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Chapter 2.  The continuous equations 
 
 
Intro to the equations used in NWP, filtering fast waves 
(remember Richardson’s failure!) 
 
 
2.1 Governing equations: Basically Newton’s laws!  
 
2.2 Atmospheric equations of motion on spherical cords.  
 
2.3 Basic wave solutions in the atmosphere:  

Slow, weather waves (e.g., Rossby waves) 
Fast waves (gravity and sound waves)   
Their properties. 
Appendix: Equatorially trapped waves: (Kelvin and 
Rossby waves) 

 
2.4 Filtering approximations: how to get rid of fast waves 

Quasi-geostrophic approximation 
Quasi-Boussinesq or anelastic approximation 
Hydrostatic approximation 

 
2.5 Shallow water equations: Simple 2-D model to        

understand the full 3D-equations 
 Terms that allow gravity waves (used in semi-implicit 

schemes to filter these waves)  
 
2.6 Primitive equations and vertical coordinates 

General vertical coordinates 
Pressure coordinates 
Sigma and eta coordinates 
Isentropic coordinates.  
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2.1 Governing equations 
 
V. Bjerknes (1904) manifesto: there are 7 equations 
with 7 unknowns that govern the evolution of the 
atmosphere: 
  
• Newton's second law or conservation of momentum 

(3 equations for the 3 velocity components); 
  
• the continuity equation or conservation of mass; 
  
• the equation of state for ideal gases; 
  
• the first law of thermodynamics or conservation of 

energy;  
 
• a conservation equation for water mass.  
 
So, we should be able to integrate them! 
 
To these equations we have to  
 
• add appropriate boundary conditions at the bottom 

and top of the atmosphere. 
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Inertial (absolute) coordinates 

Relative (rotating) 
coordinates 

  va = v +!" r
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Newton's second law or conservation of momentum: 
 
On an inertial frame of reference, the absolute 
acceleration of a parcel of air in 3-dimensions is given 
by the physical forces per unit mass 
 

    
dava

dt
= F / m      (1.1) 

On a rotating frame of reference centered at the 
center of the earth: 
absolute velocity  va , relative velocity v , rotation 
with ! , r is the position vector of the parcel: 
 

  va = v +!" r     (1.2) 
 
More generally: the total time derivative of any vector 
on a rotating frame 

dA
dt is related to its total derivative 

in an inertial frame 
daA
dt  by:  

 

  

daA
dt

=
dA
dt

+!" A    (1.3) 
 
If we apply this formula to   A = va , 

  

dava

dt
=

dva

dt
+ ! ! va   (1.4) 
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Substitute   va = v +!" r  into
  

dava

dt
=

dva

dt
+ ! ! va : 

  

    
dava

dt
=

dv
dt

+ 2! ! v + ! ! (! ! r)    (1.5) 
 
On a rotating frame of reference there are two 
apparent forces per unit mass: the Coriolis force and 
the centrifugal force. 
 
dava
dt   represents the real forces acting on a parcel of 

air: 
• pressure gradient force  !"p ,  
• gravitational acceleration   ge = !"#e  
• frictional force F .  
 
So, in a rotating frame of reference moving with the 
Earth, the apparent acceleration is given by 
 

    
dv
dt

= !"#p ! #$e + F - 2! % v ! ! % (! % r)   (1.6) 
 
Here ! = 1 / "  is the specific volume (inverse of the 
density! ), p is the pressure,  !e is the Newtonian 
gravitational potential of the Earth. There is also the 
tidal potential, but its effects are negligible below 
about 100km. 
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We can combine the centrifugal and the gravitational 
forces since they depend only on the position: this 
makes the centrifugal force “disappear”  
 

   !! " (! " r) = !2l = #($2l2 / 2)  
 
 l is the position vector from the axis of rotation to the 
parcel.  
Define "geopotential"  ! = !e " #

2l2 / 2  
so that the apparent gravity (including centrifugal 
acceleration) is given by  
 

   !"# = g = ge +$
2l      (1.7) 

 
Define geographic latitude !  to be perpendicular to 
the geopotential! .  
(At the surface of the earth, the geographic latitude 
and the geocentric latitude differ by less than 10 
minutes of a degree of latitude) 
 
So, Newton's law on the rotating frame of the Earth 
(as we see it) is written as  
 

    
dv
dt

= !"#p ! #$ + F - 2! % v 
   (1.8) 
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Continuity equation or equation of conservation of 
mass:  
 
Consider the mass of a parcel of air of density !  
 
M = !"x"y"z      (1.9) 
 
(assume an infinitesimal parcel,  !x, !y, !z " 0 ) 
 
If we follow the parcel with time, it conserves its mass. 
 
Total time derivative of a function   f (x, y, z,t)  
 (or substantial, individual or Lagrangian time 
derivative): time derivative following the parcel 
 

  

df
dt

= !f
!t

"

#
$

%

&
'

x , y ,z

+ !f
!x

dx
dt

+ !f
!y

dy
dt

+ !f
!z

dz
dt

=

!f
!t

+ !f
!x

u + !f
!y

v + !f
!z

w
 

 
Since a parcel conserves dry air mass: the total 
derivative of mass following parcel is zero 
 

  
dM
dt

=
d !"x"y"z( )

dt
= 0  
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Take a logarithmic derivative (divide by the mass) 
 

 
  

1
M

dM
dt

= 1
!

d!
dt

+ 1
"x

d"x
dt

+ 1
"y

d"y
dt

+ 1
"z

d"z
dt

= 0  

 
 

Now 
1
!x

d!x
dt

=
"u
"x   as !x" 0  

 
so that the continuity equation becomes 
 

   

1
!

d!
dt

+"3.v = 0      (1.10) 

 
 
Again, the total derivative of any function  f (x, y, z,t) , 
following a parcel, can be expanded as 
 

   

df
dt

=
!f
!t

+
!f
!x

dx
dt

+
!f
!y

dy
dt

+
!f
!z

dz
dt

=
!f
!t

+ v."f  (1.11) 

 
The total (or Lagrangian or individual) time derivative 
of a property is given by the local (or partial or 
Eulerian) time derivative (at a fixed point) plus the 
changes due to advection.  
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Expand 
 
d!
dt  in (1.10) and get an alternative form of 

the continuity equation, usually referred to as “in flux 
form”: 

   
!"
!t

= #$.("v)      (1.12) 

 
 
Equation of state for perfect gases:  
 
The atmosphere can be assumed to be a perfect gas, 
for which the pressure p , specific volume ! (or its 
inverse! , density) and temperature  T are related by 
 

 p! = RT       (1.13) 
 
where  R  is the gas constant for air. This equation 
indicates that given any two thermodynamic variables, 
the others are determined. 
 
 
Thermodynamic energy equation or conservation of 
energy equation: 
 
It expresses that if heat is applied to a parcel at a rate 
of  Q per unit mass, this heat can be used to increase 

the internal energy  CvT  and/or to produce work of 
expansion: 
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Q = Cv
dT
dt

+ p d!
dt      (1.14) 

 
Coefficient of specific heat at constant volume  Cv  
Coefficient of specific heat at constant pressure  Cp  
 
Related by   Cp = Cv + R .  
 
With the equation of state  p! = RT  we derive a more 
commonly used form of the thermodynamic equation:  
 

 
Q = Cp

dT
dt

!" dp
dt      (1.15) 

 

Specific entropy  s (not clear what it is!) 
 
But we do know that the rate of change of S is   
 
ds
dt

=
Q
T ,      diabatic heating divided by the absolute 

temperature.  
 
Define potential temperature 

! = T p0
p

"
#$

%
&'

R
Cp

,   p0 is a reference pressure (1000hPa).  
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With this definition and (1.13, 1.15), it is easy to show 
(do it!) that the potential temperature and the specific 
entropy are related by  
 

  
ds
dt

=
Q
T

= Cp

1
!

d!
dt      (1.16) 

 
This shows that potential temperature is individually 
conserved in the absence of diabatic heating 
(isentropic or adiabatic flow).  
 
When a parcel moves up, it expands, and cools 
adiabatically: T decreases. But the potential 
temperature (temperature the parcel would have at 
1000hPa) remains constant:  
 
If   Q = 0  (adiabatic flow) then the potential temperature 

is individually conserved:   
d!
dt

= 0  (= isentropic flow) 
 
Equation of conservation of water vapor specific 
humidity (~mixing ratio) q, mass of water 
vapor/mass of dry air. 
 
Finally, we include an equation for conservation of 
water vapor mixing ratio q. It simply indicates that 
the total amount of water vapor in a parcel is 
conserved as the parcel moves around, except when 
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there are sources (evaporation E ), and sinks 
(condensation C ): 

 
dq
dt

= E ! C
      (1.17) 

 
Conservation equation for other variable atmospheric 
constituents (e.g., CO2, O3) can be similarly written in 
terms of their corresponding sources and sinks.  
 

Multiply    
dq
dt

=
!q
!t

+ v."q  by !  
 

multiply the continuity equation    
!"
!t

= #$.("v)  by q 
 
and add them: This gives the 
 
Conservation of water in a "flux form": 
 

   
!"q
!t

= #$.("vq) + "(E # C)     (1.18) 
 
The flux form of the time derivative is very useful in 
the construction of models. The first term of the rhs of 
(1.18) is the convergence of the flux of q. Note that 
we can include additional similar conservation 
equations for additional tracers such as liquid water, 
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ozone, etc, as long as we also include their 
corresponding sources and sinks.  
 
Repeat the governing equations, which (without 
friction F ) are sometimes referred to as “the Euler 
equations”: 

    
dv
dt

= !"#p ! #$ + F - 2! % v    (1.19) 

   
!"
!t

= #$.("v)       (1.20) 
 
p! = RT       (1.21) 

 

Q = Cp
dT
dt

!" dp
dt      (1.22) 

 

   
!"q
!t

= #$.("vq) + "(E # C)   (1.23) 
 
W. Bjerknes (1904): “Seven equations with seven 
unknowns:      v = (u,v,w), T , p, ! or " , and q . 
With proper boundary conditions (e.g., at the surface 
and top of the atmosphere, we should be able to 
integrate them and forecast the weather!” 
The fact that we succeeded in doing so is one of the 
most remarkable scientific achievements of the last 
100 years. 


