Quantifying Methane, Ethane, and VOC
Emissions from the Denver-Julesburg Basin
Using Aircraft Mass Balance in Fall of 2021.
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Intro:

Methane, a potent greenhouse gas and primary component of natural gas,
requires quantification of emission rates and their temporal changes to assess its
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Figure 1. (Top left) The 402B aircraft and reverse-facing gas inlet, along with pressure/temperature/humidity sensors.
(Top middle) Interior view showing the UMD instrument rack and CAMS-2 ethane instrument. (Top right) The PTR-TOF
spectrometer inside the aircraft. (Bottom) Schematic of instrument placements relative to the aircraft size.
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As oil and gas
production in the
D-J Basin Increases,

climatic impact. In the Denver-Julesburg Basin (DJB), particularly the Wattenberg @ e 120 Sﬂcf_,Fgg T?t;IOAT,m;'!’UT,tSTO o o2 ¢ x10° ™
field area of Colorado, methane emissions predominantly originate from oil and m Et h a n e e m l Ss l O n w08 = | H2o0
natural gas (O&G) operations (>18,000 active wells in 2021), agricultural activities [ —*:;:Z
at concentrated animal feedlot operations (CAFOs), and landfills (Figure 2). During 40.6 — Fort Collns © T N
Fall 2021 (9/17-10/5), our research group conducted nine flights over this region e ® o uammen @ | @T el R T |
in a fully instrumented Cessna aircraft (Figure 1), measuring CHa, C>Hs, acetic acid, l n te n s l t d e C r e a S e s 3 — ERSPor i ¢ 700 ;
and other trace gases, with four flights deemed sufficient for mass balance o 5 s0m A °\>- o[ °00 %
emission rate determination. Since CHs and C;He are co-emitted from O&G o | pourEn jzz‘;
operations, and CHs and acetic acid (but not C,Hs) from CAFOs (Figure 3), we = 40.0 |  Bouider i G o Lan
determined methane emission rates, source apportionment, and emission 200
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Figure 2. Map of the Wattenberg Field portion of the DJB in Weld and Larimer Counties showing CH4 sources, with
O&G facilities sized by daily BOE production and CAFOs sized by animal units (AU).

Acetic Acid: A Key Tracer for CAFO Emissions
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For each mass balance flight, outflow legs were determined based on the visual  Mlethane and Ethane Emission Results: h o o . o0
plume enhancement and confirmed with 10hr HYSPLIT to be from the source A CH, [ppbv] October 5, 2021
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Date O0&G% Total BOE/hr Figure 3. Plot of 1s AMethane vs. AEthane, colored and sized by Aacetic acid concentrations. Background values

represent 5% of values within the PBLH. The box region highlights Greeley, CO, a major CAFO area. The figure shows a

formed by the outflow leg, plume edge back trajectories, and the upwind portion
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AEthane/AMethane ratio of approximately 5.5% and a strong correlation between CAFOs and acetic acid.

of the flight path. The background concentration was either determined by the 9/27/2021 183+ 050 179%29 63.2 27951 0.40 007 +0.02 e <19
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uncertainties were assessed through a propagation error analysis of 10 variables: 1. Methane and Ethane Emissions: From four flights conducted in Fall 2021 (9/24-10/5), e D
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adjusted PBLH, methane concentration ([CH,lpiume), methane background the methane emission rate was quantified as 20.9 + 5.9 tons CHs/hr, while the ethane s= 4} 128 2
(ICHylpiume), wind speed (WS), track angle (TA), wind speed correction factor (k), emission rate was 2.44 + 0.80 tons C,He/hr. = S 0
wind direction (WD), groundspeed (GS), temperature (T), and pressure (P). _ . — 5 S 08 —f= Cusworth et al (2022 28 O
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Multivariate linear regressions were used to determine the CH, fraction from O&G 63.2 £ 8.7% of methane emissions to oil and gas (O&G) operations. = s @
. . . . O 0 ® A A . O . | m —
based on corrections of methane with ethane (O&G tracer) and acetic acid (CAFO 3. Emission Intensity Trends: By determining flight footprints, we achieved a more 0.4 | L
tracer). Thermogenic methane emission rates were normalized by production, in precise estimation of O&G production captured during each leg/flight. This enabled ] Cusworth et al (2022)| I(\SU?%
total barrels oil of equivalent (BOE) within each flight footprint. Data provided by calculations of a methane emission intensity of 0.56 + 0.19 kg thermogenic CH,/BOE/hr D2 s 019014 012016 1018 012020 01/2000

well-pad production statistics for 2021 provided by the Colorado Energy and
Carbon Management Commission (ECMC

Emission Intensity (EI) = (CH, fraction from O&G)*(CH, mass balance kg/hour)/(BOEh)

Daley/Fried et al (in prep)

and an ethane emission intensity of 0.09 + 0.02 kg C,Hs/BOE/hr. Methane emission
intensity has declined linearly by 0.05 kg/BOE/hr per year since 2012, while ethane

Figure 4. Methane emission intensity (blue) and Barrels of Oil Equivalent (BOE, black) for six studies conducted in the
Denver-Julesburg Basin from 2012-2021. BOE increased by 146% from 2012 to 2021 and 137% from 2015 to 2021. The
trendline (r* = 0.78) indicates a decrease in emission intensity of approximately 0.05 El/year, where El is kg CH4/BOE/hr.

emission intensity has significantly decreased > 70% since 2015 (Pieschl, 2018;

Ngulat/Daley/Fried et al., in prep.).
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