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Abstract

In a recent study, Williams (2009) introduced a simple modification to the 

widely used Robert-Asselin (RA) filter for numerical integration. The main 

purpose of the Robert-Asselin-Williams (RAW) filter is to avoid the 

undesired numerical damping of the RA filter and to increase the accuracy. 

In the present paper, the effects of the modification are comprehensively

evaluated in the SPEEDY atmospheric general circulation model. First, we 

search for significant changes in the monthly climatology due to the 

introduction of the new filter. After testing both at the local level and at the 

field level, we find no significant changes, which is advantageous in the 

sense that the new scheme does not require a retuning of the parameterized 

model physics. Second, we examine whether the new filter improves the skill 

of short and medium term forecasts. January 1982 data from the NCEP 

Reanalysis are used to evaluate the forecast skill. Improvements are found in 

all the model variables (except the relative humidity, which is hardly 

changed). The improvements increase with lead time and are especially 

evident in medium-range forecasts (96 to 144 hours). For example, in 

tropical surface pressure predictions, five-day forecasts made using the RAW 

filter have approximately the same skill as four-day forecasts made using the 

RA filter.  The results of this work are encouraging for the implementation of 

the RAW filter in other models currently using the RA filter.

1. Introduction

There are several time-stepping schemes for the numerical integration of the differential equations 

representing the evolution of a dynamical system (e.g. Durran 1991). The particular scheme chosen 
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for any given integration will depend upon a compromise between the desired accuracy, stability, 

computational efficiency, ease of implementation, and run-time memory requirements.  Whilst it is 

always hoped that simulations will be insensitive to time-stepping choices, the evidence suggests 

that this hope may be forlorn (e.g. Pfeffer et al. 1992; Williamson & Olson 2003; Zhao & Zhong 

2009).  Therefore, the following question naturally arises: Which of the many possible time-stepping 

schemes offers the most realistic simulations for the least computational expense?

A centered time-stepping scheme known as the leapfrog -and specifically the Robert-Asselin (RA) 

filtered version- is a widely used option in contemporary models of the atmosphere and ocean. This 

popularity is mainly due to three factors: the ease of implementation, the low computational expense 

(only one evaluation of the model’s tendency is needed per time step), and the low run-time storage 

requirements. The most serious problem associated with the leapfrog scheme is the “time splitting” 

instability associated with the creation of a spurious computational mode. The RA filter provides a 

considerable amelioration of this problem. The application of this filter, however, while damping the 

computational mode, can also have the undesired effect of significantly damping the physical mode 

of the solution, hence degrading its accuracy. In recent work, Williams (2009) introduced a simple 

modification to the RA filter, with the objective of improving its performance while avoiding its 

associated problems; the modification will hereafter be referred to as the Robert-Asselin-Williams 

(RAW) filter.

To date, the effects of the RAW filter have been tested only in a simple linear model representing 

inertial oscillations of the simple harmonic type (Williams, 2009). In the present paper, the filter will 

be implemented and tested in the SPEEDY model (Molteni, 2003), a relatively simple nonlinear 

Atmospheric General Circulation Model (AGCM). Our objectives are to examine whether the use of 

the RAW filter changes either the climatology or the skill of weather forecasts, or both. For the first 

objective, we will calculate the local and field significance, following Livezey and Chen (1983). For 
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Several approaches have been proposed to combat the growth of the computational mode; the most 

widely used is the Robert-Asselin (RA) filter. This filter was introduced by Robert (1966) and was 

shown by Asselin (1972) to suppress the computational mode while leaving the physical mode 

untouched for low frequencies with long periods compared to the time step, Δt .  The RA filter is 

implemented in leapfrog integrations as follows:
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The smoothing parameter ν in equation (2) is usually chosen to be ( )2.001.0 −O . The choice of this 

parameter is important: if its value is too small it can hardly manage to dampen the computational 

mode, but if it is too large it can lead to loss of accuracy in the solution. In his original analysis, 

Asselin (1972) studied values up to 2.0=ν . For atmospheric models, Durran (1991) notes that 

values of 12.0=ν are typically used in the NCAR community (Williamson, 1983); Déqué and 

Cariolle (1986) consider values as high as 2.0=ν and so does the GFDL-MOM model. For oceanic 

models Khanta and Clayson (2000) recommend values between 1.0=ν and 3.0=ν . 

Although the RA filter is widely used in operational and research models of the atmosphere and 

ocean (Williams, 2009), it has two related problems. First, besides damping the computational mode, 

the filter also weakly damps the physical mode, especially at high frequencies. This damping may 

become important for long integrations. Second, the RA filter degrades the accuracy of the 

unadulterated leapfrog scheme, since, by being un-centered in time, the RA-filtered leapfrog is only 

first-order accurate. 

In order to ameliorate the negative effects that the RA filter has on the physical solution of the model, 

Williams (2009) introduced a modification that we hereafter refer to as the Robert-Asselin-Williams 

(RAW) filter. The original RA filter reduces, by a factor of ( )ν−1 , the magnitude of the temporal 



4

the second objective, we will calculate the Anomaly Correlation Coefficient (ACC) and the Root 

Mean Square Error (RMSE), using base data from the NCEP reanalysis. For both the climatology 

and the forecasts, we will assess whether the upgrade from RA filter to RAW filter causes any 

significant changes.

This paper is organized as follows. Section 2 contains a short description of the RAW filter. Section 

3 gives a brief description of the SPEEDY model in which we are testing the filter. Section 4 studies 

the effects of the RAW filter on the climatology of the model; it is divided into two subsections, 

assessing the local significance and the field significance of the variables, respectively. In Section 5, 

we look for improvements in the skill of short and medium term weather forecasts due to the 

introduction of the RAW filter. Section 6 concludes the paper with a summary and discussion. 

2. The Robert-Asselin-Williams (RAW) filter

The centered discretization scheme known as the leapfrog is implemented as follows:

( ) ( )nnn xFtxxxF
t
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The leapfrog scheme is a widely used numerical integration method, in particular for hyperbolic 

equations and complex models. There are two main reasons for this. First, being a centered scheme, 

it is reasonably accurate and has an error of order ( )2tO Δ . Second, it requires only one computation 

of the time derivative per time step, and is therefore reasonably computationally efficient. The 

leapfrog scheme, however, introduces into the solution of the equation a spurious computational 

mode besides the actual physical mode (e.g. Kalnay 2003). This undesired mode manifests itself in 

nonlinear integrations as a spurious, growing oscillation between even and odd time steps.
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curvature of the state, and it is this smoothing effect that damps the computational mode. However, 

the filtering also changes the mean value of the state, averaged over the three time levels:

33
1111 −+−+ ++≠++= nnnnnn xxxxxxM (3)

Williams (2009) showed that, when used with the leapfrog scheme, it is this non-mean-conserving 

feature of the filter that degrades the numerical accuracy. In the same work, the author tackled this 

problem by introducing an extra step in the filtering process, in order to include the possibility of 

conserving the mean value. The resulting RAW filter is implemented in leapfrog integrations as 

follows:
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The RAW filter introduces an extra operation which is simple and doesn’t represent a considerable 

computational expense with respect to the RA filter. It also introduces a new parameter, [ ]1,0∈α .

Taking an un-damped oscillation equation Fi
dt
dF ω= , Williams (2009) found the amplification 

relationship for the RAW filter to be: 
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In the amplification relation (5), tΔ corresponds to the time step of the numerical solution of the 

equation. Figure 1 (taken from Williams, 2009) illustrates the behavior of equation (5) –for a fixed 

value of ν (taken to be 0.2)- with respect to tΔω . Each curve illustrates the effect of a different 
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value of α on the numerical amplification (or numerical dissipation) of a free wave oscillation, 

which is physically unforced and undamped in the time-continuous differential equation. A value of 

1=α corresponds to the traditional RA filter. From this figure we can see that, for a value of 

53.0=α one can minimize the spurious, numerical impacts on the physical solution and obtain the 

closest match to the exact solution over a broad frequency range. 

In Williams (2009), the RAW filter was tested in a simple linear system representing harmonic 

inertial oscillations. For this model, an explicit analytical solution exists and therefore it is easy to 

visualize and compare the effects of both the RA filter and the RAW filter in the numerical solution 

of the model. The purpose of the present work is to implement and test the RAW filter in a more 

realistic atmospheric model, which is described in the next section. 

3. The SPEEDY model

In the present paper, we implement and test the RAW filter in a model that is more representative of

those used in operational numerical weather predictions and climate simulations. In particular, we 

choose to use an Atmospheric General Circulation Model (AGCM) known as SPEEDY (Molteni 

2003). This model – the acronym of which stands for Simplified Parameterizations, primitivE-

Equation Dynamics – has a spectral primitive-equation dynamic core and a set of simplified physical 

parameterization schemes. The model is chosen because it achieves computational efficiency while 

maintaining realistic simulations similar to those of state-of-the-art AGCMs with complex physics.

Miyoshi (2005) adapted SPEEDY for use in data assimilation, with output every 6 hours. This 

implementation has a resolution of T30L7, with horizontal spectral truncation at 30 wave numbers 

and 7 vertical levels. Data are output on a horizontal grid of 96 longitudinal and 48 latitudinal points. 

The model includes basic physical parameterizations, the description of which can be found in the 
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appendix of Molteni (2003).  The SPEEDY model is formulated in σ coordinates and calculates 

five field variables: zonal wind u , meridional wind v , temperature T , relative humidity q and 

surface pressure ps . The geopotential height z for different pressure levels may be obtained by 

interpolation. We will also consider the variable precipitation, which the SPEEDY model is able to 

diagnose. These seven variables are used in the analysis of our results. 

The SPEEDY model is based on a spectral dynamical core developed at the Geophysical Fluid 

Dynamics Laboratory (Molteni, 2003). It is a hydrostatic, σ -coordinate, spectral-transform model in 

the vorticity-divergence form described by Bourke (1974). The time stepping uses a leapfrog scheme, 

with the RA filter used to suppress the computational mode. In the integration, gravity waves are 

treated semi-implicitly. This last feature is important to note since some other schemes (such as the 

Adams-Bashforth 3rd order method described in Durran 1991) which could otherwise be more 

efficient and accurate, become unstable under the semi-implic it scheme and hence are not suited for 

this model. The leapfrog scheme doesn’t present this problem. Moreover, an analysis of the 

favorable performance of the RAW filter under semi-implicit integrations can be found in Williams 

(2010).

For the RA filter, a value of 1.0=v is applied to each prognostic variable. In previous works with 

the SPEEDY model (e.g. Miyoshi 2005), this value has been found to be adequate for this model, 

and it is in accordance with the suggested values described in the previous section. For the present 

study, we have implemented the RAW filter in the model, which required the addition of a single 

new line of code (corresponding to the change from equation 2 to equation 4) and which did not 

noticeably affect the integration speed.  We will compare and contrast a control integration, achieved 

using the original RA filter, with a second integration, achieved using the new RAW filter with 

1.0=v and 53.0=α .
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Given the chaotic nature of the SPEEDY model (or any AGCM), the change in the filtering scheme 

for the numerical integration will produce different solutions beyond a week or so, even when 

starting from the same initial conditions. Figure 2 illustrates this behavior for the 500hPa 

geopotential height at a given location (Maryland, at 38°N and 75°W). The temporal evolutions for 

this variable start to show visible changes after around 8 days, and by 17 days the solutions are 

completely different. This result agrees well with the limit of predictability for the atmosphere of 

two weeks estimated originally by Lorenz (1963). Due to this behavior, it is difficult to assess the 

effects of the RAW filter from single runs (as it was done in Williams, 2009 with the simple 

oscillations model); instead we will have to look at the statistics for multiple runs. 

We seek to answer the following two questions in the remainder of the paper.  First, does the new 

time integration scheme affect the model climatology? This question is of interest because any 

statistically significant changes in the climatology may require a retuning of the physical 

parameterizations. We note in passing that such changes to the simulations need not necessarily be 

improvements, even if a better numerical scheme is implemented, because of the possible problem of 

compensating numerical and physical biases.  And, second, does the more accurate filter improve the 

short and medium term (1-6 day) forecasts of the model? 

4. Effects of the RAW filter on the climatology of the SPEEDY model

Since we are interested in possible changes to the climatology of the model, in this section we would 

like to consider relatively long time averages for our variables. In order to strike a balance between 

retaining long averages and avoiding the effects of seasonality, we choose to focus on monthly 

averages. We will take the variables separately at each of the seven pressure levels. For example, we 

will consider the mean 510hPa geopotential height for March, denoted marz510 , and the mean 

200hPa temperature for September, denoted sepT 200 . Surface pressure and precipitation are two-
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dimensional fields without vertical dependence. Taking into consideration the previous 

specifications, we will have 37 variables for each month of the year, giving 444 variables in total.

For each one of the 444 variables, we will look for differences between the climatology generated by 

the RAW filter and the climatology generated by the RA filter. Hence, we can write our null 

hypothesis as RAWmonthRAmonth xx ,, = and our alternative hypothesis as RAWmonthRAmonth xx ,, ≠ , where the 

second subscript indicates the time-stepping method by which the variable was generated. 

To generate our climatology, we run the model for 8=yearsN years, and for each filter scheme 

separately. For each year we compute the monthly means. Since the value of the temporal 

autocorrelation of the monthly means from one year to the next is very low, it is acceptable to 

neglect it when computing the statistics. If our variables were daily values instead of monthly 

averages, then we would surely need to consider this temporal autocorrelation and use a more 

suitable method, such as the moving blocks bootstrap proposed by Elmore et al. (2006).

4.1 Local significance

It is important to distinguish between local variations and field variations. For the former case, we 

test the null hypothesis for each variable at each vertical level and at each point on the 96 by 48 grid.  

The result for each grid point represents the local significance (Livezey and Chen, 1983). For the 

latter case, the way in which we take into consideration the set of results for all the grid points of a 

variable determines the field significance (Livezey and Chen, 1983), as described in the following 

subsection. 

To test the null hypothesis in the local context, we perform the Satterthwaite-Welch (SW) version of 

the t-test. This test requires the data to come from normal distributions, allows small samples, and 

permits the two groups compared to have different variances. The test statistic is:
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statistic has a t distribution with f degrees of freedom, where f is calculated as indicated in 

equation (7). This expression for the ‘effective’ number of degrees of freedom is the main difference 

of the SW t-test from the standard t-test. 
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We perform the two-tailed version of the SW t-test on all our variables, using a significance level of 

05.0=localα . (Note our use of a subscript here, to distinguish this variable name from the un-

subscripted α used in equation 4 for the RAW filter.) Figure 3 presents the results for the variable 

510z (i.e. the 510hPa geopotential height) for every month of the year. For the maps shown in this 

figure, we color in blue the points with 025.0≤p and in pink those with 975.0≥p . Hence, the pink 

regions are grid points at which the climatology generated by the RAW filter has signif icantly 

smaller values than the climatology generated by the RA filter, while the blue regions are grid points 

at which the climatology generated by the RAW filter has significantly larger values than the 

climatology generated by the RA filter. 

In figure 3 we see no preferred regions for the significant points, but they are instead scattered 

around the globe without coherency from one month to the next. This is true not only for this 

variable but for the others too (not shown). Moreover, since we are performing the same test in each 

grid point, some of the tests can be passed just by chance. This is called the “multiplicity problem” 
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by Wilks (2005) and can lead to erroneous conclusions. One has to ask the following question 

(Livezey and Chen 1983): What is the minimum number of tests (out of the 96x48) that must be 

passed in order to achieve some desired field significance fieldα ? 

4.2. Field significance

As indicated above, one must look at the results together in a ‘field’ sense. In order to obtain this 

field significance, two effects must be taken into consideration (Livezey and Chen 1983).   The first 

is finite sample size.  We are performing the significance test at each of the 4896×=M grid points 

of the model. Each test may be regarded as a Bernoulli trial with a probability of success equal to the 

significance of the local t-test, 05.0=localα . For the moment, let us assume that each of the M trials 

is independent from each of the others. Then we can regard the total number of tests passed as a 

random variable from a binomial distribution with a total of 4896×=M trials and an individual 

probability of success of 05.0=localα .

The mass probability function and the cumulative probability density function for this discrete 

binomial distribution are shown in figure 4. The distribution is centered on 5% of 96x48 tests, i.e. 

230.4 tests. In order to have a field significance of 05.0=localα , the minimum number of tests that 

must be passed corresponds to the ( )fieldα−× 1100 ’th percentile of this binomial distribution. 

Therefore, if we choose the field significance to be 05.0=fieldα , then at least 2550 =m tests must 

be passed. 

Let us see how many variables fulfill the requirement to be field significant at the level 05.0=fieldα . 

For each of the 2+5x7=37 variables and each of the 12 months, Table 1 shows the number of points 

at which the t-test was passed, i.e. the number of points that were locally significant. Considering the 

finite sample size effect, 119 out of the 444 variables are field significant. In the table, these 
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variables are bolded. The month with the most field significant variables is September, with 26 out 

of 37 variables. There is apparently no preferred pressure level or variable for the field significance 

to appear. 

Given only the above analysis, we would lean towards concluding that the RAW filter is indeed 

changing the climatology of the SPEEDY model for a considerable number of variables. However, a 

second effect must be taken into consideration: spatial correlation. When considering the total 

number of tests locally passed as a binomial distribution, we had to assume that the tests were 

independent from each other. That is, we considered that the result of a t-test in a given grid point 

would not affect the result of the test in the surrounding grid points. We now improve this analysis 

by replacing the binomial distribution with a null empiric distribution in which the spatial correlation 

is embedded. A way to construct this distribution is Monte Carlo simulation. Elmore (2006) 

describes how to generate the distribution by correlating random numbers with the data for each one 

of the variables for a number of trials. We selected this number of trials to be 1000. 

Figure 5 shows the results of generating these empirical distributions for marz510 , sepT 200 , julv835 ,  

and agou950 . (We generated the empirical distributions only for those variables that had resulted 

field significant.) One can immediately notice that these empirical distributions are substantially 

broader than the corresponding binomial distribution, having considerably heavier tails. For each 

variable, the shape of the distribution will be unique, since it contains the particular information of 

the spatial correlation for that variable. They are all, however, expected to present a qualitative 

similarity, since there is a common pattern of spatial interdependence for all the variables. For our 

purposes (evaluating the field significance of the individual t-tests), we will be particularly interested 

in the upper tail of each of the distributions. 



14

As one can see from figure 5 –and as previously noted by Livezey (1983) and Elmore (2006) –

spatial correlation makes it more difficult to achieve the same level of field significance. The 

minimum number of local tests required to be passed is larger than with the binomial distribution. 

With the field significance level we had selected, 05.0=fieldα , the minimum number of tests that 

must be passed under independence is 255, whereas for the empirical distributions, the minimum 

numbers of tests are considerably larger. Table 2 shows these numbers for the four variables under 

consideration. Considering more than just the four variables in the table, the new minimum number 

of tests required to be passed ranges from around 380 to 530. 

Let us conservatively consider one of the smallest of these numbers (390) as our minimum number 

of local tests required to be passed in order to achieve the field significance 05.0=fieldα , and let us 

reconsider the results of table 1. After considering the effect of spatial correlation, only 8 out of the 

444 variables are field significant at 05.0=fieldα . That is, only 1.8% of the variables suffered a 

significant change. These variables are identified in table 1 with italics (in addition to the previous 

bolding). This is clearly a huge reduction from the 119 field significant variables we had obtained 

under the assumption of independence. 

Hence, considering spatial correlation, we conclude that there is no evidence to support the 

hypothesis that the climatology of the SPEEDY model generated by integrating with the RAW filter 

is different from that generated by integrating with the RA filter. This is an advantageous finding, in 

the sense that the new scheme does not require a retuning of the parameterized physics.
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5. Effects of the RAW filter on the skill of short term and medium term forecasts

Since the climatology of the SPEEDY model is unchanged by the introduction of the new filter, we 

can now proceed to answer the question of accuracy: Are solutions obtained with the RAW filter 

more accurate than solutions obtained with the RA filter?

In order to assess any possible accuracy improvement, we use the Anomaly Correlation Coefficient 

(ACC) for h -hour forecasts. The ACC is a measure of the agreement between the spatial variations 

in the forecast and the analysis, each with respect to the climatology. The ACC is calculated using
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where if is the forecast, ia is the analysis, icr is the climatology of the reanalysis, ics is the 

climatology of the SPEEDY model, iϕ is the latitude and N is the total number of grid points for 

the variable. Note that we use the SPEEDY model’s own climatology rather than the reanalysis 

climatology to define forecast anomalies, because the SPEEDY model has resolution much lower 

than operational forecast models, and hence larger climatological errors. The subscript i labels the 

points on the grid. 

We perform the ACC computation for the month of January 1982. For the analysis data, we use the 

NCEP Reanalysis dataset interpolated onto the SPEEDY grid. The climatology of SPEEDY is 

computed from the eight-year runs for the RA filter and the RAW filter. Following the conclusion 

from section 3, we compute the climatology as follows:

( ) 2,, RAWJANRAJANJAN xxx += (9)

We select 3 of the 7 vertical levels of the model, representing roughly the upper atmosphere (200 

hPa), the middle atmosphere (510 hPa), and the lower atmosphere (835 hPa). The ACC analysis is 
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performed for the model variables ( u , v , T , q , z ) in each of the above levels, and it is also 

computed for the surface variable ps . 

The ACC analysis is first performed globally. The results for the five variables (excluding ps ) are 

presented in figure 6, which displays the differences RARAW ACCACC − . There is a clear, general 

improvement due to the use of the RAW filter, and the improvements are around ( )310−O in 

magnitude. The improvement increases with lead time and is more important for medium-term 

forecasts with lead times of 96, 120, and 144 hours. The variables that benefit most from the RAW 

filter are z and v , while q is the only variable that has no apparent improvement. There are almost 

no cases where the difference RARAW ACCACC − is negative. 

To examine regional differences, we finally perform the ACC analysis for three latitudinal bands: 

the tropics, defined by 25°S to 25°N, the northern hemisphere mid-latitudes, defined by 25°N to 

75°N, and the southern hemisphere mid-latitudes, defined by 75°S to 25°S. Figure 7 shows the 

results for the two variables that were globally most benefited by the RAW filter: the geopotential 

height and meridional wind.

For the geopotential height, z , the largest improvements in the ACC occur in the tropics. Moreover, 

the improvements start to be noticeable in the 72-hour forecast, which is earlier than for the other 

variables. The difference, RARAW ACCACC − , which is of the order of 02.0+ for medium-range 

forecasts, is larger for this variable and region than for any other. Results are similar for the surface 

pressure, ps (not shown).  These improvements in the skill of medium-range forecasts, which arise 

directly from the upgrade to the RAW filter, increase the anomaly correlation coefficient for surface 

pressure (and 500hPa geopotential height) in the tropics by 10-20%, as seen in figure 8.  As a 

consequence, five-day forecasts made using the RAW filter have approximately the same skill as 
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four-day forecasts made using the RA filter, and four-day forecasts made using the RAW filter have 

approximately the same skill as three-day forecasts made using the RA filter. 

For the meridional wind, v , the largest improvements in the ACC occur outside the tropics, in the 

three levels of the atmosphere, and they are more noticeable as the forecast time increases. The 

improvements in the temperature, T (not shown), are very similar to those for v , with the largest 

values occurring in the northern hemisphere and especially in the middle atmosphere. For the zonal 

wind, u (not shown), there is a moderate improvement for the medium term forecasts, but it is not as 

striking as for the previously listed variables, and the improvement never exceeds 005.0 . For the 

relative humidity, q (not shown), we consistently get an improvement close to zero.  

In order to complement the ACC analysis, an additional Root Mean Square Error (RMSE) analysis is 

performed. This statistic doesn’t involve the climatology; instead it compares directly the forecast 

(generated by integrating with any of the two filters) with the reanalysis data. We calculated a 

latitude-weighted RMSE as expressed in equation (10). 
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In this expression if is the forecast, ia is the analysis, iϕ is the latitude and N is the total number 

of grid points for the variable. We computed the difference RARAW RMSERMSE − for each forecast 

time and for each variable. This difference should be negative for the cases in which the RAW filter 

is improving the accuracy of the forecasts. This experiment yielded results similar to the ACC 

analysis; the figures generated are not shown. For the majority of the variables we observed a 

reduction in the RMSE, particularly for medium term forecasts. In the RMSE, however, it is more 

difficult to asses the relative impact of the filter among the different variables, since for each of the 

variables we have different units, while the ACC is non-dimensional. 
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6. Summary and discussion

The first question asked in the present paper is: Are there any statistically significant changes in the 

monthly climatology of the SPEEDY model caused by the upgrade in the numerical integration 

scheme from Robert-Asselin (RA) filter to Robert-Asselin-Williams (RAW) filter? To answer this 

question, we performed a Satterthwaite-Welch t-test for the difference of means for each variable, in 

order to assess local significance at the 5% level.  At some grid points the tests were passed, but 

these points appeared to be scattered around the globe and showed no particular preference for 

location. In field significance tests, after considering the effects of both finite sample size and spatial 

correlation, we found that there is no significant evidence to reject the null hypothesis of identical 

climatologies.  In other words, for each month, the climatology generated by integrating with the RA 

filter is the same as the one obtained with the RAW filter. Hence, the RAW filter is suitable for use 

in the SPEEDY model.

The second question asked is: Is there a statistically significant improvement in the skill of short to 

medium term (24-144 hour) forecasts caused by the upgrade from RA filter to RAW filter? To 

answer this question, an ACC analysis was performed for 24, 48, 72, 96, 120 and 144-hour forecasts 

for the month of January 1982. As analysis data we used the NCEP Reanalysis dataset interpolated 

onto the SPEEDY grid. The model climatology was generated by 8 year integrations of SPEEDY. 

The ACC analysis was performed on three pressure levels (835, 510 and 200 hPa), both globally and 

by latitude. A complementary RMSE analysis was performed following the same scheme, and 

yielding the same conclusions as the ACC analysis. 

In general, an improvement of order ( )310−O in the ACC can be attributed to the use of the RAW 

filter, and the improvement is larger for medium term forecasts with lead times of 72, 120 and 144 

hours. The geopotential height was strongly benefited in the tropics, with ACC increases as large as 

0.02 for a 72-hour forecast and 0.025 for a 120-hour forecast. As a consequence, five-day forecasts 
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made using the RAW filter have approximately the same skill as four-day forecasts made using the 

RA filter, and four-day forecasts made using the RAW filter have approximately the same skill as 

three-day forecasts made using the RA filter. The meridional wind was strongly benefited in the 

extra-tropics. The improvements in surface pressure mimicked those in geopotential height, and the 

impacts on temperature were very similar to those on meridional velocity. The improvements for the 

zonal velocity were less noticeable and there were no significant improvements in the relative 

humidity.

The results of this work are encouraging for the use of the RAW filter in the numerical solution of 

models based on the widely used RA filter. More generally, we have found that the skill of medium-

range weather forecasts is sensitive to the time-stepping method, about as much as could be expected 

from the use of different physics parameterizations to improve forecast skill.  We suggest that, in 

future work, numerical time schemes be revisited as a potentially important component of model 

error.
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Figure captions

Figure 1. The impacts of different values of the parameter α of the RAW filter on the numerical 

amplification of an unforced, undamped wave; taken from Williams (2009). The value of 1=α

corresponds to the original RA filter.  The value of 53.0=α is a preferred choice, since it keeps the 

amplification close to its exact value (unity) over a broad frequency range. 

Figure 2. The evolution of the 500hPa geopotential height at 38°N, 75°W over one month. The line 

with open circles was obtained with the RA filter. The line with closed circles was obtained with the 

RAW filter.  Each circle denotes a six-hour mean value.  The initial conditions were identical in both 

integrations.

Figure 3. Results of applying the t-test for difference of means in the variables 510z for each month 

with a local significance 05.0=localα . Under each map we indicate the number of grid points that 

resulted locally significant out of the 96x48 grid. One asterisk denotes that the variable is field 

significant ( 05.0=fieldα ) considering finite sample size, and two asterisks denote that it is field 

significant considering both finite sample size and spatial correlation. Only the month of September 

is field significant. 

Figure 4. Probability mass function (left) and cumulative probability function (right) for the 

binomial distribution representing the total number of local significance tests passed (assuming 

independence). For a total of 96x48 tests of local significance 05.0=localα , at least 255 must be 

passed in order to achieve a field significance 05.0=fieldα . 

Figure 5. Distribution of the total number of local significance tests passed. The binomial 

distribution (black line) corresponds to the assumption of field independence. The empirical 
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distributions (gray lines), which consider the spatial correlation, are shown for four variables. These 

distributions were constructed via Monte Carlo simulation with 1000 iterations, as described in the 

text. The vertical lines indicate the 95th percentile for each distribution. It is noticeable that these 

values are substantially higher than the value of 255 (associated with the binomial distribution) 

appropriate for the spatially correlated variables. 

Figure 6. Increase in anomaly correlation coefficient ( RARAW ACCACC − ) for six different forecast 

times. The values were computed globally, for three different pressure levels, and for each of the 

five variables. The most benefited variables are the meridional wind and the geopotential height. The 

bars denote one standard deviation of the difference. 

Figure 7. Increase in anomaly correlation coefficient ( RARAW ACCACC − ) for six different forecast 

times for two variables (geopotential height and meridional wind) at three pressure levels and four 

different latitudinal bands. The bars denote one standard deviation of the difference.

Figure 8. Anomaly Correlation Coefficient for forecasts of surface pressure in the tropics. Notice 

that 96-hour forecasts using the RAW filter have approximately the same skill as 72-hour forecasts 

using the RA filter. Also, 120 hour forecasts using the RAW filter have approximately the same skill 

as 96-hour forecasts using the RA filter.
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Table captions

Table 1. For each one of the variables, this table presents the number of grid points (out of 96x48) 

that resulted locally significant 05.0=localα after applying the t-test. The variables that result field 

significant with a value of  05.0=fieldα are presented bolded if they are field significant considering 

only finite sample size [and independence], and they are also presented in italics (besides the 

bolding) if they are field significant considering both finite sample size and spatial correlation.

Table 2. Minimum number of tests (out of 96x48) to be passed with a local significance 

05.0=localα to achieve a field significance 05.0=fieldα .
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Figures

Figure 1. The impacts of different values of the parameter α of the RAW filter on the numerical 

amplification of an unforced, undamped wave; taken from Williams (2009). The value of 1=α

corresponds to the original RA filter.  The value of 53.0=α is a preferred choice, since it keeps the 

amplification close to its exact value (unity) over a broad frequency range. 
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Figure 2. The evolution of the 500hPa geopotential height at 38°N, 75°W over one month. The line 

with open circles was obtained with the RA filter. The line with closed circles was obtained with the 

RAW filter.  Each circle denotes a six-hour mean value.  The initial conditions were identical in both 

integrations.
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Figure 3. Results of applying the t-test for difference of means in the variables 510z for each month 

with a local significance 05.0=localα . Under each map we indicate the number of grid points that 

resulted locally significant out of the 96x48 grid. One asterisk denotes that the variable is field 

significant ( 05.0=fieldα ) considering finite sample size, and two asterisks denote that it is field 

significant considering both finite sample size and spatial correlation. Only the month of September 

is field significant. 
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Figure 4. Probability mass function (left) and cumulative probability function (right) for the 

binomial distribution representing the total number of local significance tests passed (assuming 

independence). For a total of 96x48 tests of local significance 05.0=localα , at least 255 must be 

passed in order to achieve a field significance 05.0=fieldα . 
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Figure 5. Distribution of the total number of local significance tests passed. The binomial 

distribution (black line) corresponds to the assumption of field independence. The empirical 

distributions (gray lines), which consider the spatial correlation, are shown for four variables. These 

distributions were constructed via Monte Carlo simulation with 1000 iterations, as described in the 

text. The vertical lines indicate the 95th percentile for each distribution. It is noticeable that these 

values are substantially higher than the value of 255 (associated with the binomial distribution) 

appropriate for the spatially correlated variables. 
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Figure 6. Increase in anomaly correlation coefficient ( RARAW ACCACC − ) for six different forecast 

times. The values were computed globally, for three different pressure levels, and for each of the 

five variables. The most benefited variables are the meridional wind and the geopotential height. The 

bars denote one standard deviation of the difference. 
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Figure 7. Increase in anomaly correlation coefficient ( RARAW ACCACC − ) for six different forecast 

times for two variables (geopotential height and meridional wind) at three pressure levels and four 

different latitudinal bands. The bars denote one standard deviation of the difference.
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Figure 8. Anomaly Correlation Coefficient for forecasts of surface pressure in the tropics. Notice 

that 96-hour forecasts using the RAW filter have approximately the same skill as 72-hour forecasts 

using the RA filter. Also, 120 hour forecasts using the RAW filter have approximately the same skill 

as 96-hour forecasts using the RA filter.
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m0 ps prec u v T q z
255 390 950 835 685 510 340 200 80 950 835 685 510 340 200 80 950 835 685 510 340 200 80 950 835 685 510 340 200 80 950 835 685 510 340 200 80

Jan 57 118 96 98 112 120 190 190 305 138 164 198 221 268 307 351 138 164 198 221 268 307 351 202 160 135 126 114 130 133 121 103 84 117 153 146 181
Feb 38 195 140 157 203 219 245 226 198 163 173 191 186 199 261 310 163 173 191 186 199 261 310 227 257 248 226 180 230 207 139 95 99 132 119 88 49

Mar 40 185 269 229 243 265 223 186 127 239 256 274 256 247 213 226 239 256 274 256 247 213 226 221 188 216 205 292 232 201 188 180 167 175 166 130 67

Apr 63 263 306 319 294 268 231 210 198 162 188 152 203 213 228 290 162 188 152 203 213 228 290 158 149 145 177 216 198 204 231 233 215 205 153 125 191
May 65 84 210 213 217 183 164 146 113 240 239 248 276 280 241 264 240 239 248 276 280 241 264 300 252 274 339 209 124 119 91 96 102 120 159 154 100

Jun 95 80 227 230 231 263 256 267 232 264 258 290 301 293 253 242 264 258 290 301 293 253 242 288 285 315 221 243 179 176 84 93 130 182 194 174 143
Jul 62 198 350 348 349 403 396 400 342 255 259 246 245 230 146 182 255 259 246 245 230 146 182 247 225 277 255 164 170 158 175 174 179 292 308 163 135

Aug 67 246 328 316 248 264 251 153 116 254 262 245 208 176 181 214 254 262 245 208 176 181 214 327 289 318 251 165 164 176 241 241 211 217 380 348 135
Sep 45 349 346 383 376 393 337 337 297 248 270 278 301 276 243 234 248 270 278 301 276 243 234 308 310 323 174 246 182 202 361 376 430 490 425 408 304

Oct 45 45 120 103 113 91 115 116 65 161 192 180 141 108 83 71 161 192 180 141 108 83 71 154 136 135 140 176 215 204 60 40 42 43 78 100 88

Nov 46 261 276 247 255 266 239 196 154 305 345 314 294 216 185 180 305 345 314 294 216 185 180 227 209 172 125 181 194 187 269 280 282 224 148 112 69

Dec 65 4 122 106 106 93 119 105 61 166 174 175 143 113 74 55 166 174 175 143 113 74 55 136 103 102 94 175 227 157 2 3 2 22 45 37 61

Table 1. For each one of the variables, this table presents the number of grid points (out of 96x48) that resulted locally significant 05.0=localα after applying the t-test. The variables 

that result field significant with a value of  05.0=fieldα are presented bolded if they are field significant considering only finite sample size [and independence], and they are also 
presented in italics (besides the bolding) if they are field significant considering both finite sample size and spatial correlation.

Variable Minimum number of locally 
significant points

Any variable under 
spatial independence

255

marz510 498

sepT 200 531

julv835 387

augu950 380

Table 2. Minimum number of tests (out of 96x48) to be passed with a local significance 05.0=localα to achieve a field significance 05.0=fieldα .


