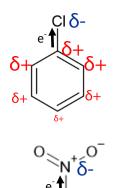
Topic/ Objective:	Name: Prof. Hannah Daley		
Chapter 23: Aromatic Substitution 2 Reactions of substituted Benzenes	Class: Organic Chemistry II		
	Date: 02/16/2024		

Essential Questions and Themes:

Regiochemistry (defining Ortho/Para and Meta directors), Inductive and resonance effects from substituents, Deactivating Vs Activating Groups, and impacts of substituent on the outcome of EAS reactions

Subheadings -> Questions	Notes:
Review the general reaction of electrophilic aromatic substitution to get a monosubstituted benzene	$H \rightarrow H \rightarrow$
Disubstituted benzene regiochemistry: Ortho-, Meta-, and Para– structures	A monosubstituted benzene has three chemically distinct hydrogens that can lead to three different possible products: Ortho-, Meta-, and Para- disubsti- tuted benzene. Ortho Meta Para Sub $\downarrow \downarrow $


Inductive effect on benzene substituent groups

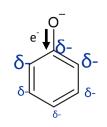
What is the inductive effect? the push/pull of electrons across a sigma bond that arises due to a difference in electronegativity (EN) of surrounding atoms

Electronegativity by Pauling Scale

н	С	S	I	Br	N	Cl	0	F
2.20	2.55	2.58	2.66	2.96	3.04	3.16	3.44	3.98

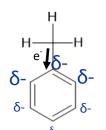
Negative inductive effect (- I) examples:

Chlorine is highly electronegative (EN) and <u>LOVES</u> electrons! Carbon EN < Chlorine EN


Halogens **pull** electrons across the sigma bond towards it, inducing a partial positive charge on the benzene ring and <u>decreasing the electron</u> density of the system.

"Electron Withdrawing Group (EWG)"

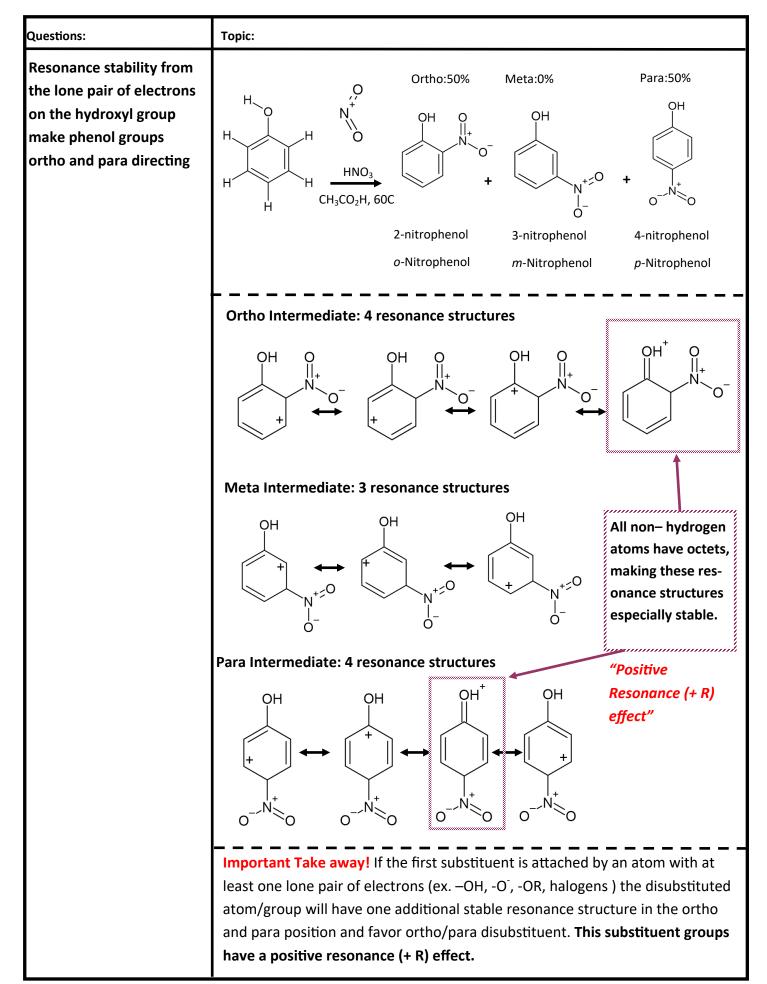
Also, if the substituent bond connecting to the benzene ring is fully or partially positive, the substituent will withdraw electrons from the ring.

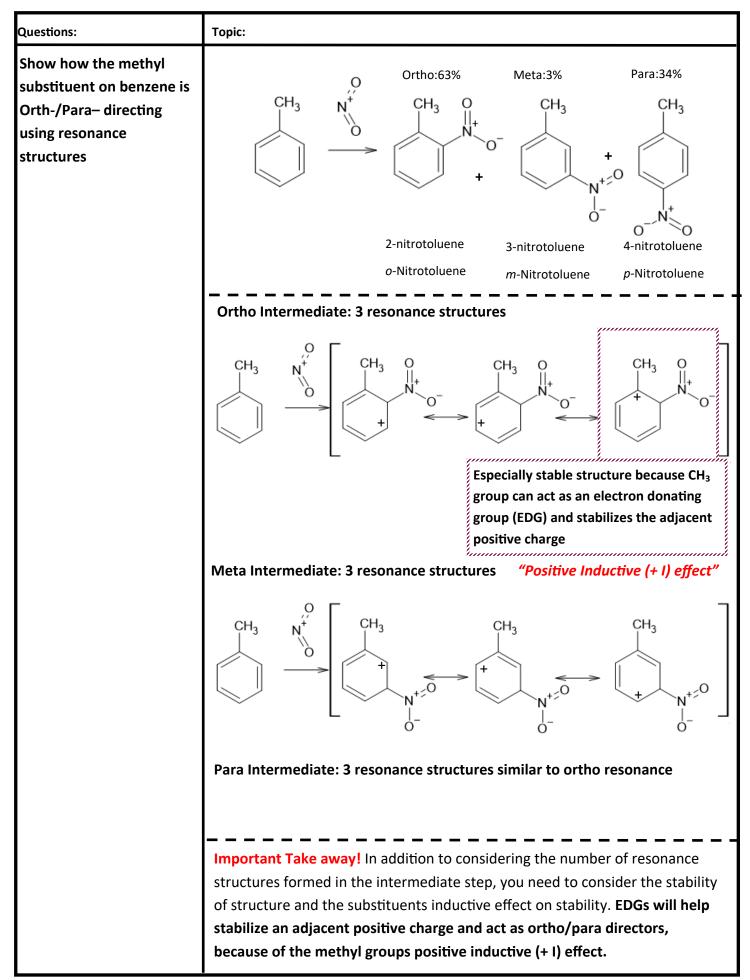

Ex: nitro(-NO₂), carbonyl (-CO), and cyano (-CN) groups

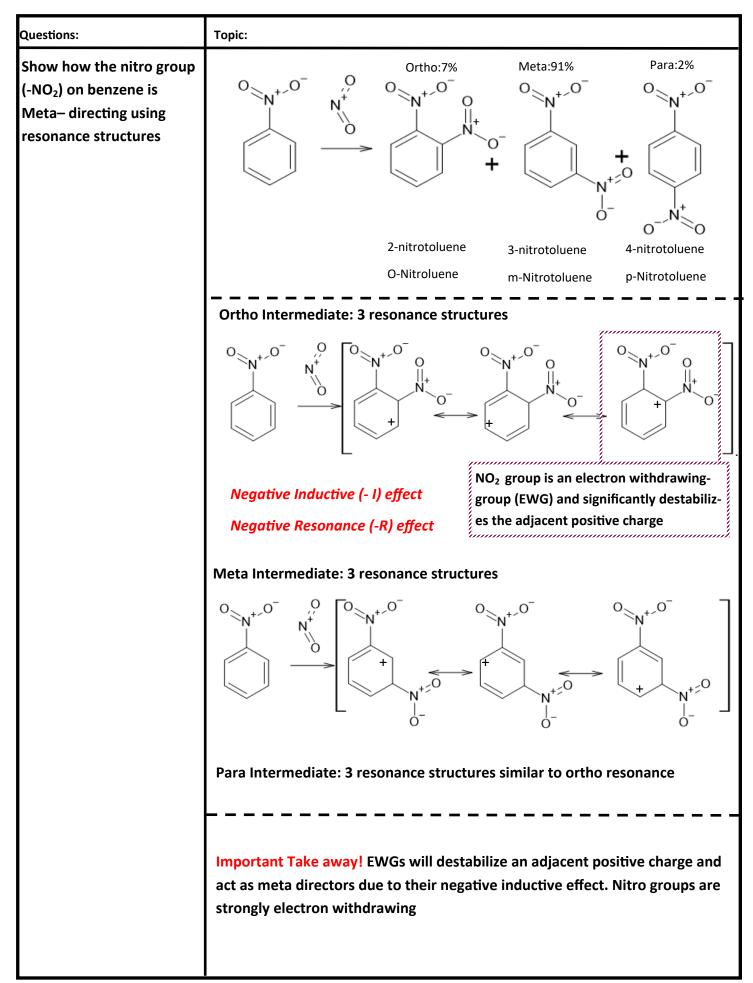
Positive inductive effect (+ I) examples:

 O^{-} has a negative charge and <u>DOES NOT</u> want any more electrons!

Anions **push** electrons across the sigma bond away from it, inducing a partial negative charge on the benzene ring and <u>increasing the electron density</u> of the system.

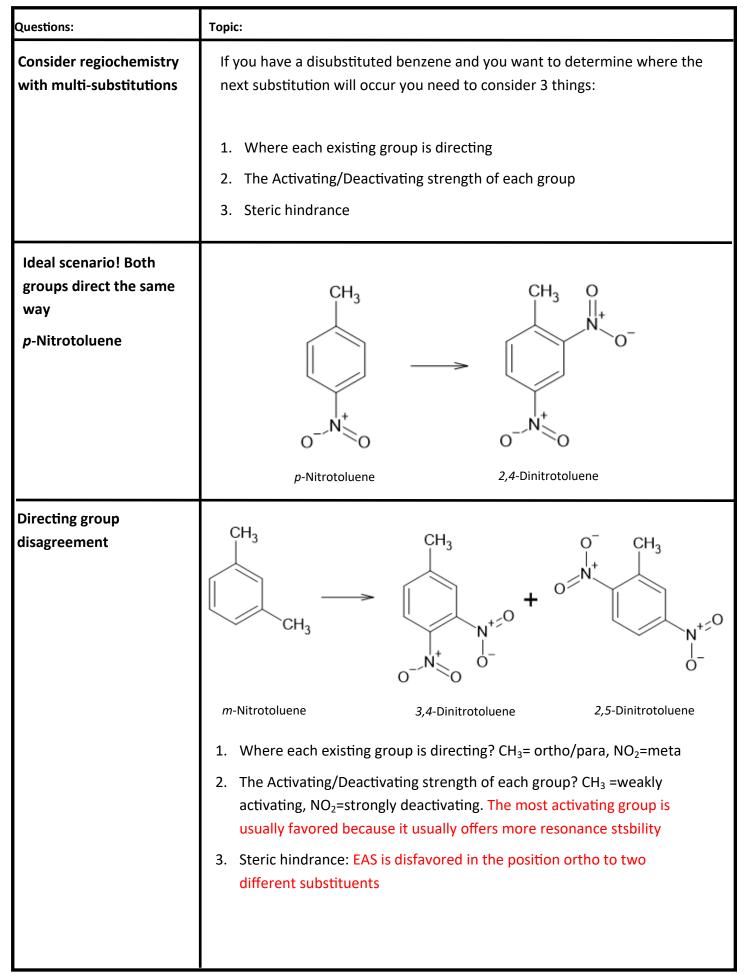



"Electron Donating Group (EDG)"

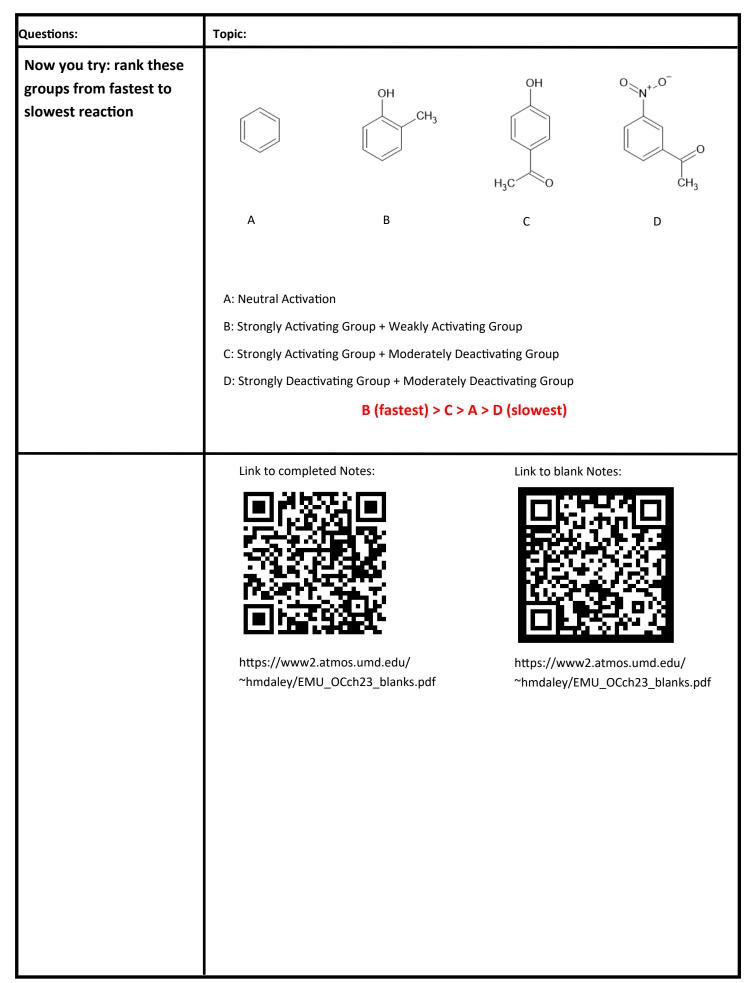

Also, if the substituent bond connecting to the benzene ring is fully or partially negative, the substituent will donate electrons to the ring.

Ex: alkyl(-R), alkoxy(-OR), and amine(-CNHR) groups

Important Takeaways! The inductive effect is negative (-I) when the substituent is an electron withdrawing group (halogen or adjacent positive charge). The inductive effect is positive (+I) when the substituent is an electron donating group (anion or adjacent negative charge). The inductive effect is distance dependent, decreasing rapidly with distance, so it has a stronger influence on the Ortho and Meta positions.



Questions:	Торіс:					
Simple guide to determining disubstitution	1. Substituents attached by an atom with at least one lone pair of electrons are ortho/para director (Ex: OH,F,Cl,Br), which means the ortho/para intermediate will have one additional stable resonance structures.					
regiochemistry	2. Substituents attached by an atom with no lone pair of electrons are:					
	• Ortho/para directors if they are alkyl groups (CH ₃ , CH ₂ CH ₃ ,etc). There is not an extra resonance structure, but the alkyl group is electron-donating and stabilizes the adjacent positive charge.					
	• Mets directors if the atom at the point of attachment is electronegative or if it is bonded to highly electronegative atoms (Ex: NO2, CN,N(CH ₃) ₃ ,CO ₂ H). There is no extra resonance structure AND the electron withdrawing group attached makes the resonance structure with the adjacent positive charge destabilized					
	Key takeaway! The major product of EAS is the one with the most stable (lower in energy) arenium intermediate state. To determine this, one most consider: (1) The substituents inductive effect (EDG or EWG) (2) Resonance structure amount and stability (3) how fast the reaction is formed					
Activating and Deactivating groups determine the rate of EAS reaction	 Activating groups are substituent groups that activate the benzene ring towards electrophilic aromatic substitution (EAS). Activating groups make EAS occurs <u>faster</u> relative to unsubstituted benzene. Deactivating groups are substituent groups that deactivate the benzene ring towards electrophilic aromatic substitution (EAS), so EAS occurs <u>slower</u> relative to unsubstituted benzene. 				ups make	
					<u>slower</u>	
	Substituent	Resonance	Inductive	Activating or	Ortho/Para	
		(+/-R) effect	(+/- I) effect	Deactivating	or Meta	
	-0 ⁻	+R	+I (EDG)	Str. Activating	o/p	
	-OH	+R	-I (EWG)	Str. Activating	o/p	
	-Cl	+R	-I (EWG)	W. Deactivating	o/p	
	-NO2	-R	-I (EWG)	Str. Deactivating	m	
	CO-OR (ester)		-I (EWG)	Deactivating	m	


Questions:	Topic:					
	Important Take aways!					
	1) Activating (fast) and Deactivating (slow) groups determine speed of reaction					
	2) Activating Groups are generally ortho/para directors and Deactivating groups are					
	generally meta directors (except for halogens)					
	3) If resonance and inductive effect are completing: resonance effect tends to have a					
	greater impact.					
Textbook table references for activating and deactivating group	TABLE 25-2 Relativ Nitrati Monos Benze	ion of substituted	Stib HNO3 H2SO4			
relative reaction rates	Substituent	Relative Rate	Type of Group			
	NH ₂	a	Strongly activating	1		
	—OH	1000	Strongly activating			
	CH ₃	25	Weakly activating			
	— H (benzene)	1 (reference)	_			
	F	0.84	Weakly deactivating	Increasing rate of reaction		
	I	0.45	Weakly deactivating	te of r		
	—-CI	0.15	Weakly deactivating	ing ra		
	— Br	0.11	Weakly deactivating	Increas		
	CO ₂ Et	0.0037	Moderately deactivating			
	NO ₂	6 × 10 ⁻⁸	Strongly deactivating			
	—_N(CH ₃) ₃	1.2 × 10 ⁻⁸	Strongly deactivating			
			nder nitration conditions. The $\rm NH_2$ group rophilic aromatic substitution reactions.			
	Strongly Activating Groups: -O ⁻ , -NH ₂ , -NR ₂ , -OH, -OR					
	Moderately Strong Activat	ing Groups: amide (-N	HCOR/-NHCOH)			
	Weakly Activating Group: Alkyl groups (-R)					
	——————————————————————————————————————					
	Weakly Deactivating: halog	gens (-Cl, -Br, -I)				
	Moderately Deactivating: Esters(-COOR), carboxylic acid (-COOH), Ketones (-COR), aldehydes (-CHO)					
	Strongly Deactivating: nitri trimethyl amine(-N(CH ₃) ₃ ⁺)	ile (-CN), nitro (-NO2),	sulfonic acid (-SO ₂ OH), an	nine (-NH ₃ ⁺),		

Questions:	Торіс:
If substituent group is deactivating, disubstitution is slower and more difficult	If the substituent group is a deactivating group, the second substitution will be slower and more difficult requiring a stronger acid to increase the electrophile. Ex. Ex. $conc HNO_3$ 15 °C NO_2 NO_2 I5 °C NO_2
	The ring is deactivated, so a stronger acid is necessary to carry out a second nitration. $ \begin{array}{c} & & & \\ & & & &$
Substituent impacts on Friedel-Crafts reactions	 Friedel-Crafts reactions do not readily take place on moderately or strongly deactivating groups. Why? Deactivation groups slow the reaction and the cation electrophile from Friedel crafts reactions will degrade or polymerize before the ring attacks it.
	2. Friedel-Crafts alkylations are subject to polyalkylation Why? Because alkyl groups are activating and each alkyl group added will increase the overall reaction rate and make subsequent alkylations faster.
	Solution! First add an acyl group (moderately deactivating) to the ring, then reduce C=O to CH ₂ with an acid.

Questions:	Торіс:
Impact of reaction conditions on substituent effects	The substituents effect on regiochemistry (ie. orth-, meta-, and para-) and reaction rate is not always absolute. For some substituents, the reaction conditions play a role $ \begin{array}{c} $
	$ \begin{array}{c} O^{-} \\ \hline \\ $
	$ \begin{array}{c} O^{-} \\ H^{-} $
There are two ways to slow this reaction down and induce single bromination	1. Add a weak acid to make the substituent less activating Acetic acid will decrease the pH of the solution resulting in an increased concentration of H ⁺ substantially decreasing the concentration of phenoxide anion (a very powerful activating group). The only route available is through phenol which is slower and easier to stop after a single Bromo nation
	 H₂O, CH₃CO₂H 2. Decreasing the temperature and adding a nonpolar solvent instead of water A nonpolar solvent, such as CS₂, will not aid in the separation of Br₂ and will reduce the amount of bromines available for the reaction, making it difficult to form two bromine additions.
	Similarly, if the substituent is a strong Lewis Base and is likely to bond with a H and gain a positive charge (ex. Amino group) . Increasing the pH can lead to a meta-directing, deactivated group that avoids Friedel– Crafts reaction.

Questions:	Topic:
High activation groups offer more resonance stability	$\begin{array}{c} \begin{array}{c} CH_{3} \\ \oplus \\ NO_{2} \end{array} \end{array} \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ \oplus \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ O_{2}N \end{array} \right) \left(\begin{array}{c} CH_{3} \\ O_{2}N \end{array} \right) \left(\begin{array}{$
	(25-24) Destabilized, so this structure contributes little $figure (H_3)$ $figure (H_3)$
What if directing groups	
disagree and activating groups have the same ability	$ \begin{array}{c} CH_{3} \\ H_{3}C \end{array} \xrightarrow{CH_{3}} O \\ O \\ H_{3}C \end{array} \xrightarrow{CH_{3}} O \\ O$
	p-Ethyltoluene4-Ethyl-2-Nitrotoluene4-Ethyl-3-Nitrotoluene(56%)(44%)Nearly equal influence!
How does multiple substitutions impact overall rate of EAS?	Substituent effects on overall rate are ~ Additive meaning, each activating group increases reaction rate and each deactivating group decreases the reac- tion rate by how strongly activating or deactivating the group is.

