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(Statistical Forecasting: with NWP).  
Notes from Kalnay (2003), appendix C 

Postprocessing of Numerical Model Output to Obtain Station 
Weather Forecasts 

 
If the numerical model forecasts are skillful, the forecast 

variables should be strongly related to the weather parameters of 
interest to the “person in the street” and for other important 
applications. These include precipitation (amount and type), surface 
wind, and surface temperature, visibility, cloud amount and type, etc. 
However, the model output variables are not optimal direct estimates 
of local weather forecasts. This is because models have biases, the 
bottom surface of the models is not a good representation of the 
actual orography, and models may not represent well the effect of 
local forcings important for local weather forecasts. In addition, 
models do not forecast some required parameters, such as visibility 
and probability of thunderstorms. 
 

In order to optimize the use of numerical weather forecasts as 
guidance to human forecasters, it has been customary to use 
statistical methods to “post process” the model forecasts and adapt 
them to produce local forecasts. In this Appendix we discuss three of 
the methods that have been used for this purpose. 
 
1) Model Output Statistics1 (MOS) 
 

This method, when applied under ideal circumstances, is the 
gold standard of NWP model output post processing (Glahn and 
Lowry, 1972, Carter et al, 1989).  MOS is essentially multiple linear 

regression where the predictors njh are model forecast variables 
(e.g., temperature, humidity or wind at any grid point, either near the 
surface or in the upper levels), and may also include other 
astronomical or geographical parameters (such as latitude, longitude 

and time of the year) valid at time nt . The predictors could also 

                                                        
1 I am grateful to J. Paul Dallavalle of the National Weather Service for information about MOS 
and Perfect Prog. The NWS homepage for statistical guidance is in 
http://www.nws.noaa.gov/tdl/synop/index.html. 
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include past observations. The predictand n
y  is a station weather 

observation (e.g., maximum temperature or wind speed) valid at the 
same time as the forecast. Here, like in any statistical regression, the 
quality of the results improves with the quality and length of the 
training data set used to determine the regression coefficients jb . 
 
The dependent data set used for determining the regression 
coefficients is 
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where we consider one predictand n
y  as a function of time n

t and J  

predictors njh . 
 
The linear regression (forecast) equation is  
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where for convenience the predictors associated with the constant 
term 

0
b are defined as 

0
1

n
h ! . In linear regression the coefficients jb  

are determined by minimizing the sum of squares of the forecast 
errors over the training period (e.g., Wilks, 1995). The sum of 
squared errors is given by: 
 

22

1 1

ˆ( )
N N

n n n

n n

SSE y y e
= =

= ! =" "   (1.3) 

Taking the derivatives with respect to the coefficients jb and setting 
them to zero we obtain: 
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or 
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where T

jn njh h= . Eqs. (1.5) are the “normal” equations for multiple linear 
regression that determine the linear regression coefficients 
, 0,...,jb j J= . In matrix form, they can be written as 
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are, respectively, the dependent sample predictor matrix (model 
output variables, geographical and astronomical parameters, etc.), 
the vector of regression coefficients, and the vector of predictands in 
the dependent sample. ,= = !y Hb e y Hb

!
are the linear predictions 

and the prediction error respectively in the dependent sample. The 
dependent estimate of the error variance of the prediction is 
2

1
e

SSE
s

N J
=

! !
 since the number of degrees of freedom is N-J-1. This 

indicates that one should avoid over fitting the dependent sample by 

ensuring that N J>> . For independent data, the expected error 

can be considerable larger than the dependent estimate 
2

e
s  because 

of the uncertainties in estimating the coefficients jb . The best way to 
estimate the skill of MOS (or any statistical prediction) that can be 
expected when applied to independent data is to perform cross-
validation. This can be done by reserving a portion (such as 10%) of 
the dependent data, deriving the regression coefficients from the 
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other 90%, and then applying it to the unused 10%. The process can 
be repeated 10 times with different subsets of the dependent data to 
increase the confidence of the cross-validation, but this also 
increases the computational cost. 
 
It is clear that for a MOS system to perform optimally, several 
conditions must be fulfilled: 
 

a) The training period should be as long as possible (at least 
several years). 

b) The model-based forecasting system should be kept 
unchanged to the maximum extent possible during the training 
period. 

c) After training, the MOS system should be applied to future 
model forecasts that also use the same unchanged model 
system. 

 
 These conditions, while favorable for the MOS performance, 
are not favorable for the continued improvement of the NWP model, 
since they require “frozen” models. The main advantage of MOS is 
that if the conditions stated above are satisfied, it achieves the best 
possible linear prediction. Another advantage is that it naturally takes 
into account the fact that forecast skill decreases with the forecast 
length, since the training sample will include, for instance, the 
information that a 1-day model prediction is on the average 
considerably more skillful than a 3-day prediction. The main 
disadvantage is that MOS is not easily adapted to an operational 
situation in which the model and data assimilation systems are 
frequently upgraded.  
 

Typically, MOS equations have 10-20 predictors chosen by 
forward screening (Wilks, 1995). In the US NWS, the same MOS 
equations are computed for a few (4-10) relatively homogeneous 
regions in order to increase the size of the developmental database. 
In order to stratify the data into few but relatively homogeneous time 
periods, separate MOS equations are developed for the cool season 
(October to March) and the warm season (April to September). As 
shown in Table D.1 in the Adaptive Regression section, MOS can 
reduce very substantially the errors in the NWP model forecasts, 
especially at short lead times. At long lead times, the forecast skill is 



 

 

39 

lost, so that the MOS forecast becomes a climatological forecast and 
the MOS forecast error variance asymptotes to the climatology error.  

The error variance of an individual NWP forecast, on the other 
hand, asymptotes to twice the climatological error variance, plus the 
square of the model bias (see Chapter 6, section 5). 
 

Figure D.1 shows the evolution of the error in predicting the 
maximum temperature by the statistical guidance (MOS) and by the 
local human forecasters (LCL). The human forecasters skill in the 2-
day forecast is now as good as the one-day forecast was in the 
1970’s. The human forecasters bring added value (make better 
forecasts) than the MOS statistical guidance, which in turn is 
considerably better than the direct NWP model output. Nevertheless, 
the long-term improvements are driven mostly by the improvements 
in the NWP model and data assimilation systems, as discussed in 
Chapter 1. 
 

In summary, the forecast statistical guidance (and in particular 
MOS) adds value to the direct NWP model output by objectively 
interpreting model output to remove systematic biases and 
quantifying uncertainty, predicting parameters that the model does 
not predict, and producing site-specific forecasts. It assists 
forecasters providing a first guess for the expected local conditions, 
and allows convenient access to information on local model and 
climatology conditions. 
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Fig. D.1  Evolution of the mean absolute error of the MOS guidance 
and of the local official NWS forecasts (LCL)  averaged over the US 
(Courtesy of J. Paul Dallavalle and Valery Dagostaro from the US 
NWS). 
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GFS Cool season PoP/QPF regions 
(With 1406 GFS MOS forecast sites, courtesy Mark Antolik) 
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2) Perfect Prog 
 
 

Perfect Prog is an approach similar to MOS, except that the 
regression equations are derived using as predictors, observations or 
analyses (rather than forecasts) valid at the prediction time, as if the 
forecasts were perfect.  

 
If station observations are used as predictors in the dependent 

sample, it is not possible to use the same variable for a predictor as 
for the predictand (e.g., Boston’s observed maximum surface 
temperature could not be used as predictor for the maximum 
temperature in Boston). However, if model analyses are used as 
“perfect” forecasts, one can use like variables as predictors.  

 
For obvious reasons, since forecasts are not as good as the 

analyses, PP has not been much used except for very short 
forecasts.  

 
Perhaps it would be possible now to use the long 

homogeneous reanalyses that have been completed  (Kistler et al, 
2001, Kalnay et al, 1996, Gibson et al, 1997, ) to derive very long and 
robust PP statistics between model output and station data.  

 
After the regression between the reanalysis and station data is 

completed, the prediction of surface parameters could be done in two 
steps. In the first step, multiple regression would be used to predict 
the reanalysis field from model forecasts, which should be easier to 
achieve than predicting the station data directly, since a few 
parameters would be enough to represent the model bias and the 
decay of skill with time. In the second step, the PP equations would 
be used to translate the predicted analysis into station weather 
parameters. In this approach, the disadvantage of PP of not including 
the effective loss of skill associated with longer forecast lengths 
would be handled in the first step discussed above. This approach 
has yet to be thoroughly explored. (See paper by Marzban, 
Sandgathe and Kalnay, MWR, 2006). 
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3) Adaptive Regression based on a simple Kalman Filter 
approach (AR) 
 

Adaptive Regression based on Kalman Filtering has also been 
widely used as a postprocessor. In MOS or in other statistical 
prediction methods such as nonlinear regression or neural networks, 
the regression coefficients are computed from the dependent sample, 
and are not changed as new observations are collected until a new 
set of MOS equations are derived every 5 or 10 years. Because the 
regression coefficients are constant, the order of the observations is 
irrelevant in MOS, so that older data have as much influence as the 
newest observations used to derive the coefficients.  
 

In Adaptive Regression, the Kalman Filter equations (Chapter 
5, Section 6) are applied in a simple, sequential formulation to the 
multiple regression coefficients ( )

k k
t=b b , whose values are 

updated every time step, rather than keeping them constant as 
in (1.2):  
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  (1.8)

 

 
If we compare this equation with those in Chapter 5, we see that it 

has the form of an observational first guess, 
f

k k ky =H b , so that we 
can use the Kalman Filter formulation with an “observation operator” 

T

k
=H h , a row vector in (1.7) corresponding to the time k

t . Recall 
that Kalman Filtering consists of two steps. In the first step, starting 

from the analysis at time 1k
t

! , we forecast the values of the model 
variables (in this case the coefficients 

k
b ) and their error covariance 

at time k
t . In the second step, the Kalman weight matrix is derived, 

and, after obtaining the observations at time 
k
t , the model variables 

and error covariance are updated, obtaining the analysis at time 
k
t . In 
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Adaptive Regression, the “forecast” or first guess of the regression 
coefficients at 

k
t  is simply that they are the same as the (analysis) 

coefficients at 1k
t

! , and their error covariance is the same as that 
estimated in the previous time step, plus an additional error 
introduced by this “regression forecast model”: 
 
Forecast step of Kalman Filtering: 

1

1 1

f a

k k

f a

k k k

!

! !

=

= +

b b

P P Q
    (1.9) 

 
Here T

k k k
=Q q q  is the “regression model” error covariance (a matrix 

of tunable coefficients that is diagonal if we assume that the errors of 
the different coefficients are not correlated). 
 

The Kalman gain or weight vector for adaptive regression is 
given by 
 

1( )f T f

k k k k k k kr
!

= +k P h h P h    (1.10) 
Note that for a single predictand, the forecast error covariance 
T f

k k kh P h  and the observational error covariance k k
r=R are both 

scalars, and computing the Kalman gain matrix does not require a 
matrix inversion. 

At time k
t  the observed forecast error or innovation  

o T f

k k k ke y= !h b  is used to update the regression coefficients: 
 
After the observations are obtained, analysis step of KF: 
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In summary, the adaptive regression algorithm based on Kalman 
Filtering can be written as: 
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where k

w is a temporary scalar defined for convenience. The two 
tuning parameters in the algorithm are  

k
r , the observational error covariance (a scalar), and  

k
Q , the “regression model” error covariance (a diagonal matrix with 
one coefficient for the variance of each predictor if the errors are 
uncorrelated).  
 
Unlike regression, MOS, or neural networks, Adaptive Regression is 
sequential, and gives more weight to recent data than to older 
observations. The larger k

Q , the faster older data will be forgotten. It 
also allows for observational errors.  
 

This method can be generalized to several predictands, in 
which case the observation error covariance matrix may also include 
observational error correlations.  
 
  
 
 
 
 

Forecast 
 
Forecast of covariance 
 
Observed error 
 
 
Kalman gain  
 
Update regression coefficients 
 
Update Covariance 
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The following table compares a simple Kalman Filtering applied 
to the 24 hr surface temperature forecasts for July and August 1997 
at 00Z, averaged for 8 different US stations, using as a single 
predictor the global model output for surface temperature interpolated 
to each individual station. It was found that after only a few days of 
spin-up, starting with a climatological first guess, and with minimal 
tuning, the AR algorithm was able to reach a fairly steady error level 
substantially better than the numerical model error, and not much 
higher than regression on the dependent sample. Not surprisingly, 
MOS, using many more predictors, and several years of training, 
provides an even better forecast than this simple AR. 
 
 
NWP (Aviation 
model) 

Dependent 
Regression 

Adaptive 
Regression 

MOS 

5.36K 2.67K 3.07K 2.29K 
 
 
 
 
Table D1: RMS error in the forecast of the surface temperature at 
00Z averaged for 8 US stations. In the Dependent Regression and 
Kalman Filtering, the only predictor used was the direct model 
prediction of the temperature interpolated to the station. The MOS 
prediction has more than 10 predictors and several years of training. 
  

 
 
In summary, Kalman Filtering provides a simple algorithm for 

adaptive regression. It requires little training so that it is able to adapt 
rather quickly to changes in the model, and to long-lasting weather 
regimes. It is particularly good in correcting model biases. However, 
in general it is not as good as regression based on long dependent 
samples. 
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Verification: Temperature – 0000UTC  
Cool season 2002-2003 

 
(Courtesy Mark Antolik) 
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QPF verification - 0000UTC. 
 

Cool season 2002-2003 (Courtesy Mark Antolik) 
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