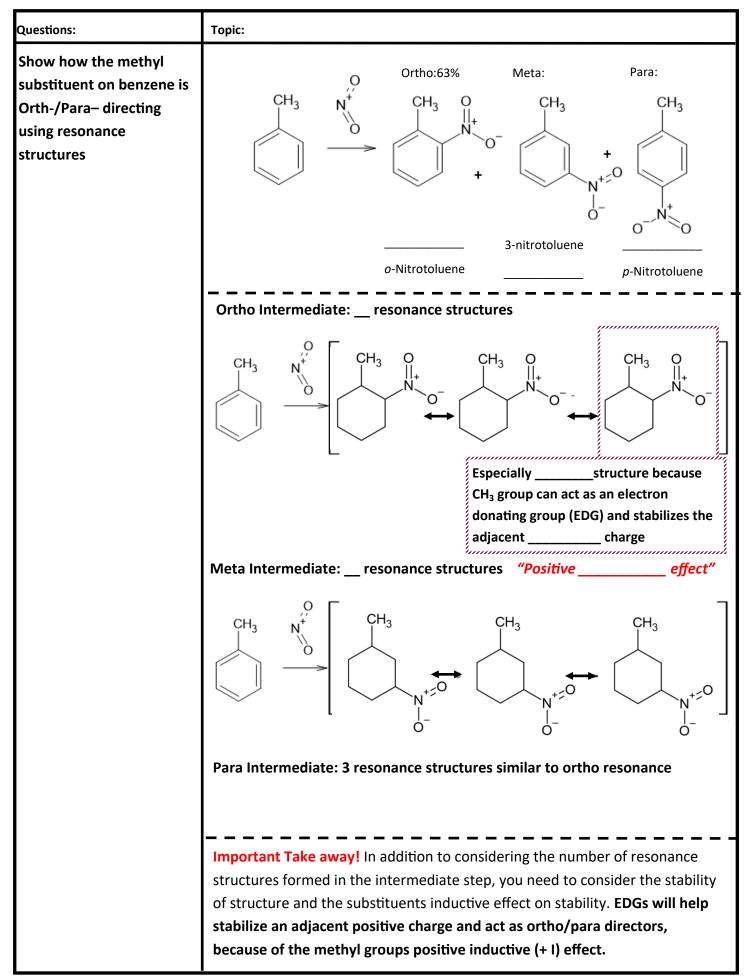
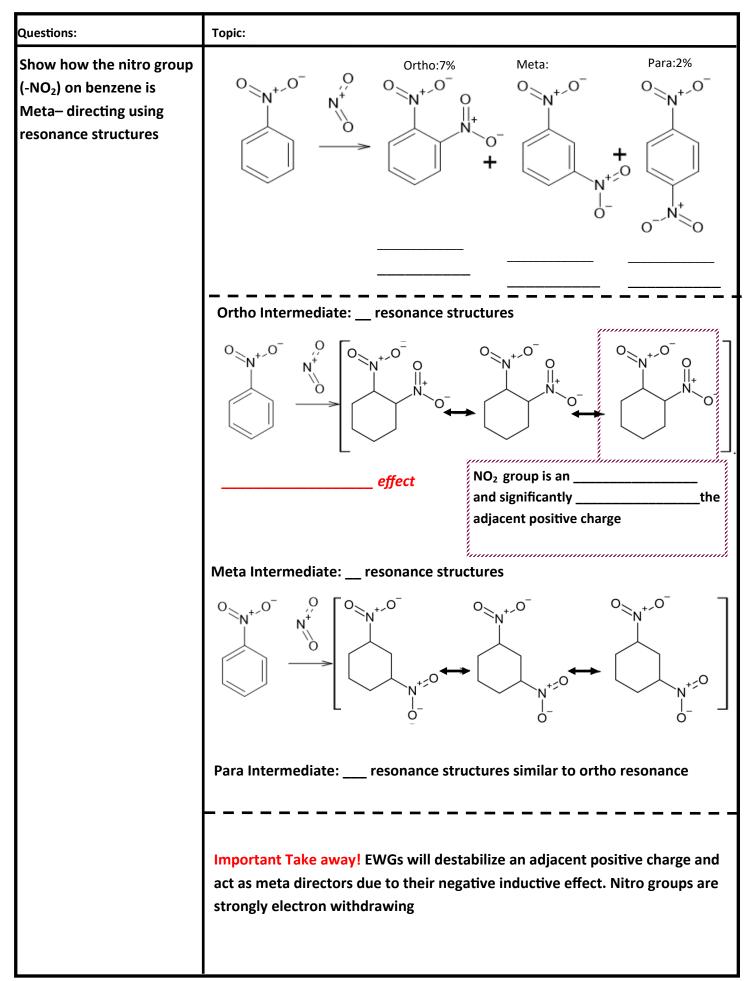
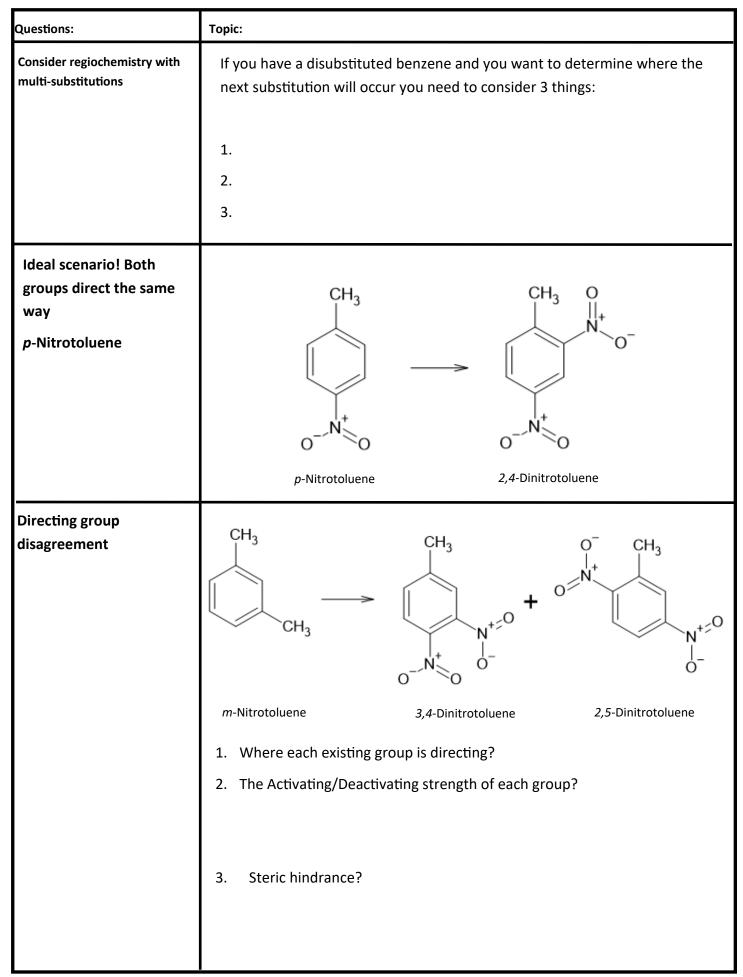

Topic/ Objective:	Name: Prof. Hannah Daley	
Chapter 23: Aromatic Substitution 2 Reactions of substituted Benzenes	Class: Organic Chemistry II	
	Date: 02/16/2024	

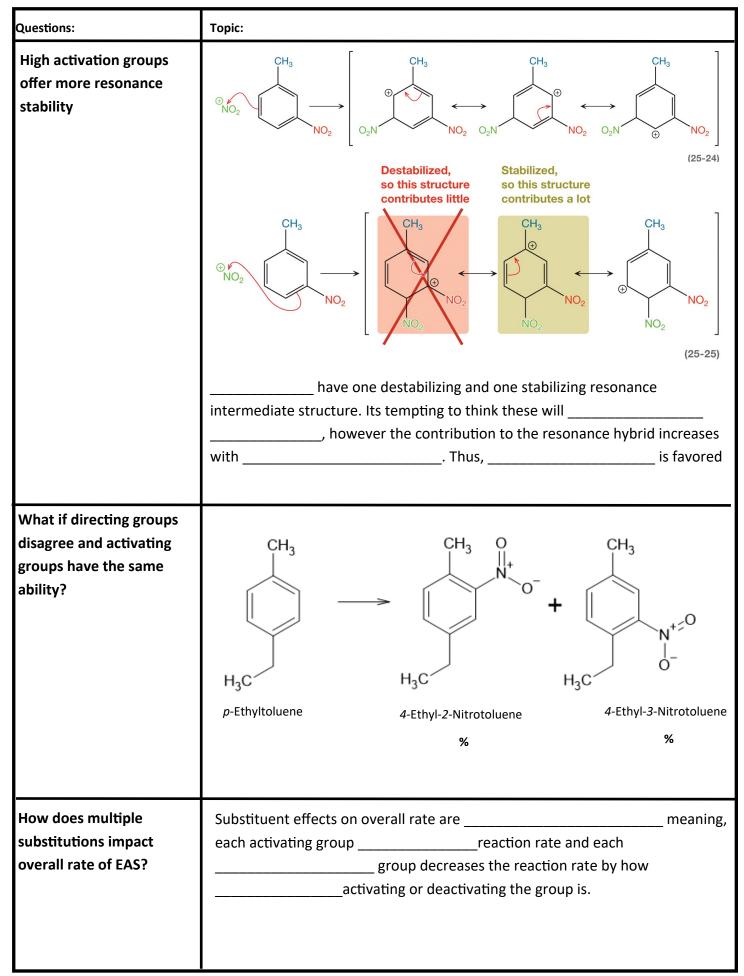

Essential Questions and Themes:

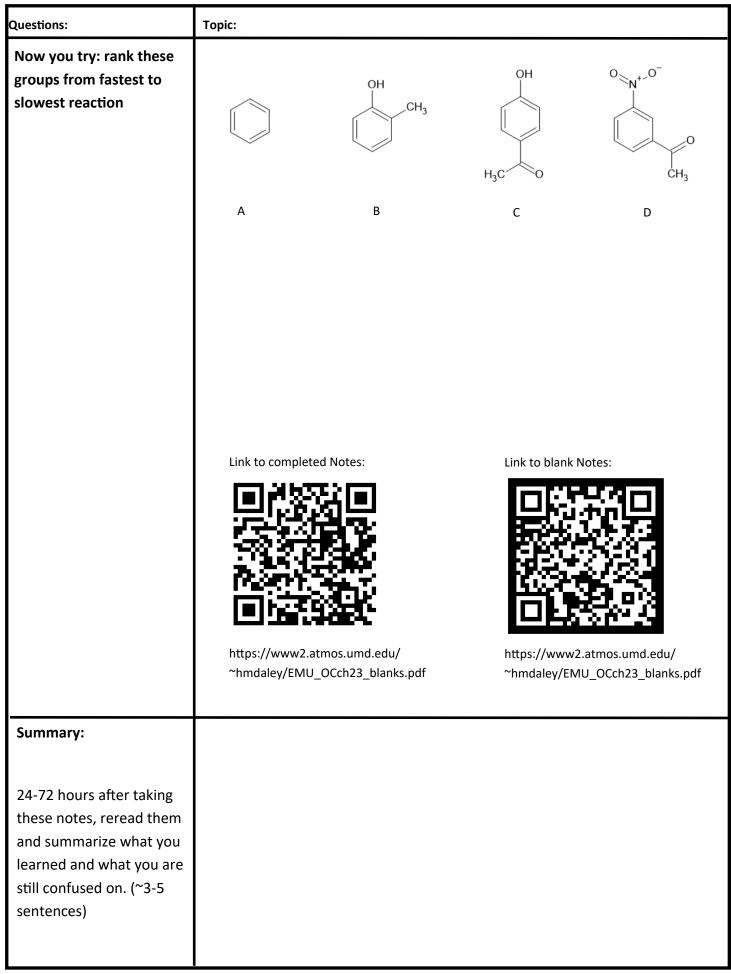

Regiochemistry (defining Ortho/Para and Meta directors), Inductive and resonance effects from substituents, Deactivating Vs Activating Groups, and impacts of substituent on the outcome of EAS reactions

Subheadings -> Questions	Notes:
Review the general reaction of electrophilic aromatic substitution to get a monosubstituted benzene	$H \xrightarrow{H} H \xrightarrow{H} \xrightarrow{H}$
Disubstituted benzene regiochemistry:	A monosubstituted benzene has three chemically distinct hydrogens that can lead to three different possible products:disubstituted benzene. Sub +E +E + + + + + + + + + +

Electronegativity by Pauling Scale H C S I Br N Cl O F 2.20 2.58 2.66 2.96 3.04 3.16 3.44 Negative inductive effect (- 1) examples: Cl Chlorine is	What is the inductive effect? theacross a sigma bond that arises due to a(EN) of surrounding atoms				
2.20 2.58 2.66 2.96 3.04 3.16 3.44 Negative inductive effect (- I) examples: Chlorine is					
Negative inductive effect (- I) examples: Cl Chlorine is Halogens electrons across the sigma towards it, inducing a towards it, inducing a charge on the ber ring and the electron density of the system "Electron Group (EWG)" Also, if the substituent bond connecting to the ber ring is fully or partially					
Chlorine is Halogens electrons across the sigma towards it, inducing a charge on the ber ring and the electron density of the syst "Electron Group (EWG)" Also, if the substituent bond connecting to the ber ring is fully or partially, the substituent					
Halogens electrons across the sigma towards it, inducing a charge on the ber ring and the electron density of the sys "Electron Group (EWG)" Also, if the substituent bond connecting to the ber ring is fully or partially, the substituent					
towards it, inducing a charge on the ber ring and the electron density of the syst "Electron Group (EWG)" Also, if the substituent bond connecting to the ber ring is fully or partially, the substituent					
O O O O O O O O O O O O O O O O O O O					
Also, if the substituent bond connecting to the ber ring is fully or partially, the substituent	tem.				
ring is fully or partially, the substituen					
from the ring.					
Ex: nitro(-NO ₂), carbonyl (-CO), and cyano (-CN) gro	ups				
Positive inductive effect (+ I) examples:	· — — -				
O ⁻ O ⁻ has a					
Anions electrons across the sigma bond awa	-				
it, inducing a charge on the benze and the electron density of the syst	-				
"Electron Group (EDG)"					
$H \rightarrow H$ Also, if the substituent bond connecting to the b					
electrons to the ring.	ring is fully or partially, the substituent will				
Ex: alkyl(-R), alkoxy(-OR), and amine(-CNHR) group	Ex: alkyl(-R), alkoxy(-OR), and amine(-CNHR) groups				
Important Takeaways! The inductive effect is negative (-I) when the substituent electron withdrawing group (halogen or adjacent positive charge). The inductive is positive (+I) when the substituent is an electron donating group (anion or adja negative charge). The inductive effect is distance dependent, decreasing rapidly distance, so it has a stronger influence on the Ortho and Meta positions.	e effect acent				




Questions:	Topic:				
Simple guide to determining disubstitution regiochemistry	are additional stal 2. Substituer	directors, ole resonance s its attached by <u>directors</u> if ce structure, b	, because the _ structures. an atom with _ ^f they are	at least one intermedia lone pair of 	ate will have one electrons are: There is not an
	if it is bonded resonance stru resonance stru Key takeaway (lower in ener	to highly ucture AND the ucture with the '! The major pr gy) arenium in	e electron with e oduct of EAS is termediate sta	t of attachment is e T drawing group atta the one with the r te. To determine t	here is no extra ached makes the nost stable his, one most
	consider: (1) The substituents (2) Resonance structure and (3) how the reaction is formed.				
Activating and Deactivating groups determine the rate of EAS reaction	Activating groups are substituent groups that towards electrophilic aromatic substitution (EAS). Activating groups make EAS occurs relative to unsubstituted benzene. Deactivating groups are substituent groups that towards electrophilic aromatic substitution (EAS), so EAS occurs				
	Substituent	Resonance (+/-R) effect	Inductive (+/- I) effect	Activating or Deactivating	Ortho/Para or Meta
	-0 ⁻				
	-OH				
	-Cl				
	-NO2				
	CO-OR (ester)				


Questions:	Topic:			
	Important Take aways!			
	 Activating /Deactivating groups determine speed of reaction. Activating = Deactivating = 			
	 Activating Groups are generallydirectors and Deactivating groups are generallydirectors (except for halogens) 			
	 3) If resonance and inductive effect are completing: tends to have a greater impact. 			
Textbook table references for activating and deactivating group	TABLE 25-2 Relativ Nitratio Monos Benzer	on of ubstituted	HNO ₃ H ₂ SO ₄ H ₂ SO ₂	
relative reaction rates	Substituent	Relative Rate	Type of Group	
	NH ₂	a	Strongly activating	1
	—ОН	1000	Strongly activating	
	CH ₃	25	Weakly activating	
	— H (benzene)	1 (reference)	_	
	— F	0.84	Weakly deactivating	action
	—-I	0.45	Weakly deactivating	e of re
	—CI	0.15	Weakly deactivating	sing rai
	—Br	0.11	Weakly deactivating	Increasing rate of reaction
	CO ₂ Et	0.0037	Moderately deactivating	
	NO ₂	6 × 10 ⁻⁸	Strongly deactivating	
	—• N(CH ₃) ₃	1.2 × 10 ⁻⁸	Strongly deactivating	
			der nitration conditions. The NH ₂ group ophilic aromatic substitution reactions.	-
	Strongly Activating Groups:	-0 ⁻ , -NH ₂ , -NR ₂ , -OH, -		
	Moderately Strong Activating Groups: amide (-NHCOR/-NHCOH)			
	Weakly Activating Group: A	lkyl groups (-R)		
	——————————————————————————————————————			
	Weakly Deactivating: halog	ens (-Cl, -Br, -I)		
	Moderately Deactivating: Esters(-COOR), carboxylic acid (-COOH), Ketones (-COR), aldehydes (-CHO)			
	Strongly Deactivating: nitril trimethyl amine(-N(CH ₃) ₃ ⁺)	e (-CN), nitro (-NO2), s	sulfonic acid (-SO ₂ OH), an	nine (- NH_3^+),

Questions:	Торіс:
If substituent group is deactivating, disubstitution is slower and more difficult	If the substituent group is a deactivating group, the second substitution will be difficult requiring a to increase the electrophile. Ex. $I_{\text{Ex.}}$ I_{Sigma} $I_{$
	The ring is deactivated, so a stronger acid is necessary to carry out a second nitration. $\begin{array}{c} & & \\ & & $
Substituent impacts on Friedel-Crafts reactions	 Friedel-Crafts reactions do not readily take place groups. Why? Deactivation groups slow the reaction and the cation electrophile from Friedel crafts reactions will before the ring attacks it. Friedel-Crafts alkylations are subject to polyalkylation Why? Because alkyl groups and each alkyl group added will the overall reaction rate and make subsequent alkylations Solution! First add an acyl group (moderately deactivating) to the ring, then reduce C=O to CH₂ with an acid.
	8

Questions:	Торіс:
Impact of reaction conditions on substituent effects	The substituents effect on regiochemistry (ie. orth-, meta-, and para-) and reaction rate is not always absolute. The reaction conditions impact the regiochemistry $ \begin{array}{c} & & \\ & $
	$ \begin{array}{c} O^{-} \\ H \\ $
	$ \begin{array}{c} O^{-} \\ H^{-} $
There are two ways to slow this reaction down and induce single bromination	1. Add a to make the substituent less activating Acetic acid will of the solution, resulting in an increased concentration of H ⁺ substantially the concentration of phenoxide anion (a very powerful group). The only route available is through phenol which is slower and after a single bromination $ \begin{array}{c} & \downarrow \\ & \downarrow \\ & \downarrow \\ & H_2O, \end{array} \xrightarrow{OH} + \downarrow \\ & \downarrow \\ & \downarrow \\ & H_2O, \end{array} $ 2. Decreasing the and adding a nonpolar solvent instead of water
	 2. Decreasing the and adding a nonpolar solvent instead of water A nonpolar solvent, such as CS₂, will not aid in the separation of Br₂ and will available for the reaction, making it difficult to form two bromine additions. Similarly, if the substituent is a and is likely to bond with a H and gain a (ex. Amino group) . Increasing the pH can lead to a, group that avoids Friedel– Crafts reaction.

