<u>Time series: Frequency domain</u>

We will discuss here first Fourier transform and spectra, and then time filters.

Fourier series for continuous data

Assume we have data f(t) in a time interval [0,T]. Then the data can be expressed as a Fourier series

$$f(t) = \frac{A_0}{2} + \sum_{k=1}^{\infty} \left[A_k \cos\left(k\frac{2\pi}{T}t\right) + B_k \sin\left(k\frac{2\pi}{T}t\right) \right] (1),$$

or, using an exponential form,

$$f(t) = \sum_{k=-\infty}^{\infty} C_k \exp\left(ik\frac{2\pi}{T}t\right).$$

Here $v_0 = \frac{2\pi}{T}$ is the fundamental frequency (corresponding to a period *T*). $v_k = \frac{2\pi k}{T} = v_0 k$ are the higher frequencies (harmonics).

The Fourier transforms of
$$f(t)$$
 can be obtained by multiplying (1) by
 $\cos\left(k\frac{2\pi}{T}t\right)$ or $\sin\left(k\frac{2\pi}{T}t\right)$, integrating over $\begin{bmatrix}0,T\end{bmatrix}$ and using
 $\int_{0}^{T}\cos^{2}(k\frac{2\pi}{T}t)dt = \frac{1}{2}\int_{0}^{T}\left[\cos^{2}(k\frac{2\pi}{T}t) + \sin^{2}(k\frac{2\pi}{T}t)\right]dt = \frac{1}{2}\int_{0}^{T}dt = \frac{T}{2}$. We then get

$$A_{k} = \frac{2}{T} \int_{0}^{T} f(t) \cos\left(k\frac{2\pi}{T}t\right) dt$$
$$B_{k} = \frac{2}{T} \int_{0}^{T} f(t) \sin\left(k\frac{2\pi}{T}t\right) dt$$

or, in exponential form

$$C_{k} = \frac{1}{T} \int_{0}^{T} f(t) \exp\left(-ik\frac{2\pi}{T}t\right) dt$$

The sine/cosine and exponential coefficients are related by

$$C_{k} = \begin{cases} \frac{1}{2} (A_{k} - iB_{k}) & \text{for } k \ge 0 \\ \frac{1}{2} (A_{-k} + iB_{-k}) & \text{for } k < 0 \end{cases}.$$

$$\frac{A_0}{2} = \frac{1}{T} \int_0^T f(t) dt = \overline{f(t)} \text{ corresponds to the frequency } v = 0.$$

The power spectrum of a time series is the square of the amplitude of each harmonic, and it provides the contribution of each harmonic to the total energy of the time series $\overline{f'}^2(t)$: $P_k^2 = A_k^2 + B_k^2$

Now, if we have a <u>discrete</u> time series of length N, with equal time intervals Δt , the formulas are similar, with $t_n = n\Delta t$; $T = N\Delta t$, and N+1distinct Fourier coefficients (N+1 is the number of discrete points in the series, since n=0, 1, ..., N).

$$f_n = f(t_n) = \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} C_k \exp\left(ik\frac{2\pi}{N\Delta t}n\Delta t\right) = \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} C_k \exp\left(i\frac{2\pi k}{N}n\right)$$

Or, in terms of sines and cosines,

$$f(t_n) = \frac{A_0}{2} + \sum_{k=1}^{\frac{N}{2}} \left[A_k \cos\left(\frac{2\pi k}{N}n\right) + B_k \sin\left(\frac{2\pi k}{N}n\right) \right]$$

The coefficients are obtained, as before, from the discrete Fourier transform that gives the amplitude of the signal due to each wave number or harmonic:

$$A_{k} = \frac{2}{N} \sum_{n=1}^{N} \left[f_{n} \cos\left(\frac{2\pi k}{N}n\right) \right]$$
$$B_{k} = \frac{2}{N} \sum_{n=1}^{N} \left[f_{n} \sin\left(\frac{2\pi k}{N}n\right) \right]$$

or, in complex exponential form

$$C_{k} = \frac{1}{N} \sum_{n=0}^{N} \left[f_{n} \exp\left[-i \left(\frac{2\pi k}{N} n \right) \right] \right]$$

with power spectrum

$$P_k^2 = A_k^2 + B_k^2 = C_k^2$$

Parseval's theorem: the average energy is the same in physical or Fourier space:

$$\frac{1}{T}\int_{0}^{T} f(t_{n})^{2} dt = \frac{A_{0}^{2}}{2} + \sum_{k=1}^{N} \left[A_{k}^{2} + B_{k}^{2} \right]$$

Example: Annual cycle

Assume we have monthly means, and we average all years to obtain \overline{f}_n , monthly averages corresponding to each month of the year. Δt is then one month, and N=12. Typically, we can represent the annual cycle with at least two harmonics, to allow for a lack of symmetry between winter and summer:

$$f_{ACn} = \frac{A_0}{2} + A_1 \cos\left(\frac{2\pi}{12/1}n\right) + B_1 \sin\left(\frac{2\pi}{12/1}n\right) + A_2 \cos\left(\frac{2\pi}{12/2}n\right) + B_2 \sin\left(\frac{2\pi}{12/2}n\right)$$

The A_0 term represents the annual average (with zero frequency), the A_1 and B_1 terms represent the periodic component with period 12 months (fundamental frequency), and the A_2 and B_2 terms represent a periodic component with period 6 months (first harmonic).

The coefficients A_0, A_1, A_2, B_1, B_2 can be obtained as before, e.g.,

 $B_2 = \frac{2}{12} \sum_{n=1}^{12} \overline{f_n} \sin\left(\frac{2\pi}{12/2}n\right),$ where the bar represents the monthly average over several years.

Once the coefficients are obtained, the annual cycle can be subtracted from the time series in order to deal with *anomalies*.