
mn, where the

labeling convention for the index j is

λ(1)
mn > λ(2)

mn > . . . > λ(k)
mn > · · · > λ(k′)

mn . (7)

Since Pb′
mn is a symmetric matrix, it has k′ orthonormal eigenvectors {u(j)

mn} corresponding

to the k′ eigenvalues (7). Thus

Pb′

mn =
k′∑

j=1

λ(j)
mnu

(j)
mn(u(j)

mn)T . (8)

Since the size of the ensemble is envisioned to be much less than the dimension of xb
mn,

(k′ + 1) � (2l + 1)2u, the computation of the eigenvalues and eigenvectors of Pb′
mn is most

effectively done in the basis of the ensemble vectors. That is, we consider the eigenvalue

problem for the (k′ + 1)× (k′ + 1) matrix XbT
mnX

b
mn, whose nonzero eigenvalues are those of

Pb′
mn [7] and whose corresponding eigenvectors left-multiplied by Xb

mn are the k′ eigenvectors

u
(j)
mn of Pb′

mn. We approximate Pb′
mn by truncating the sum at k 6 k′

Pb
mn =

k∑
j=1

λ(j)
mnu

(j)
mn(u(j)

mn)T . (9)

The basic justification for the approximation of the covariance by Pb
mn is our supposition

that for reasonably small values of k, the total error variance in all other directions is much

less than the variance,

k∑
j=1

λ(j)
mn, (10)
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8 E. Ott et al.

In order to meaningfully compare eigenvalues, Equation (7), the different components of

δx
b(i)
mn (e.g., wind and temperature) should be properly scaled to ensure that, if the variance

(10) approximates the full variance, then the first k eigendirections, {u(j)
mn}, j = 1, 2, . . . , k,

explain the important uncertainties in the background, x̄b
mn. For instance, the weights for the

different variables can be chosen so that the Euclidean norm of the transformed vectors is

equal to their total energy norm derived in Talagrand (1981). In what follows, we assume that

the vector components are already properly scaled. (If k = k′, the comparison of eigenvalues

is not used and thus such a consistent scaling of the variables is not necessary.) We also note

that similar truncation procedures have been discussed by Lermusiaux and Robinson (1999)

and Heemink et al. (2001) in a general setting.

For the purpose of subsequent computation, we consider the coordinate system for the

k dimensional space Smn determined by the basis vectors {u(j)
mn}. We call this the internal

coordinate system for Smn. To change between the internal coordinates and those of the local

space, we introduce the (2l + 1)2u by k matrix,

Qmn = {u(1)
mn|u(2)

mn| · · · |u(k)
mn}. (11)

We denote the projection of vectors into Smn and the restriction of matrices to Smn by a

superscribed circumflex (hat). Thus for a (2l+1)2u dimensional column vector w, the vector

ŵ is a k dimensional column vector given by

ŵ = QT
mnw. (12)

Note that this operation consists of both projecting w into Smn and changing to the internal

coordinate system. Similarly, for a (2l + 1)2u by (2l + 1)2u matrix M, the matrix M̂ is k by

k and given by

M̂ = QT
mnMQmn. (13)

To go back to the original (2l + 1)2u dimensional local vector space, note that QT
mnQmn = I

while QmnQ
T
mn represents projection on Smn, i.e., it has null space S̄mn and acts as the

identity on Smn. We may write w as

w = w(‖) + w(⊥), (14)

w(‖) = Λ(‖)
mnw = Qmnŵ, w(⊥) = Λ(⊥)

mnw, (15)

where w(‖) and w(⊥) denote the components of w in Smn and S̄mn, respectively, and the

projection operators Λ
(‖)
mn and Λ

(⊥)
mn are given by
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Local Ensemble Kalman Filter 9

Λ(‖)
mn = QmnQ

T
mn, Λ(⊥)

mn = I−QmnQ
T
mn. (16)

In addition, if M is symmetric with null space S̄mn,

M = QmnM̂QT
mn. (17)

Note that P̂b
mn is diagonal,

P̂b
mn = diag(λ(1)

mn, λ
(2)
mn, ..., λ

(k)
mn), (18)

and thus it is trivial to invert.

4. Data assimilation

With Section 3 as background, we now consider the assimilation of observational data to

obtain a new specification of the probability distribution of the local vector. For simplicity,

we assume that all observations collected for the current analysis were taken at the same

time t. Let yo
mn be the vector of current observations within the local region, and assume that

the errors in these observations are unbiased, are uncorrelated with the background, and are

normally distributed with covariance matrix Rmn. An ideal (i.e., noiseless) measurement is

a function of the true atmospheric state. Considering measurements within the local region

(m,n), we denote this function Hmn(·). That is, if the true local state is xa
mn, then the

error in the observation is yo
mn −Hmn(xa

mn). Assuming that the true state is near the mean

background state x̄b
mn, we approximate Hmn(xa

mn) by linearizing about x̄b
mn,

Hmn(xa
mn) ≈ Hmn(x̄b

mn) + Hmn∆xa
mn, (19)

where

∆xa
mn = xa

mn − x̄b
mn, (20)

and the matrix Hmn is the Jacobian matrix of partial derivatives of Hmn evaluated at x̄b
mn.

(If there are s scalar observations in the local (2l + 1) by (2l + 1) region at analysis time t,

then ȳo
mn is s dimensional and the rectangular matrix Hmn is s by (2l + 1)2u). Then, since

we have assumed the background (pre-analysis) state xb
mn to be normally distributed, it will

follow below that xa
mn is also normally distributed. Its distribution is determined by the

most probable state x̄a
mn and the associated covariance matrix Pa

mn. The data assimilation

step determines x̄a
mn (the local analysis) and Pa

mn (the local analysis covariance matrix ).

Since our approximate background covariance matrix Pb
mn has null space S̄mn, we con-

sider the analysis increment component ∆x
a(‖)
mn = Λ

(‖)
mn(xa

mn− x̄b
mn) within the k-dimensional
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subspace Smn, and do the data assimilation in Smn. Thus the data assimilation is done by

minimizing the quadratic form,

J(∆x̂a
mn) = (∆x̂a

mn)T (P̂b
mn)−1∆x̂a

mn

+ (Ĥmn∆x̂a
mn +Hmn(x̄b

mn)− yo
mn)TR−1

mn ×

(Ĥmn∆x̂a
mn +Hmn(x̄b

mn)− yo
mn). (21)

Here Ĥmn = HmnQmn maps Smn to the observation space, using the internal coordinate

system for Smn introduced in the previous section, so that ∆x
a(‖)
mn = Qmn∆x̂a

mn. The most

probable value of ∆x̂a
mn,

∆ˆ̄x
a
mn = P̂a

mnĤ
T
mnR

−1
mn(yo

mn −Hmn(x̄b
mn)), (22)

is the minimizer of J(∆x̂a
mn), where the analysis covariance matrix P̂a

mn is the inverse of the

matrix of second derivatives (Hessian) of J(∆x̂a
mn) with respect to ∆x̂a

mn,

P̂a
mn = [(P̂b

mn)−1 + ĤT
mnR

−1
mnĤmn]−1 = P̂b

mn[I + ĤT
mnR

−1
mnĤmnP̂

b
mn]−1. (23)

Finally, going back to the local space representation, we have

x̄a
mn = Qmn∆ˆ̄x

a
mn + x̄b

mn. (24)

5. Updating the ensemble

We now wish to use the analysis information, P̂a
mn and x̄a

mn, to obtain an ensemble of global

analysis fields {xa(i)(r, t)}; i = 1, 2, · · · , k′ +1. Once these fields are determined, they can be

used as initial conditions for the atmospheric model. Integrating these global fields forward

in time to the next analysis time t+∆t, we obtain the background ensemble {xb(i)(r, t+∆t)}.

This completes the loop, and, if the procedure is stable, it can be repeated for as long as

desired.

Our remaining task is to specify the ensemble of global analysis fields {xa(i)(r, t)} from

our analysis information, P̂a
mn and x̄a

mn. Denote (k′ + 1) local analysis vectors by

xa(i)
mn = x̄a

mn + δxa(i)
mn . (25)

Using (14) and (15) we write

δxa(i)
mn = δxa(i)(‖)

mn + δxa(i)(⊥)
mn = Qmnδx̂

a(i)
mn + δxa(i)(⊥)

mn . (26)

In addition, we let

δxa(i)(⊥)
mn = δxb(i)(⊥)

mn = Λ(⊥)
mnδxb(i)

mn, (27)
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because our analysis uses the observations only to reduce the variance in the space Smn,

leaving the variance in S̄mn unchanged. [We note, however, that by our construction of S̄mn

in section 3, the total variance in S̄mn is expected to be small compared to that in Smn.

Also, in the case k = k′ all members of the analysis perturbation ensemble will lie in Smn,

so that projection onto Smn is superfluous, and δx
a(i)(⊥)
mn in (26) and the term Λ

(⊥)
mnδx

b(i)
mn in

(28) (below) may be omitted.] Combining (25)-(27), we have

xa(i)
mn = x̄a

mn + Qmnδx̂
a(i)
mn + Λ(⊥)

mnδxb(i)
mn. (28)

We require that

k′+1∑
i=1

δxa(i)
mn = 0, (29)

which, by virtue of (26), and (27)

k′+1∑
i=1

δxb(i)
mn = 0, (30)

is equivalent to

k′+1∑
i=1

δxa(i)(‖)
mn = Qmn

k′+1∑
i=1

δx̂a(i)
mn = 0. (31)

Thus we require that

k′+1∑
i=1

δx̂a(i)
mn = 0. (32)

In addition, P̂a
mn is given by

P̂a
mn = k′

−1
k′+1∑
i=1

δx̂a(i)
mn (δx̂a(i)

mn )T . (33)

We now turn to the task of determining the analysis perturbations {δx̂a(i)
mn }. Once these are

known {xa(i)
mn } is determined from (28).

5.1. Determining the ensemble of local analysis perturbations

There are many choices for {δx̂a(i)
mn } that satisfy (32) and (33), and in this section we will

describe possible methods for computing a set of solutions to these equations. (See also

Tippett et al. 2002, for different approaches to this problem in the global setting.) There

are two main criteria we have in mind in formulating these methods. First, the method

for computing {δx̂a(i)
mn } should be numerically stable and efficient. Second, since we wish

to specify global fields that we think of as being similar to physical fields, we desire that
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12 E. Ott et al.

these fields be slowly varying in m and n. That is, if P̂a
mn is slowly varying, we do not want

to introduce any artificial rapid variations in the individual δx̂
a(i)
mn through our method of

constructing a solution of (32) and (33). For this purpose we regard the background vectors

as physical states, and hence slowly varying in m and n. (This is reasonable since the

background ensemble is obtained from evolution of the atmospheric model from time t−∆t

to time t.) In section 5.2 we use the desired slow variation of the analysis in formulating our

method of constructing {δx̂a(i)
mn }.

Thus we are motivated to express the analysis ensemble vectors δx̂
a(i)
mn as formally linearly

related to the background ensemble vectors. δx̂
b(2)
mn , · · ·, δx̂

b(k′+1)
mn ,

X̂a
mn = X̂b

mnYmn. (34)

where the matrix Ymn is (k′ + 1)× (k′ + 1), and

X̂a,b
mn = (k′)−1/2{δx̂a,b(1)

mn |δx̂a,b(2)
mn | · · · |δx̂a,b(k′+1)

mn }. (35)

In the atmospheric science literature a global equivalent of transformation (34) was first

applied by Bishop et al. (2001). It was later pointed out by Tippett et al. (2002) that the

ETKF method is essentially one particular implementation of the more general class of

square-root Kalman filters, known by engineers since the sixties (Andrews 1968; Bierman

1977).

Using (35) the analysis and the background covariance matrices can be expressed as

P̂a
mn = X̂a

mnX̂
aT
mn, P̂b

mn = X̂b
mnX̂

bT
mn. (36)

Considering (34), we see that (36) yields the following equation for Ymn

P̂a
mn = X̂b

mnYmnY
T
mnX̂

bT
mn. (37)

We note that (32) can be written as

X̂a
mnv = 0. (38)

where v is a column vector of (k′ + 1) ones. Thus, in addition to (37), we demand that Ymn

must also satisfy

X̂b
mnYmnv = 0. (39)

Equations (37) and (39) have infinitely many solutions for Ymn. See (Tippett et al. 2002)

for an extensive discussion.
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5.2. “Optimal” choices for Ymn

Since our assimilations are done independently in each local region, the smoothness and

physical realizability of our analysis fields are a concern. Certainly, in order for the results

to vary slowly from one grid point to the next, it is important that we use an algorithm

for computing a solution of (37) and (39) that depends continuously on P̂a
mn and P̂b

mn.

Furthermore, since we think of the background ensemble members as reasonable physical

fields, we adopt the idea that we will seek to choose the analysis perturbations δx̂
a(i)
mn so as

to minimize their difference with the background,

FD(δx̂a(i)
mn ) =

k′+1∑
i=1

‖δx̂a(i)
mn − δx̂b(i)

mn‖
2
D

=
k+1∑
i=1

[δx̂a(i)
mn − δx̂b(i)

mn]TD−1
mn[δx̂a(i)

mn − δx̂b(i)
mn], (40)

where the positive definite symmetric matrix Dmn specifies the metric. With this minimiza-

tion condition imposed on (37) and (39) the solution for Ymn is now unique, although it

depends on the choice of the metric Dmn. As shown in the Appendix, the two choices,

Dmn = P̂a
mn and Dmn = P̂b

mn, both yield the same solution for Ymn . These choices ap-

pear to be favorable in that they provide a natural normalization of the distance by the

appropriate uncertainty. Accordingly, we will henceforth use this solution for Ymn ,

Ymn =
[
I + XbT

mn(P̂b
mn)−1(P̂a

mn − P̂b
mn)(P̂b

mn)−1Xb
mn

]1/2

, (41)

where the square root indicated above is the positive symmetric square root. See the Ap-

pendix and Ott et al. (2002) for the solution of (37) and (39) subject to the condition that

(40) be minimum.

5.3. Construction of the global fields

By use of (34) and (41) we now have the ensemble of analysis perturbations δx̂
a(i)
mn . Putting

these in (28) we now obtain (k′+1) local analyses x
a(i)
mn at each point rmn, and it now remains

to use these to construct an ensemble of global fields {xa(i)(r)} that can be propagated

forward in time to the next analysis time. There are various ways of doing this. One method

is to take the state of the global vector, xa(i), at the point rmn directly from the state

information at rmn contained in the local vector, x
a(i)
mn . This approach uses only the analysis

results at the center point of each local region to form the global analysis vectors. A variant

of this method is used in Section 6.4.
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14 E. Ott et al.

5.4. Variance inflation

In past work on ensemble Kalman filters (Anderson and Anderson 1999; Whitaker and

Hamill 2002) it was found that inflating the covariance by a constant multiplicative factor

slightly larger than one, on each analysis step, leads to more stable and improved analyses.

One rationale for doing this is to compensate for the effect of finite sample size, which can

be shown to, on average, underestimate the covariance.

In our numerical experiments in section 5 we will consider two methods of variance infla-

tion. One method, which we refer to as regular variance inflation, multiplies all background

perturbations δx̂
b(i)
mn by a constant (1 + δ). This corresponds to multiplying P̂b

mn by (1 + δ)2.

This method has been previously used by (Anderson and Anderson 1999; Whitaker and

Hamill 2002). In addition to this method, we introduce a second variance inflation method,

P̂a
mn → P̂a

mn +
εΛ

k
Ik, (42)

where Λ = Trace{P̂a
mn}. Our results of section 5 indicate that (42) may yield superior

performance. We refer to this method as enhanced variance inflation.

The variance inflation (42) has the effect of enhancing the probability of error in directions

that formally show only very small error probability (i.e., eigendirections corresponding to

small eigenvalues of the covariance matrices). Note that, through (41) and (34), such a

modification of P̂a
mn also modifies the ensemble perturbations δx̂

a(i)
mn .

6. Numerical experiments

6.1. Lorenz-96 model

In this section we will test the skill of the proposed local ensemble Kalman Filter scheme by

carrying out Observing System Simulation Experiments (OSSE’s) on the Lorenz-96 (L96)

model (Lorenz 1996; Lorenz and Emanuel 1998),

dx(j, t)

dt
= [x(j + 1, t)− x(j − 2, t)]x(j − 1, t)− x(j, t) + F. (43)

Here, j = 1, · · · , J , where x(−1) = x(J − 1), x(0) = x(J), and x(J + 1) = x(1). This

model mimics the time evolution of an unspecified scalar meteorological quantity, x, at J

equidistant grid points along a latitude circle. We solve (43) with a fourth-order Runge-Kutta

time integration scheme with a time step of 0.05 non-dimensional unit [which may be thought

of as nominally equivalent to 6-h in real world time assuming that the characteristic time

scale of dissipation in the atmosphere is 5-days; see Lorenz (1996) for details]. We emphasize
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Local Ensemble Kalman Filter 15

that this toy model, (43), is very different from a full atmospheric model, and that it can,

at best, only indicate possible trends and illustrate possible behaviors.

For our chosen forcing, F = 8, the steady state solution, x(j) = F for j = 1, · · · , J , in

(43) is linearly unstable. This instability is associated with unstable dispersive waves char-

acterized by westward (i.e., in the direction of decreasing j) phase velocities and eastward

group velocities. Lorenz and Emanuel (1998) demonstrated by numerical experiments for

F = 8 and J = 40 that the x field is dominated by a wave number 8 structure, and that the

system is chaotic; it has 13 positive Lyapunov exponents, and its Lyapunov dimension (Ka-

plan and Yorke 1979) is 27.1. It can be expected that, due to the eastward group velocities,

growing uncertainties in the knowledge of the model state propagate eastward. A similar

process can be observed in operational numerical weather forecasts, where dispersive short

(longitudinal wave number 6-9) Rossby waves, generated by baroclinic instabilities, play a

key role in the eastward propagation of uncertainties (e.g., Persson 2000; Szunyogh et al.

2002; Zimin et al. 2003).

We carried out experiments with three different size systems (J = i × 40, i = 1, 2, 3)

and found that increasing the number of variables did not change the wavelength, i.e. the x

fields were dominated by wave number i× 8 structures.

6.2. Rms analysis error

The 40-variable version of the Lorenz-96 model was also used by Whitaker and Hamill

(2002) to validate their ensemble square root filter (EnSRF) approach. In designing our

OSSE’s we follow their approach of first generating the ‘true state’, xt(j, t), j = 1, · · · , J , by

a long (40,000 time-step) model integration; then first creating ‘observations’ of all model

variables at each time step by adding uncorrelated normally distributed random noise with

unit variance to the ‘true state’ (i.e., Rm = I). (The rms random observational noise variance

of 1.00 is to be compared with the value 3.61 of the time mean rms deviation of solutions,

x(j, t), of (43) from their mean.) We found that our results were the same for Gaussian noise

and for truncated Gaussian noise (we truncated at three standard deviations). The effect

of reduced observational networks is studied by removing observations one by one, starting

from the full network, at randomly selected locations. The reduced observational networks

are fixed for all experiments. That is, the difference between a network with O observations
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16 E. Ott et al.

and another with O +1 observations is that there is a fixed location at which only the latter

takes observations.

The observations are assimilated at each time step, and the accuracy of the analysis is

measured by the time mean of the rms error,

E =
( 1

J

J∑
j=1

(x̄a(j)− xt(j))2
)1/2

. (44)

6.3. Reference data assimilation schemes

In order to the assess the skill of our data assimilation scheme in shadowing the true state,

we considered three alternative schemes for comparison.

6.3.1. Full Kalman filter For the sake of comparison with our local ensemble Kalman filter

results, we first establish a standard that can be regarded as the best achievable ensemble

Kalman filter result that could be obtained given that computer resources placed no con-

straint on computations of the analysis. (In contrast with operational weather prediction,

for our simple J-variable Lorenz model, this is indeed the case.) For this purpose, we consid-

ered the state x(t) = (x(1, t), x(2, t), · · · , x(J, t)) on the entire domain rather than on a local

patch. Then several ensemble Kalman filter runs were carried out with different numbers of

ensemble members. In these integrations, full (k′) rank estimates of the covariance matrices

were considered and the ensemble perturbations were updated using (34) and (41).

We found that stable cycling of the full ensemble Kalman filter requires increasing vari-

ance inflation when the number of observations is reduced, even if several hundred ensemble

members are used (e.g., the assimilation of 21 observations required 2% variance inflation).

This suggests that variance inflation is needed, not to compensate for sampling errors due

to limited sample size, but to correct for variance lost due to nonlinear effects.

It can be seen that, by increasing the number of ensemble members, the time mean of E

converges to ≈ 0.20 regardless of J (Figure 2). The only difference between the different size

systems (characterized by different values of J) is that more ensemble members are required

to reach the minimum value for the larger systems. We refer to 0.2 as the “optimal” error,

and we regard it as a comparison standard for our local Kalman filter method. (However,

we note that it may not be truly optimal since Kalman filters are rigorously optimal only

for linear dynamics.)
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6.3.2. Conventional method We designed another comparison scheme that we call the con-

ventional method, to obtain an estimate of the analysis error that can be expected from a

procedure analogous to a 3D-Var scheme adapted to the Lorenz-96 model. In this scheme,

only the best estimate of the true state is sought (not an ensemble of analyses) using a

constant estimate of the background error covariance matrix that does not change with

time or position. This background error covariance matrix was determined by an iterative

process. In the first step, the background error covariance matrices from the full Kalman

filter were averaged over all locations and time steps to obtain a first estimate. Then, a time

series of the true background error vector b = xt − x̄b was generated and used to obtain

an estimate of the background error covariance matrix for the next iteration step. This step

was repeated until the estimated background error covariance matrix converged, where the

convergence was measured by the Frobenius matrix norm. We found that this procedure

was always convergent when all variables were observed. The estimate obtained this way

is not necessarily optimal in the sense of providing the smallest possible analysis error of

any constant background error matrix, but it has the desirable feature that the background

error statistics are correctly estimated by the analysis scheme. This is a big advantage com-

pared to the operational schemes, for which the estimate of the background error covariance

matrix has to be computed by rather ad hoc techniques, since the true state, and therefore

the true background error statistics, are not known. Thus, it might be assumed that our

“conventional method” provides an estimate of the analysis error that is of good accuracy

as compared to analogous operational schemes.

For reduced observational networks (O < J), the background error covariance matrix

was determined by starting the iteration from the background error covariance matrix for

O +1. It was found that, when more than a few observations (more than 6 for J = 40) were

removed, our iterative determination of background error covariance matrices started to

diverge after an initial phase of convergence. This probably occurs because the background

error becomes inhomogeneous, due to the inhomogeneous observing network, and the average

background error underestimates the error at the locations where the background error

is larger than average. This leads to a further increase of the background error at some

locations, resulting in an overall underestimation of the background error. This highlights

an important limitation of the schemes based on a static estimate of the background error

covariance matrix: The data assimilation scheme must overestimate the average background

error in order to prevent the large local background errors from further growth. Keeping this
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in mind, we chose that member of our iteration scheme that provided the smallest analysis

error.

6.3.3. Direct insertion We now give a third standard designed to decide whether the data

assimilation schemes provide any useful information compared to an inexpensive and simple

scheme, not requiring matrix operations. This scheme, called direct insertion, updates the

state estimate by replacing the background with the observations, where observations are

available, and leaving the background unchanged, where there are no observations.

6.4. Implementation of the Local ensemble Kalman filter

Since (43) is a system with one spatial dimension (rather than the two spatial dimensions

assumed in section 2-5), we here label local regions by a single spatial index (rather than

the label mn used in Section 2-5). Thus by local region m we mean the points located at

j = (m− l), · · · , m, · · · , (m + l).

In our experiments, the local analysis covariance matrix is computed by (23) and the

local analysis mean is obtained by (22). The analysis ensemble is updated by (34) and (41)

and the variance of the analysis ensemble is increased by a factor of 1 + ε in each step using

(42). The final analysis ensemble at each point j is computed by averaging the values of

x(i)(j) that result from the analyses for the 2l′ + 1 local regions m = j − l′, · · · , j, · · · , j + l′

where l′ < l. We found that this averaging can give better results for small ensembles (for

about k < 20) than simply taking x(i)(j) as the value at the middle of the local region m = j

(Sec. 5.3). Choosing l = 6, k = k′, l′ = 2, and ε = 0.12, values that for J = 40 gave the

lowest mean error (≈ 0.2), we found that the mean error does not change with increasing J .

Figure 3 shows, that when the ensemble has at least eight members, the analysis error

settles at the level (≈ 0.2) of the “optimal” scheme, independent of J . This independence

of our scheme (and presumably other schemes that use covariance localization) on system

size is roughly consistent with the supposition of an effective correlation that is less than J .

Thus our method appears to be effective on large systems of this type. Moreover, the (non-

parallelized) analysis computational time scales linearly with the number of local regions

(i.e., with J). This favorable scaling is to be expected, since the analysis computation size

in each local region is independent of J .

We note, that the aforementioned scaling property of the local Kalman filter is in contrast

to the behavior of the full Kalman filter, which, in order to achieve the “optimal” precision,
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requires many more ensemble members as J is increased. This demonstrates the potential

superiority of the local Kalman filter in terms of computational efficiency when applied to

large systems. Furthermore, since the minimum error was independent of J , it suffices to

use the smallest, 40-variable, system for further experimentation.

6.5. Comparison of the data assimilation schemes

The four data assimilation schemes (local ensemble Kalman Filter, full Kalman filter, con-

ventional method, and direct insertion) were compared for different numbers of observations

(Figure 4). The two Kalman filter schemes give almost identical error results, although the

full Kalman filter has a very small advantage. The two Kalman filter schemes and the con-

ventional data assimilation scheme are always more accurate than direct insertion, indicating

that they are always able to retrieve nontrivial, useful information about the true state. The

two Kalman filter schemes, in addition, have a growing advantage over the conventional

scheme as the number of observations is decreased. This shows that, as the observational

network and the background error become more inhomogeneous, the adaptive nature of the

background error covariance matrix in the Kalman filters leads to a growing advantage over

the static scheme.

The above numerical experimentation results provide a guide for making good parameter

choices in the case of the Lorenz-96 model. In future applications to actual weather models,

choices for the analysis parameters might similarly be determined by experimentation, but

it would also be useful to obtain some guides for initial guesses of good parameter choices.

6.6. Sensitivity to the free parameters

The free parameters of our scheme are the dimensionality of the local regions (which is

2l + 1), the rank of the covariance matrices (k), and the coefficient (ε) in the enhanced

variance inflation algorithm. These parameters have been fixed so far. In what follows, the

sensitivity of the data assimilation scheme to the tunable free parameters is investigated by

numerical experiments (k′ and l′ are held fixed at k′ = 9 and l′ = 2). In these experiments,

our ‘true state’ and observations are generated in the same way as in Whitaker and Hamill

(2002) (O = J). Also, we use the same ensemble size as Whitaker and Hamill (k′ + 1 = 10).

Hence our analysis error results and theirs can be directly compared.

In the first experiment the variance inflation coefficient is constant, ε = 0.012, while the

c© 0000 Tellus, 000, 000–000



20 E. Ott et al.

dimension of the local vectors (2l+1) and the rank (k) of the background covariance matrix

are varied. The results are shown in Table 1. The scheme seems to be stable and accurate

for a wide range of parameters. The optimal size local region consists of 2l + 1 = 9, 11, 13

grid points, at which rank k = 5, 6, 7, 8, 9 estimates of the background covariance matrix

provide similarly accurate analyses. Moreover, rank 3 and 4 estimates lead to surprisingly

accurate analyses for the smaller size (2l + 1 = 5, 7, 9) local regions. This indicates that the

background uncertainty in a local region at a given time (P̂b
m) can be well approximated in a

low (k) dimensional linear space. Conversely, the large error for 2l + 1 = 13, 14 and k = 2, 3

is explainable on the basis that the state in these larger patch sizes is correspondingly higher

dimensional. Our premise, that the dimension of this space can be significantly lower than

the number of ensemble members (k′ + 1) needed to evolve the uncertainty, proved to be

correct for the Lorenz-96 model. (We note that the local dimensionality k is also much

smaller than the “global” Lyapunov-dimension, 27.1, of the system). We note that our best

results are at least as good as the best results published in Whitaker and Hamill (2002) and

attain the optimal value (0.20) from section 6.3. The fact that the error remains small for

(2l + 1) = 5, 7, 9 even when we use small k (k = 3, 4 as compared to our k′ = 9) may be

significant, particularly for implementation on a real weather model, since the computational

cost of the relevant matrix operations scales as k3

In the second experiment, the dimension of the local regions is constant (2l + 1 = 13),

while the rank and the variance inflation coefficient are varied. The results are shown in

Table 2. The second experiment was then repeated by using the regular variance inflation

of Anderson and Anderson (1999) and Whitaker and Hamill (2002). In the regular variance

inflation, all background ensemble perturbations are multiplied by r = 1 + δ, where δ is

small, 1 � δ > 0. This inflation strategy increases the total variance in the background

ensemble by a factor of (1 + ∆) = 1 + δ2 + 2δ. It can be seen from Table 3 that, to achieve

near optimal results, values of ∆ at least three times as large as those of ε are required. The

main difference between the two inflation schemes is that the enhanced scheme inflates the

dominant eigendirections of the background covariance matrix less aggressively, and the least

dominant eigendirections more aggressively. The numerical results suggest that this feature

of the scheme is beneficial, indicating that the ensemble-based estimate of the background

error is more reliable in the more unstable directions than in the other directions. For further

discussion see Ott et al. (2002).

Finally, we reemphasize that the significance of the results of all our numerical experi-
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ments on the toy model (43) is limited. Many important factors of real weather forecasting are

not represented (e.g., model error), and very idealized conditions are assumed (e.g., known,

normal, uncorrelated, unbiased, observation errors, and no “subgrid scale” stochastic-like

input to the evolution of the “truth” state). On the other hand, it is also probably reason-

able to assume that, if our assimilation procedure gave unfavorable results for our idealized

toy model situation, then the scheme would also be unlikely to be effective in the real case.

Thus, one can view the good results obtained with our assimilation scheme in these numer-

ical experiments as necessary, but certainly not sufficient, for future successful performance

in a real situation.

7. Summary and conclusions

In this paper, we have introduced a local method for assimilating atmospheric data to deter-

mine best-guess current atmospheric states. The main steps in our method are summarized

in Section 2 and Figure 1.

Numerical tests of the our method using the Lorenz model, (43), have been performed.

These tests indicate that the method is potentially very effective in assimilating data. Other

potential favorable features of our method are that only low dimensional matrix operations

are required, and that the analyses in each of the local regions are independent, suggesting

the use of efficient parallel computation. These features should make possible fast data

assimilation in operational settings. This is supported by preliminary work in which we

have implemented our method on the T62, 28-level version of the National Centers for

Environmental Prediction Global Forecast System Model (NCEP GFS). The assimilation of

a total number of 1.5× 106 observations (including wind, temperature, and surface pressure

observations) at k′ = k = 39 and 2l +1 = 9 takes about 6 minutes CPU time on 40 2.8 GHz

Xeon processors. Experiments with the NCEP GFS also show that the strategy of assembling

the global fields by using information only from the center point of the local regions provides

well balanced analysis fields. Regardless of the number of assimilated observation, the spatial

and temporal smoothness of the analyzed fields was the same as that of the nature run. This

indicates that the localization strategy we propose does not lead to spurious gravity wave

excitation. A detailed account of these results will be published in a forthcoming paper.

Finally, we note that, although this paper assumes that observations are synchronous

with analyses, the extension to the non-synchronous case cane be done by a technique
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discussed by Hunt et al. (2004). The latter paper shows that ensemble Kalman filters are,

in general, relatively easily adaptable to accommodating non-synchronous observations.
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APPENDIX A: FINDING THE ANALYSIS ENSEMBLE THAT MINIMIZES

THE DISTANCE TO THE BACKGROUND ENSEMBLE

A.1 Minimizing Solution in Terms of Zmn

As will be shown subsequently, an equivalent alternative to the expression (34) for the

analysis ensemble X̂a
mn is

X̂a
mn = ZmnX̂

b
mn. (A-1)

Using (A-1) in (36) we obtain

P̂a
mn = ZmnP̂

b
mnZ

T
mn. (A-2)

Considering (A-1), we see that (38) is automatically satisfied by (A-1) because the back-

ground perturbations sum to zero, Equation (30). We seek the solution of (A-2) that mini-

mizes (40). Defining

X̃a,b
mn = (Dmn)−1/2X̂a,b

mn, and δx̃a,b
mn = (Dmn)−1/2δx̂a,b

mn, (A-3)

we obtain from (40) and (A-3)

FD(δx̂a(i)
mn ) =

k′+1∑
i=1

[δx̃a(i)
mn − δx̃b(i)

mn]T [δx̃a(i)
mn − δx̃b(i)

mn]. (A-4)

Introducing a k × k matrix Bmn of Lagrange multipliers, we form the following quantity,

L =
k′+1∑
i=1

[δx̃a(i)
mn−δx̃b(i)

mn]T [δx̃a(i)
mn−δx̃b(i)

mn]−
k∑

p,q=1

(Bmn)p,q

[
(P̃a

mn)p,q−
1

k′

k′+1∑
i=1

(δx̃a(i)
mn )p(δx̃

a(i)
mn )q

]
,(A-5)

where

P̃a
mn = (Dmn)−1/2P̂a

mn(Dmn)−1/2, P̃b
mn = (Dmn)−1/2P̂b

mn(Dmn)−1/2. (A-6)
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We now minimize (A-5) with respect to δx̃
a(i)
mn and Bmn. Forming the first and second deriva-

tives of L with respect to δx̃
a(i)
mn , we have

1

2

∂L
∂δx̃

a(i)
mn

= Z̃−1
mnδx̃

a(i)
mn − δx̃b(i)

mn, (A-7)

1

2

∂2L
∂δx̃

a(i)
mn ∂δx̃

a(i)
mn

= Z̃−1
mn, (A-8)

where we have defined Z̃−1
mn as

Z̃−1
mn = I +

1

2k′
(Bmn + BT

mn). (A-9)

Since L is stationary,

X̃a
mn = Z̃mnX̃

b
mn. (A-10)

and the derivative with respect to Bmn yields

P̃a
mn = Z̃mnP̃

b
mnZ̃

T
mn (A-11)

Equation (A-11) for Z̃mn is the same as (A-2) for Zmn, except that we have additional

conditions that Z̃mn must satisfy. Namely, by virtue of (A-9), we know that the solution of

(A-11) that minimizes FD(δx̂
a(i)
mn ) is symmetric,

Z̃mn = Z̃T
mn. (A-12)

Furthermore, from (A-8) and the condition for a minimum, the matrix Z̃mn must be positive

definite. With these extra conditions, the solution of (A-11) is unique. To see this, we pre

and post-multiply (A-11) by the positive definite symmetric square root of P̃b
mn (which we

denote by (P̃b
mn)1/2) to obtain

(P̃b
mn)1/2P̃a

mn(P̃b
mn)1/2 =

[
(P̃b

mn)1/2Z̃mn(P̃b
mn)1/2

]2

(A-13)

where we have made use of (A-12) and the fact that P̃b
mn is symmetric. All the matrices in

(A-13) are positive definite symmetric, as are the left and right sides of the equation. Thus

taking the unique positive definite symmetric square root of (A-13), we obtain the solution

for Z̃mn,

Z̃mn = (P̃b
mn)−1/2

[
(P̃b

mn)1/2P̃a
mn(P̃b

mn)1/2
]1/2

(P̃b
mn)−1/2. (A-14)

From (A-1), (A-3), and (A-10) we have

Zmn = (Dmn)1/2Z̃mn(Dmn)−1/2, (A-15)

which is the solution for Zmn that minimizes the quadratic form (40), where in (A-15) Z̃mn

is defined by (A-14) and (A-6).
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Due to the fact that the metric Dmn is so far still unspecified, our result still gives an

infinite family of solutions for Zmn. However, we feel that the specification of a suitable metric

provides a reasonable basis for choosing a particular solution. In particular, Dmn equal to

P̂b
mn or P̂a

mn appears to be favorable in that it yields a natural, intuitive normalization of the

distance between δx̂
a(i)
mn and δx̂

b(i)
mn based on the uncertainty of these quantities. Furthermore,

both Dmn = P̂a
mn and Dmn = P̂b

mn yield the same Zmn. To see this, we note that Equation

(A-2) can be put in the form

(P̂a
mn)1/2

[
(P̂a

mn)−1/2Zmn(P̂a
mn)1/2

]−1

(P̂a
mn)1/2 = (P̂b

mn)1/2
[
(P̂b

mn)−1/2Zmn(P̂b
mn)1/2

]T

(P̂b
mn)1/2(A-16)

Thus symmetry of (P̂a
mn)−1/2Zmn(P̂a

mn)1/2 (corresponding to the choice Dmn = P̂a
mn) implies

symmetry of (P̂b
mn)−1/2Zmn(P̂b

mn)1/2 (i.e., Dmn = P̂b
mn). We thus conjecture that Dmn =

P̂a,b
mn will yield better performance than other choices.

A.2 Minimizing Solution of (37) and (39) for Ymn

We now wish to translate what we have found above for Zmn to the corresponding Ymn.

Another way of solving for the analysis fields is to use the ‘Potter method’ (e.g., Biermann

1977). To see how this solution is obtained, let

Amn = YmnY
T
mn (A-17)

so that (37) becomes

P̂a
mn = X̂b

mnAmnX̂
bT
mn (A-18)

A solution for Amn consistent with (A-17)-(A-18) is

Amn = I + X̂bT
mn(P̂b

mn)−1[P̂a
mn − P̂b

mn](P̂b
mn)−1X̂b

mn. (A-19)

This solution for Amn is symmetric and can also be shown to be positive definite. Equation

(A-19) yields Amn = I if P̂a
mn = P̂b

mn, and satisfaction of (A-18) by (A-19) can be verified by

direct substitution and making use of P̂b
mn = X̂b

mnX̂
bT
mn. Thus we have as a possible solution

Ymn = (Amn)1/2. (A-20)

We now show that (A-19) and (A-20) also satisfies (39). By (30) we have X̂b
mnv = 0

and from (A-19) we have Amnv = v; i.e., v is an eigenvector of Amn with eigenvalue one.

Since the positive square root is employed in (A-20), v is also an eigenvector of Ymn with

eigenvalue one. Hence Xb
mnYmnv = Xb

mnv, which is identically zero by (30), thus satisfying

(39).
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We now ask whether each solution Zmn of (A-2) has a corresponding Ymn such that

ZmnX̂
b
mn and X̂b

mnYmn yield the same result for X̂a
mn. To see that such a Ymn does indeed

exist, we note that the matrix X̂b
mn (which consists of k rows and k′ + 1 columns) has a

(nonunique) right inverse (X̂b
mn)−1 such that X̂b

mn(X̂b
mn)−1 = Ik, where

(X̂b
mn)−1 = X̂bT

mn(X̂b
mnX̂

bT
mn)−1 + Emn = X̂bT

mn(P̂b
mn)−1 + Emn, (A-21)

and Emn is any k× (k′ + 1) matrix for which X̂b
mnEmn = 0mn. Thus, from X̂a

mn = ZmnX̂
b
mn,

we have

X̂a
mn = X̂b

mn(X̂b
mn)−1ZmnX̂

b
mn. (A-22)

From the definition of Ymn, namely X̂a
mn = X̂b

mnYmn, we see that (A-21) and (A-22) yield

Ymn = X̂bT
mn(P̂b

mn)−1ZmnX̂
b
mn + Gmn, (A-23)

where Gmn is any (k′ + 1) × (k′ + 1) matrix satisfying X̂b
mnGmn = 0. Since we desire that

Ymn = Ik′+1, when Zmn = Ik, a possible choice for Gmn is

Gmn = Ik′+1 − X̂bT
mn(P̂b

mn)−1X̂b
mn. (A-24)

(We note that Gmn given by (A-24) is a projection operator, (Gmn)p = Gmn for any integer

exponent p.) Thus from (A-23) and (A-24), a Ymn corresponding to any solution of (A-2)

for Zmn is

Ymn = X̂bT
mn(P̂b

mn)−1(Zmn − Ik)X̂
b
mn + Ik′+1. (A-25)

Using (A-25) and (A-2) it can be verified that YmnY
T
mn = Amn with Amn given by (A-19).

Thus YmnY
T
mn is the same (k′ + 1)× (k′ + 1) matrix for all solutions Zmn given by (A-15).

The general solution of YmnY
T
mn = Amn is

Ymn = (Amn)1/2Omn, (A-26)

where Omn is an arbitrary orthogonal matrix. However, to ensure that (39) is satisfied we

also require that Omnv = ±v (where v is a column vector of (k′ + 1) ones); i.e., that v is

an eigenvector of Omn with eigenvalue ±1. For example, Omn can be any rotation about v.

Thus there is still a large family of allowed orthogonal matrices Omn. (Note that Omn can

depend on P̂a
mn and P̂b

mn, and Omn must be I whenever P̂a
mn = P̂b

mn.)

Note from (A-15) that (P̂b
mn)−1Zmn is symmetric for Dmn = P̂b

mn. Thus, the resulting

Ymn from (A-25) is symmetric and must therefore coincide with (A-20). Thus we have the

key result of this Appendix: ZmnX̂
b
mn with Zmn from (A-15) with Dmn = P̂a,b

mn and X̂b
mnYmn

with Ymn given by (A-19) and (A-20) both yield the same result for X̂a
mn.
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Table 1. Dependence of the time mean rms error on the box size (2l+1) and the rank (k) of the background covariance matrix.

The coefficient of the enhanced variance inflation is ε = 0.012.

k 3 4 5 6 7 8 9
2l + 1

5 0.23 0.23 0.23
7 0.22 0.21 0.22 0.22 0.22

9 0.23 0.21 0.21 0.21 0.21 0.20 0.21

11 0.21 0.22 0.20 0.20 0.20 0.20 0.20
13 1.43 1.79 0.20 0.20 0.20 0.20 0.20

15 2.51 2.61 0.24 0.20 0.19 0.20 0.19

Table 2. Dependence of the time mean rms error on the coefficient (ε) of the enhanced variance inflation scheme and the rank
(k) of the background covariance matrix. The window size is 2l + 1 = 13.

k 5 6 7 8 9

ε

0.008 1.16 0.20 0.20 0.19 0.19

0.010 0.22 0.19 0.19 0.20 0.20
0.012 0.21 0.20 0.19 0.20 0.19

0.014 0.20 0.20 0.20 0.20 0.19
0.016 0.21 0.20 0.19 0.19 0.20

0.018 0.21 0.19 0.19 0.20 0.20

0.202 0.20 0.20 0.20 0.19 0.20

Table 3. Dependence of the rms analysis error on ∆ in the regular variance inflation scheme and the rank (k) of the background
error covariance matrix.The window size is 13.

k 5 6 7 8 9

∆

0.024 0.87 0.42 0.21 0.21 0.21

0.028 0.36 0.20 0.20 0.20 0.20

0.032 0.20 0.20 0.20 0.20 0.20
0.036 0.20 0.20 0.20 0.29 0.20

0.040 0.20 0.20 0.20 0.20 0.20

0.044 0.20 0.20 0.20 0.20 0.20
0.048 0.20 0.20 0.20 0.20 0.20
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Fig 1. Illustration of the Local Ensemble Kalman Filter scheme as given by the seven steps listed in Section 2.
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The symbols in the figure are as follows:

• xa(i)(r, t) = the analysis ensemble fields as a function of position r on the globe at time t.

• x
b(i)
mn = ensemble of background atmospheric states in local region mn.

• Smn = the local low dimensional subspace in region mn.

• δx̂
b(i)
mn = perturbations of the background ensemble members from the most probable background

state.

• ˆ̄x
a
mn(t) = the mean analysis state in Smn.

• P̂a
mn(t) = the analysis error covariance matrix in Smn.
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Fig 2. The rms error of the full Kalman filter as function of the number of ensemble members. Shown are the results for J = 40

(solid line), J = 80 (dashed line), and J = 120 (dotted-dashed line).
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Fig 3. The rms error of the local ensemble Kalman filter as function of the number of ensemble members. Shown are the results

for J = 40 (solid line), J = 80 and J = 120 which coincide (dashed line).

4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

ENSEMBLE SIZE

R
M

S
 A

N
A

LY
S

IS
 E

R
R

O
R

c© 0000 Tellus, 000, 000–000



Local Ensemble Kalman Filter 39

Fig 4. The rms error of the different analysis schemes as function of the number of observations. Shown are the results for the

full Kalman filter [4% variance inflation] (dashed line), conventional scheme (dashed-dotted line), direct insertion (solid line

with diamonds), and the local ensemble Kalman filter [3% variance inflation] (solid line).
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