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Abstract

The Kalman filter combines forecasts and new observations to obtain an estimation which is optimal in the sense of a
minimum average quadratic error. The Kalman filter has two main restrictions: (i) the dynamical system is assumed linear
and (ii) forecasting errors and observational noises are projected onto Gaussian distributions. Here, we offer an important
generalization to the case where errors and noises have heavy tail distributions such as power laws and Lévy laws. The main tool
needed to solve this “Kalman–Lévy” filter is the “tail-covariance” matrix which generalizes the covariance matrix in the case
where it is mathematically ill-defined (i.e. for power law tail exponents µ ≤ 2). We present the general solution and discuss
its properties on pedagogical examples. The standard Kalman–Gaussian filter is recovered for the case µ = 2. The optimal
Kalman–Lévy filter is found to deviate substantially from the standard Kalman–Gaussian filter as µ deviates from 2. As µ
decreases, the filter favors more strongly the better one of the forecast and the observation, based on the tail-covariance matrix
because a small exponent µ implies large errors with significant probabilities. In terms of implementation, the price-to-pay
associated with the presence of heavy tail noise distributions is that the standard linear formalism valid for the Gaussian case
is transformed into a nonlinear matrix equation for the Kalman–Lévy filter. Direct numerical experiments in the univariate
case confirms our theoretical predictions. © 2001 Published by Elsevier Science B.V.
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1. Introduction and motivation

The Kalman filter provides the optimal resolution of the problem of data assimilation under the hypothesis that
the system observables evolve according to linear maps, are linearly related to the true variables and that the noise
acting on the true dynamics and the measurement errors are mutually uncorrelated and Gaussian.

Two main limitations restrict the performance of the Kalman filter:

• the nonlinearity of the real system dynamics;
• the non-normality of the noises.
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The first item has been addressed partly by using so-called “extended” Kalman filters that amount essentially to
perform local linearizations [18].

With respect to the non-normality of the noises, the general condition for using the Kalman filter is that their
covariance functions exist, which is satisfied for noise density distributions decaying faster than 1/ω3. When the
noise distributions are not Gaussian, the validity of the Kalman filter relies on the existence of a central limit theorem
for state estimators, which exists when the random terms in the model have arbitrary distribution with tail decaying
faster than 1/ω3 [25]. For practical applications, the existence of the central limit theorem does not suffice as a finite
observation time may lead to large deviations from the asymptotic results [24]. The knowledge of convergence rates
in the central limit theorem are then necessary for the development of tests of the validity of the model [2].

Our purpose here is to extend these results to the regime where the existence of the covariance function is not
warranted as occurs for Lévy distributions of noises, or when the covariance functions do exist but the convergence
to the asymptotic result given by the central limit theorem is extremely slow making the asymptotic result useless in
practice, as occurs for power law distributions [24]. In order to illustrate this idea, consider the sum ofN identically
independent distributed random variables, with a power law probability density function 1/ω1+µ with exponent
µ > 2. Since the variance σ 2 is finite, the central limit theorem applies and the distribution of the sum converges
to the Gaussian law with standard deviation ≈ σ

√
N . For N finite, the Gaussian law only describes the central

part of the distribution of the sum, up to a cross-over S0 ≈ σ√
N lnN [24]. Beyond S0, the distribution of the sum

is a power law with the same exponent µ and the weight in probability of this power law tail decays slowly. For
instance, for µ = 3, the weight in probability of the power law tail decays as ∝ 1/(

√
N ln3/2N) as N increases.

In practice, consider the three sample sizes N = 102, 104 and 106. The corresponding cross-over values are,
respectively, S0 ≈ 2.1, 3 and 3.7 times the standard deviation of the central Gaussian part of the distribution of
the sum. These estimates suggest that even if the general condition for using the Kalman filter is satisfied for noise
density distributions decaying faster than 1/ω3, the Gaussian (or covariance) approach, which is optimal in the
linear least-variance estimation, is not necessarily optimal when relatively large fluctuations (of size equal to two
standard deviations or larger) occur.

We thus propose to explore how the optimal Kalman filter is modified when the objective is to minimize, not
the variance of the error estimation but a natural measure of the large errors, namely the tail of the distribution
of the Euclidean norm of the errors. Our approach thus develops an alternative class of linear unbiased estimators
different from the standard linear least-variance estimation. Our emphasis is in trying to control and minimize the
large (and rare) errors, with the penalty that the variance, if it exists, will be sub-optimal compared to the standard
linear least-variance estimation. In this goal, we focus our attention on noises in the observable and the unobservable
variables both distributed with a power law tail of fixed exponent µ and known amplitudes (scale factors). This
assumption offers a well-defined theoretical limit of “large fluctuations”, putting the emphasis on the complement
to the “small noise” limit captured by the standard linear least-variance approach.

In addition to its pure theoretical interest, we observe that many systems in Nature are claimed to exhibit power
law distributions [24] and the present results may thus have direct application. Power law distributions have been
found to quantify the size–frequency Gutenberg–Richter distribution of earthquakes, of hurricanes [20], of volcanic
eruptions, of floods, of meteorite sizes and so on. The distribution of seismic fault lengths is also documented to
be a power law with exponent µ 	 1. In the insurance business, recent studies has shown that the distribution of
losses due to business interruption resulting from accidents [26,27] is also a power law with µ 	 1.

Several previous works have addressed related issues. Le Breton and Musiela’s work [16] is closest to ours but
has limitations: (i) it is based on a continuous time description of the dynamical and observation processes and is
thus more difficult to apply to concrete situations; (ii) it minimizes the difference between the true dynamics and a
filtered observation in the Lµ-norm sense where µ is the index exponent of the Lévy distributions; in other words
it relies on an explicit solution of the dynamics; in this way, Le Breton and Musiela circumvent the two delicate
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questions of generalizing the covariance matrix and of choosing the objective function to optimize; (iii) it does not
really address the genuine Kalman problem which consists in mixing forecasts and observations. Recently, Ahn and
Feldman [1] have proposed a filter for the case where the signal is Gaussian while the observation noise is a Lévy
process. Their filter is optimal in the sense of minimizing the L2 error, i.e. the distance between the true dynamics
and the filter output. This choice of the L2 is realizable in their case because the signal is assumed Gaussian and
the integrability assumption is thus satisfied. The problem, however, is that the optimal filter will depend in general
upon the choice of the norm that measures the prediction error. In addition, due to the rather intractable nonlinear
recursive solution they obtain, they propose a sub-optimal filter for numerical purpose.

Our approach circumvents these difficulties by focusing on large errors. Our goal is thus to minimize the large
errors between the analysis (obtained by assimilation of observation with prediction) and the true trajectory. With this
choice, the technical problem we have to solve is to characterize the tails of error distributions, which are a function of
the tail of the distributions of individual dynamical variables and of noises and of their mutual dependence. In order
to determine these dependencies, we propose to use the concept of a “tail-covariance” matrix that generalizes the
standard covariance matrix of the analyzed signal to the case of power laws and Lévy distributions. Tail-covariance
matrices are constructed as the matrices of signed scale factors (the scale factors being defined as the global
amplitudes of the power law tails) of the distribution of all the products of the system and forecasted variables. The
main idea is thus to replace the characterization of errors and of correlations by the ensemble of distributions of
the products of all possible pairs of variables. Our approach thus replaces a reasoning based on the second centered
moments into one based on the tails of the distribution of deviations from true values. It is shown that the natural
error amplitude to be minimized is the trace of the tail-covariance, which is a straightforward extension of the
standard approach which determines the Kalman filter by minimizing the average errors quantified by the trace of
the covariance matrix of the analyzed signal.

This paper is constructed in a pedagogical manner, from the simple univariate filter problem to the full multivariate
Kalman filter. In Section 2, we formulate the problem for the univariate filter with power law noises, corresponding
to the situation where only novel observations are assimilated without mixing with a dynamical forecast. A detailed
discussion is offered to compare the power law case with the standard Gaussian case. In Section 3, we generalize this
problem to the case of multivariate estimators. In Section 4, we address the Kalman problem of mixing both forecasts
and observations with power law and Lévy law errors and develop our general solution. The special univariate case
is studied in great detail by numerical experiments to contrast the performances of the Kalman–Lévy (KL) with
those of the standard Kalman–Gaussian (KG) filter.

2. Univariate estimator: principle of estimation with power laws

2.1. Formulation of the problem

Take two samples xf and xo of an observable state variable x; the superscripts {·}f,o correspond to forecast and
observation of the data assimilation system, respectively. The two samples are contaminated by independent noise
ωf and ωo. The estimate x̂ of x is sought as a linear combination of xo and xf with the corresponding positive
weights K f and Ko

x̂ = K fxf +Koxo. (1)

One of our main goals is to determine the optimal weights so as to minimize the resulting uncertainty of x̂. We
make two assumptions concerning samples in this study.

The first assumption that the two samples are unbiased

〈xf 〉 = 〈xo〉 = 〈x〉, (2)
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where 〈z〉 is the expectation of z. Expectation of the state variable 〈x〉 is not known a priori. By requiring further
that the estimate should be unbiased 〈x̂〉 = 〈x〉, we obtain a relation between the two weights K f +Ko = 1 which
allows us to rewrite (1) as

x̂ = xf +Ko(xo − xf), (3)

and therefore reduces the problem to the determination of a single unknown 0 ≤ Ko ≤ 1. This expression (3)
can be interpreted as a filtering of the observed data xo into the dynamical forecast xf by a weighted increment
Ko(xo − xf).

The second assumption is that both sample errors

ωf,o = xf,o − x, (4)

are distributed according to a power law as defined in (5), or according to a Lévy law as defined in Appendix A,
with the same exponent µf,o ≡ µ. The important property for our purpose is that the tails of the probability density
functions of the two sample errors are independent and given by

P(ωf,o) 	 C
f,o
±

|ωf,o|1+µ , |ωf,o| → ±∞, (5)

where the subscript {·}± reflects that the tail distribution can be asymmetric depending on the sign of ωf,o. In this
study, we focus on the symmetric case, i.e., Cf,o

± ≡ Cf,o.
The family of power laws is characterized by two parameters, the exponent µ and the ‘scale factor’ C. The

exponent µ, on one hand, controls the decay rate of the probability as well as its scaling (or self-similar) properties.
The scale factor C, on the other hand, controls the overall amplitude of the power law tail, i.e., the larger it is,
the more important is the power law tail. More precisely, if the power law tail (5) holds for ω larger than some
minimum value ωf,o

min, the weight in probability of the power law, i.e. the probability that ω is larger than ωf,o
min is

(Cf,o/µ)(ω
f,o
min)

−µ. As shown in Appendix A in the case of Lévy laws, the scale parameter fully characterizes the
distribution for all variations (and not only in the tail).

Notice that (5) can be rewritten in terms of the dimensionless variable ω/C1/µ with the superscripts dropped for
simplicity

P(ω) dω 	 1

|ω/C1/µ|1+µ d
( ω

C1/µ

)
, |ω| → ±∞, (6)

showing that C1/µ is the characteristic scale of the self-similar fluctuations of ω. For µ ≤ 2 (resp. µ ≤ 1),
the variance (resp. mean) is not defined mathematically. We shall see the effect of these µ-dependent properties
throughout this study.

Using the continuation property given in [7] (Problem 15 of Section 12) on the characteristic function of dis-
tributions with power tails, we obtain the following results. Let us call a µ-variable a variable with a distribution
function with a power law tail. Then, we have the following:

1. If ωi and ωj are two independent µ-variables characterized by the scale factors C±
i and C±

j , then ωi + ωj is

also a µ-variable with C± given by C±
i + C±

j .
2. If ω is a µ-variable with scale factor C, then p × ω (where p is a real number) is a µ-variable with scale factor
pµC. If p < 0 and the distribution of ω is symmetric, then p × ω is a µ-variable with scale factor |p|µC.

3. If ω is a µ-variable, then sign(ω)|ω|q , with q > 0, is a µ/q-variable.
4. If ωi and ωj are two independent µ-variables, then the product x = ωiωj is also a µ-variable up to logarithmic

corrections.
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Using the rules (1) and (2), we find that the distribution of x̂ is also a power law (5) with the same exponent µ,
but with an adjusted scale factor Ĉ given by

Ĉ = (1 −Ko)µCf + (Ko)µCo. (7)

The expression (7), which is valid for 0 ≤ Ko ≤ 1 such that the scale factors remain positive, can be reduced to the
usual result for the Gaussian distributions [8]

σ̂ 2 = (1 −Ko)2(σ f)2 + (Ko)2(σ o)2, (8)

by setting the exponentµ = 2 and replacing the scale factorsCf,o with (σ f,o)2. We thus see that the scale parameter
C is the generalization of the variance σ 2. The technical reason for this comes from the form of the characteristic
function of a distribution with a power law tail as given in [7] (Problem 15 of Section 12). The situation is even
simpler to discuss when considering symmetric Lévy laws whose characteristic functions read

L̂µ(k) = exp(−aµ|k|µ) for 0 < µ ≤ 2, (9)

where aµ is a constant proportional to the scale parameter C [10]. The important point is that for µ strictly less
than 2, the inverse Fourier transform of L̂µ(k) gives a power law tail, while for µ = 2, it gives a Gaussian law. The
continuity between the expressions (7) and (8) can thus be traced back to that of L̂µ(k) as a function of µ at µ = 2
(see Appendix A for a more formal derivation of this fact).

2.2. Solution

The standard optimal estimation methodology consists in minimizing the variance σ̂ 2 with respect to the weight
factorKo. The solution forKo then gives the best weighting in the sense that we remain with the smallest uncertainty
from the estimation with the novel data, by minimizing the expectation distance between x̂ and x in the mean-square
sense. In order to generalize this methodology to the situation where the errors are distributed according to power
law distributions, we propose the following central idea, i.e., to minimize the scale factor Ĉ with respect to Ko

∂

∂Ko Ĉ = µ[−(1 −Ko)µ−1Cf + (Ko)µ−1Co] = 0, (10)

∂2

∂(Ko)2
Ĉ = µ(µ− 1)[(1 −Ko)µ−2Cf + (Ko)µ−2Co] ≥ 0. (11)

The justification for this procedure is that the uncertainty in the estimation x̂ of x is inescapably distributed according
to a power law distribution with the same exponent µ as a result of the rules (1) and (2) given above. Consequently,
the optimization using the weightKo can be performed only in one purpose, namely to decrease the global amplitude
of the power law controlled by Ĉ, but without be able to distort its shape defined by µ. The optimal weight Ko as
the solution to (10) depends on the value of the exponent µ as follows:

1. For µ > 1, the minimization of Ĉ given by (7) with respect to Ko gives

Ko = 1

1 + λµ/(µ−1)
, (12)

where

λ ≡ (Co)1/µ

(Cf)1/µ
(13)
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is the ratio of the characteristic error size of the two samples as defined in the distribution (6). The resulting
optimal scale factor is

Ca = [λµ/(1 + λµ/(µ−1))µ−1]Cf , (14)

where the superscript {·}a stands for analysis according to the data assimilation convention.
2. For µ < 1, there is no optimal solution for Ko which is not on the boundaries of the search interval and that

minimizes Ĉ, because ∂2Ĉ/∂(Ko)2 < 0 violates the second condition in (11). Physically this implies that the
fluctuations are so wild that the estimation by the weighted average is not a good strategy, and that only the
measurement with the smallest scale factor should be kept for the estimation of x̂

Ko =
{

0 for Co > Cf ,

1 for Co < Cf ,
(15)

and therefore

Ca =
{
Cf for Co > Cf ,

Co for Co < Cf .
(16)

This second caseKo = 1, consisting in trusting observations over the forecast, is known as “direct substitution”
[6]. Here, we have shown that it constitutes indeed the best strategy in the specific case µ ≤ 1 and Co < Cf .
Note that a similar solution applies when the two observations have different exponent µ: full weight Ko = 0
or 1 should be put on the observation with the largest exponent, as it has the smallest fluctuations. This solves
the general case as well.

To make the problem interesting, in this paper, we consider all noise sources to have the same exponent µ, so
that the problem is a “fight between scale-factors”. This case is not as restricted as it would appear at first site: if the
mechanisms leading to the power law tail are intertwined, such as for instance with a common source of underlying
multiplicative noise, it can be shown [11,15] that the power law exponent of the different variables will be the same
as soon as there is non-vanishing coupling between the variables. This case will be investigated in a forthcoming
work.

The following argument retrieves (15). When neither the variance nor the mean exist, and when the minimization
(10) of the scale factor becomes meaningless, the last natural quantity to estimate is the probability that the error
remaining after assimilation is smaller than the error on the two measurements. Suppose that we have the knowledge
that the errors in the second measurement are larger in probability than that of the first measurement, i.e. Co > Cf .
We then require the maximization of the probability Pimprovement that

|(1 −Ko)ωf +Koωo| ≤ |ωf |. (17)

Let us assume that ωf is found positive. Then, this probability is the same as the probability that(
− 2

Ko + 1

)
ωf ≤ ωo ≤ ωf . (18)

The probability for (17) to be verified is thus

Pimprovement = 2
∫ ∞

0
dωf P f(ωf)

∫ ωf

((−2/Ko)+1)ωf
P o(ωo) dωo, (19)

where the factor 2 comes from the counting of the cases where ωf can be found negative. By taking the derivative
of (19) with respect to Ko, we obtain
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dPimprovement

dKo = − 4

(Ko)2

∫ ∞

0
dωf ωfP f(ωf)P o

((
− 2

Ko + 1

)
ωf
)
, (20)

which is always negative. Thus, the probability that the error is reduced is maximum for Ko = 0, i.e. without
assimilating the new observation. Intuitively, the power law tails with exponent µ < 1 are so “wild” that it is
preferable to keep only the observation with the smallest scale factor. A similar derivation holds in the case where
the errors in the second measurement are smaller in probability than that of the first measurement, i.e. Co < Cf :
the probability that the error is reduced is maximum for Ko = 1, i.e. with the assimilation of the new observation
and the rejection of the first one. Again, the observation with the smaller scale factor is preferred and the other is
rejected in this “wild tail” regime µ ≤ 1.

2.3. Properties of the “Lévy-estimator” solution

We now examine the fundamental properties of the optimal weight Ko given by (12) which holds when the
distributions of errors are pure Lévy laws as well as when they only exhibit a power law tail controlling the large
variations. Fig. 1 shows the influence of the tail exponent µ on the optimal weight Ko as a function of the error
ratio λ of the two measurements given by (13). As µ approaches 1, Ko crosses over very sharply from 1 to 0 when
λ goes through 1, recovering the regime µ ≤ 1 given by (15). For larger µ’s, the transition of Ko from 1 to 0 is
smoother as λ varies.

The result (12) for µ = 2 holds not only for the power law distribution itself with λ = (Co)1/2/(Cf)1/2 but also
for the Gaussian law distribution with the weight

KG = 1

1 + (λG)2
, (21)

where the superscript {·}G corresponds to the Gaussian, and

λG ≡ σ o

σ f
(22)

Fig. 1. Dependence of the weight Ko given by (12) to the second measurement as a function of the relative amplitude λ (Eq. (13)) of the noise
of the two measurements: a small (resp. large) value of λ corresponds to a small (resp. large) error on the second measurement relative to the
first one. The different curves correspond to different tail exponents µ.
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is the ratio of the characteristic error size according to the Gaussian law. Such KG minimizes the variance σ̂ 2

given by (8). This is natural since the stable Lévy law with µ = 2 is nothing but the Gaussian law with the exact
correspondence Cf,o = (σ f,o)2 (see Appendix A: there should be no confusion between the exponents µ defining
the characteristic functions of stable laws and the exponents µ of arbitrary power laws). Thus, the curve for µ = 2
in Fig. 1 also applies for the Gaussian law with Ko = KG and λ = λG. The result (12) reflects the impact of the
relative uncertainties in xf and xo that are quantified by a parameter depending on the ratio of characteristic error
size λµ/(µ−1) = (Co/Cf)1/(µ−1).

The weight Ko also represents the normalized increment (x̂ − xf) added to the initial difference (xo − xf) as
seen from (3)

Ko = x̂ − xf

xo − xf
. (23)

Fig. 1 therefore can be interpreted as showing the normalized increment depending on the tail exponent µ, with the
extreme cases x̂ = xo at Ko = 1 and x̂ = xf at Ko = 0. At λ = 1, where xf and xo has the same uncertainty in
terms of scale factor Cf = Co (13), Ko = 0.5 puts x̂ at the exact center point between xf and xo for any µ. For
λ < 1 (resp. λ > 1), where xo with scale factor Co is more (resp. less) accurate than xf with scale factor Cf , the
smaller the exponent µ is, the closer x̂ is to the more accurate sample xo (resp. xf ). The estimation by the weight
Ko for the heavier tail distributions with µ < 2 therefore favors the accurate sample more strongly than in the
least-variance case. Interestingly, this situation is reversed for power law tails with exponents µ > 2, i.e. the weight
favors the accurate sample less strongly than in the Gaussian case. This situation applies in particular to exponential
distributions that are formally obtained as the limit µ→ ∞.

2.4. Quality of improvements: Lévy versus Gaussian estimators

2.4.1. Case µ > 2
Let us investigate the pros and cons of the solution (12) for Ko as the optimal weight for power law tails in

contrast to its Gaussian counterpart (21) givingKG. In this goal, we propose a specific example using the Student’s
distribution with µ degrees of freedom, whose density function [13]

Pµ(ω) = Γ ( 1
2 (µ+ 1))

√
µπΓ ( 1

2µ)

1/s

[1 + (ω/s√µ)2](1+µ)/2 , (24)

is defined for −∞ < ω < +∞. The Student’s distribution Pµ(ω) has a bell-like shape like the Gaussian (and
actually tends to the Gaussian in the limit µ → ∞). It is, however, a power law like (5) for large |ω| with
a tail exponent equal to the number µ of degrees of freedom defining the Student’s distribution, with a scale
factor

Cµ(s) = Γ ( 1
2 (µ+ 1))

√
µπΓ ( 1

2µ)
µ(1+µ)/2sµ. (25)

The parameter s represents the typical width of the Student’s distribution. The variance exists only for µ > 2 and
is given by

Var ≡ σ 2 = µ

µ− 2
s2. (26)

We assume that the forecast (resp. observation) sample xf (resp. xo) has an error ωf (resp. ωo) distributed accord-
ing to the Student’s distribution (24) with typical width sf (resp. so), but with the same exponent µ. The Lévy
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Fig. 2. Dependence of the variance VarL
x̂

and VarG
x̂

of the total error obtained using, respectively, the Lévy and the Gaussian weights, as a function
of λ = so/sf equal to the ratio of the typical widths of the Student’s distributions for the two measurements.

weight KL given by (12) and the standard Gaussian weight KG given by (21) are represented by the same error
ratio

λG = λL = so

sf
= λ. (27)

It is worth recalling thatKo, which we denote hereKL, given by (12) is obtained so as to minimize the scale factor
Cx̂ given by (7), whileKG given by (21) minimizes the variance Varx̂ expressed by (8). The impact of the difference
between these two weights can be quantified in several ways for µ > 2 where the variance exists.

One measure is the corresponding variance Varx̂ = (1−Ko)2(σ f)2 + (Ko)2(σ o)2 of the total error (1−Ko)ωf +
Koωo given by

VarL
x̂

= (1 + λ2/(µ−1))λ2

(1 + λµ/(µ−1))2
(σ f)2, (28)

VarG
x̂

= λ2

1 + λ2
(σ f)2, (29)

where VarL
x̂

(resp. VarG
x̂

) is the variance obtained by using the solution KL (resp. KG). Fig. 2 shows VarL
x̂

and VarG
x̂

as a function of λ for µ = 3: by construction, we verify that the variance of the total error is less with
KG than with Ko. This is expected since, by construction, KG minimizes the variance. However, the difference is
small, less than 10%. Anyway, this measure would then suggest that the Gaussian filter is better.

However, for power law distributions of errors, the variance is well-known to be a rather poor representation of
the variability, especially in the tail. It is thus interesting to compare the scale factors CL

x̂
and CG

x̂
obtained in the

two schemes since they quantify the total weight of the power law tails. We determine the scale factors for the Lévy
and Gaussian weights as another measure of the goodness of the filtering method:

CL
x̂

= λµ

(1 + λµ/(µ−1))µ−1
Cf , (30)
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Fig. 3. Dependence of the scale factors CL
x̂

and CG
x̂

of the total error obtained using, respectively, Ko and KG weights, as a function of λ.

CG
x̂

= λµ

(1 + λ2)µ(1 + λµ)−1
Cf . (31)

CL
x̂

(resp. CG
x̂

) is obtained by putting KL (resp. KG) in expression (7). Fig. 3 shows the scale factors CL
x̂

and CG
x̂

as a function of λ for µ = 3: the weight KL is now found to be better than the usual Gaussian weight KG, since a
smaller scale factor implies smaller probabilities for large fluctuations. The improvement is however not very large,
typically of the order of or less than 10%, i.e. of the same order as the difference between the variances (but in
reverse ranking). These relatively small differences between the Gaussian and Lévy filtering procedures become
enormous for the case µ < 2 discussed next.

The comparison between Figs. 2 and 3 shows that one cannot achieve simultaneously the minimization of the
variance of the error and the minimization of the weight of the tail of large deviations of the error: either one or the
other can be optimized.

2.4.2. Case µ < 2
The situation is dramatically different when µ < 2 for which the variance is not mathematically defined. In this

case, an empirical determination of the variance is very unstable and absolutely unreliable. The standard Gaussian
weight KG is completely useless. In contrast, the Lévy weight KL gives a simple and clear-cut recipe that allows
one to optimize large fluctuations in the weighting procedure.

Let us illustrate this result by the following numerical experiments using the Cauchy distribution for the errors:

PC(ω) = 1/s

(ω/s)2 + π2
(32)

with typical width s. The Cauchy distribution (32) is one of the stable Lévy distribution and possesses a power law
tail with exponent µ = 1 and a scale factor C = s. Let us assume that the first (resp. second) sample xf (resp. xo)
has an error ωf (resp. ωo) distributed according to the Cauchy distribution (32) with typical width sf (resp. so).
Then, the resulting distribution of the errors on x̂ is of the same form (32) with the same exponent µ = 1, while the
scale factor is given by

Cx̂ = (1 −Ko)sf +Koso. (33)
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As we have found above in (15), the weight Ko that minimizes Cx̂ is

Ko =
{

0 for so > sf ,

1 for so < sf ,
(34)

since the Cauchy distribution is on the borderline µ = 1. This can be verified straightforwardly as a result of the
linear dependence of Cx̂ on Ko in (33) for which the optimization always selects one of the boundaries.

Consider the case where sf = 1 and so = 2. The Lévy estimator imposes to choose Ko = 0, i.e. to reject
the information provided by the second sample xo. Let us now compare this recipe with the result obtained by
applying the standard Gaussian weight KG on the data generated by using the two Cauchy laws with sf = 1 and
so = 2. Specifically, we generated two sets of 1000 random numbersωf andωo, distributed according to the Cauchy
law (32) with sf = 1 and so = 2. From each of these 1000 numbers, we can estimate numerically the variance
and find (σ f)2 = 3.36 × 105 and (σ o)2 = 4.07 × 105. The Gaussian estimator (21) then recommends the value
KG = [1 + (σ o/σ f)2]−1 ≈ 0.45 which is very different from Ko = 0 given by (34). We should stress that the
estimations of the variances (σ f)2 and (σ o)2 are highly unreliable because they can change by orders of magnitude
from one sample to another. The reason is, as we have said, that the variance is mathematically infinite in this case,
and therefore any estimation of it is bound to be dominated by the few largest random numbers that occur by chance
in the series.

Two lessons are thus to be learned from these numerical simulations: (i) estimating the variance for distributions
with exponent µ < 2 leads to very unstable results; (ii) the resulting recommendation of the standard Gaussian
weight KG can be very wrong.

3. Multivariate estimator

3.1. Definition of the model

When the state variables are multi-dimensional, their errors may be mutually dependent. If the errors are distributed
according to the power or Lévy laws, we need to transform the coordinate of errors to express them as linear sums
of independent noises in order to be able use the rules stated above in points (1)–(4).

We consider a problem of estimating a multi-dimensional state vector x ∈ RN using two samples xf ∈ RN and
xo ∈ RN . Both forecast and observations are made for all state variables. As in the case for the univariate estimation,
we assume that the estimate x̂ of x can be expressed as a linear combination of xf and xo. Requiring the unbiased
condition leads to one unknown weight matrix in the estimation

x̂ = (I − Ko)xf + Koxo, (35)

where I is an identity matrix and Ko ∈ RN×N the weight matrix for the observation sample xo. Our goal is to
determine the optimal Ko which gives the least uncertainty in x̂. We use the notation K for the weight matrix in
connection to the standard Kalman(–Gaussian) gain matrix of sequential estimation [12].

We assume that the sample error vectors are linear sums ofN independentµ-variables with symmetric distributions

εεεf,o = xf,o − x = Gf,oωωωf,o, (36)

where the probability distribution of eachωf,o
l is associated with the same exponentµ and usually different individual

scale factors Cf,o
l . The assumption that the distributions ofωωωf,o’s are symmetric implies that the same scale factors

C
f,o
l characterize the tail of large positive and negative realizations. The transformation between independent ωωωf,o

to mutually dependent εεεf,o is provided by the matrix Gf,o ∈ RN×N . We shall use this decomposition scheme
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repeatedly in the sequel as it allows us to treat in a simple way the interplay between the power law distributions
and the dependence between variables.

In the standard linear least-variance estimation theory, one calculates the covariance matrix P̂ ≡ 〈εεεεεεT〉 of the
error ��� = x̂xx − x and minimizes the expectation of the distance between x̂ and x in the mean-square sense, i.e., one
minimizes the trace of the covariance matrix P̂. The covariance calculation is an essential step to guarantee that all
error components are suitably accounted for. We thus propose our key idea to generalize the covariance matrix in the
regimeµ < 2, where it does not exist by using the concept of the tail-covariance defined as the matrix of scale factors
of the distribution of all products εf,o

i ε
f,o
j . We prefer this approach to the so-called “covariation” [21] as it is more

intuitive and also presents nicer properties, in particular the tail-covariance matrix remains symmetric. The intuitive
meaning of the covariation is less transparent than for the tail-covariance, which explicitly measures the correlations
between large events only, while the covariation picks up contributions from the core of the distributions. Let us
mention that a simplified version of the tail-covariance without signs (see below) has been used in the context of
portfolio theory [3].

Consider the sample error vectors εεεf,o. We thus study the product εf,o
i ε

f,o
j , whose probability distribution con-

stitutes the natural generalization of the covariance as already pointed out. Using properties (3) and (4) above, one
finds the following result, expressed symbolically and without the superscripts for simplicity:

εiεj 	
N∑
l

|Gil||Gjl|[ 1
2µ-variable] +

N∑
l′

N∑
l′′ �=l′

|Gil′ ||Gjl′′ |[µ-variable], (37)

where the symbol “µ-variable” defines a random variable distributed with a density distribution with a power law
tail of exponent µ. Expression (37) means that the tail of the distribution of the product εiεj is dominated by the
first term which has the smallest exponent 1

2µ and thus heaviest tail, and will directly be sensitive to the product
|Gil||Gjl| for all the independent errors ωl . More precisely, an analysis of the cumulative distribution of the products
εiεj will give an asymptotic slope of − 1

2µ in a log–log plot and a scale factor Cl associated with ωl proportional
to |Gil|µ|Gjl|µ.

We use this set of scale factors associated with the distributions of εiεj in order to define the tail-covariance matrix
B ∈ RN×N with the following guidelines. It is natural that the tail-covariance matrix should contain the information
on the tail of the products εiεj with distribution (37). A bonafide generalization of the covariance matrix requires
two additional conditions. It should be sensitive to the sign of the dependence between the variables, i.e., if εi
increases (resp. decreases) on average conditioned on the increase of εj , the dependence is positive (resp. negative),
generalizing the existence of positive and negative correlations. In addition, a suitable definition of the tail-covariance
matrix should be such that it recovers the standard covariance matrix for the value µ = 2 corresponding to the
special case where the stable laws reduce to the Gaussian distribution, as briefly recalled in Appendix A. These
considerations lead to the following unique specification for the tail-covariance matrix by diagonalization:

B = G[µ/2]CGT[µ/2], (38)

where C ∈ RN×N is a diagonal matrix associated with ωωω and G[µ/2] ∈ RN×N is the corresponding eigenvector
matrix. The operator {·}[β] means that each element of matrix or vector is defined by

G[β]
ij = sign(Gij)|Gij|β, (39)

i.e., the absolute value of each element is raised to the power β and then multiplied by its sign. This operation can
be applied to scalars as well. Without the sign operator in (39), the tail-covariance matrix B would be just the matrix
of scale factors of all the products εiεj . The introduction of the sign function is an essential additional ingredient
introduced to account for the sign of the dependence between the variables.
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For µ = 2, G[µ/2]
ij = sign(Gij)|Gij| = Gij, and we check that the tail-covariance is exactly the same as the error

covariance

B = P ≡ 〈εεεεεεT〉. (40)

This correspondence may appear paradoxical if one interprets the case µ = 2 as corresponding to a power law,
which has infinite variance. As we already discussed for the unidimensional case, the technical reason for this comes
from the form (9) of the characteristic function L̂µ(k) of a distribution with a power law tail, as given in [7] (Problem
15 of Section 12) or of a symmetric Lévy laws. We stress again the important point that for µ strictly less than 2, the
inverse Fourier transform of L̂µ(k) defined by (9) gives a power law tail, while forµ = 2, it gives a Gaussian law. The
continuity between the expressions (38) and (40) can thus be traced back to that of L̂µ(k) as a function ofµ atµ = 2.

The transformation of the scale factors between the mutually dependent errors εεε and independent errors ωωω as in
(38) can be performed in both directions, i.e., not only from right- to left-hand side to compute B when G and C are
known, but also from left- to right-hand side to obtain C (and G) by diagonalization of B.

3.2. Solution

Our aim is to obtain the optimal weight Ko in (35) for the best estimate x̂. In this goal, we form the set of products
εiεj , where εεε = x̂ − x and study their probability distribution. As in (37) and (38), we retain only the term decaying
as a power law with an exponent 1

2µ and get the following tail-covariance matrix of x̂ − x for an arbitrary weight
matrix Ko:

B̂ = (Gf − KoGf)[µ/2]Cf(Gf − KoGf)T[µ/2] + (KoGo)[µ/2]Co(KoGo)T[µ/2]. (41)

Here, we assume that errors εεεf and εεεo are mutually independent.
In the univariate case, the optimization process is unique and corresponds to minimizing Ĉ with respect toKo as

in (10). In the multivariate case, however, the optimization may be defined in several ways. For example, as recalled
above, the standard linear least-variance estimation theory attempts to minimize the expectation distance between
x̂ and x in the mean-square sense, i.e., to minimize trace P̂ given by (40). For µ < 2, where the covariance P̂ does
not exist, we propose to minimize the “average” scale factor, i.e., trace B̂. Such an optimization implies that the
uncertainty in x̂ is globally the smallest (see Section 2.2 for the univariate case).

Since the expression (41) is not smooth inKo due to the presence of the absolute values, some care must be taken
in the minimization. The non-smooth character of (41) makes the differentiation approach to the minimization more
cumbersome, as one must keep track of the discontinuities. The optimal Ko is obtained by solving

∂

∂Ko trace B̂ = 0, (42)

where

B̂ii =
N∑
p=1

(
Gf

ip −
N∑
m=1

Ko
imG

f
mp

)[µ/2]

Cf
p

(
Gf

ip −
N∑
m=1

Ko
imG

f
mp

)[µ/2]

+
N∑
p=1

(
N∑
m=1

Ko
imG

o
mp

)[µ/2]

Co
p

(
N∑
m=1

Ko
imG

o
mp

)[µ/2]

=
N∑
p=1

∣∣∣∣∣Gf
ip −

N∑
m=1

Ko
imG

f
mp

∣∣∣∣∣
µ

Cf
p +

N∑
p=1

∣∣∣∣∣
N∑
m=1

Ko
imG

o
mp

∣∣∣∣∣
µ

Co
p. (43)
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Taking the derivative with respect to Ko
ij , we obtain

∂

∂Ko
ij

trace B̂= ∂

∂Ko
ij
B̂ii=µ

N∑
p=1


−

(
Gf

ip −
N∑
m=1

Ko
imG

f
mp

)[µ−1]

Gf
jpC

f
p +

(
N∑
m=1

Ko
imG

o
mp

)[µ−1]

Go
jpC

o
p


 = 0,

(44)

where we have used the fact that d|x|µ/dx = µ sign(x)|x|µ−1 = µx[µ−1], with our definition (39). Note that the
same N coefficients Ko

im with m = 1, . . . , N and only them occur in the N equations (∂/∂Ko
ij) trace B̂ obtained

by fixing i and varying j from 1 to N . Finding the optimal Ko thus involves solving N independent systems of
equations, one for each individual diagonal term B̂ii, where each system consists of the N nonlinear equations
(∂/∂Ko

ij)B̂ii = 0 for the N unknowns Ko
ij at i fixed.

Optimality of Ko is ensured by the positive definiteness of the Hessian matrix for B̂ii with respect toKo
ij , for each

of the N independent systems (each defined as we have shown by a fixed i) of N equations (obtained by varying
j at fixed i). While for the univariate case, this amounts to ensure the validity of only one equation (11), in the
multivariate case we need to study the positive definiteness of the Hessian

∂2

∂(Ko
ij)∂(K

o
iq)
B̂ii =µ(µ− 1)


 N∑
p=1

(Gf
jp)(G

f
qp)

∣∣∣∣∣Gf
ip −

N∑
m=1

Ko
imG

f
mp

∣∣∣∣∣
µ−2

Cf
p

+
N∑
p=1

(Go
jp)(G

o
qp)

∣∣∣∣∣
N∑
m=1

Ko
imG

o
mp

∣∣∣∣∣
µ−2

Co
p


 , (45)

expressed at the values of Ko solving (44). If this matrix is positive definite, then Ko
ij minimizes B̂ii and is

therefore optimal. There are two issues associated with this formulation for the optimal Ko: (1) the possible
existence of singular terms for µ < 2; and (2) the solvability of the nonlinear system. We address them in Appendix
B and show that the matrix is indeed positive definite and that there is only one solution.

3.3. Special cases

3.3.1. Case µ = 2
For µ = 2, the Lévy estimator is the same as the Gaussian one which minimizes trace P̂ = trace B̂ as given by

(40). In this case, the system becomes perfectly linear with 1
2µ = µ− 1 = 1 and leads to the following analytical

solution for the optimal weight given in matrix form

KG = Bf(Bf + Bo)−1, (46)

which results in the optimal estimates of the state variable and corresponding covariance matrix

x̂G = Bo(Bf + Bo)−1xo + Bf(Bf + Bo)−1xf , (47)

B̂G = Bo(Bf + Bo)−1Bf . (48)

3.3.2. Independent noise
When the errors εεεf,o are independent, i.e., Gf,o = I, the trace and diagonal components (43) for the average scale

factor can be simplified into

trace B̂ =
N∑
i=1

N∑
p=1

[(1 −Ko
ip)
µCf

p + (Ko
ip)
µCo

p], (49)
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where we have omitted the absolute values and the sign functions as we look for values of the Kalman weights
between 0 and 1. Therefore, the problem can be reduced to the univariate estimate for each element xi independently
as defined in Eq. (7). Eqs. (10) and (11) are thus replaced by their exact equivalent derived from the two conditions (42)
and (45). The solutionKo

ii for each i is given by (12), whereKo
ii = Ko is obtained by setting λ = (Co

i )
1/µ/(Cf

i )
1/µ

(see (13)). Due to the hypothesis of noise independence, the non-diagonal coefficients Ko
ij are all zero for i �= j .

4. The KL filter

4.1. Problem

We are now in a position to construct a sequential data assimilation methodology when the noises are distributed
according to the power or Lévy law. The standard assimilation problem is formulated as follows. We consider a
linear discrete stochastic dynamical system of state variables x ∈ RN

xt
k = Mk,k−1xt

k−1 + ηηηt
k−1, (50)

where superscript {·}t denotes the true state and ηηηt
k−1 is the dynamical noise. The index k corresponds to the time

sequence when the observations yo
k ∈ RLk are taken as

yo
k = Hkxt

k + εεεo
k, (51)

where εεεo
k is the observational noise and Hk ∈ RLk×N the linear observation function which can vary at each time

step k. These observations yo
k are assumed to be linear functions of the state variable xt

k of the system with an
additive noise.

The estimation methodology developed in the previous sections is now extended to perform a filtering in order to
estimate xt sequentially, by assimilating yo

k into the deterministic forecast xf
k . Here, we assume that Mk,k−1 and Hk

are known. The assimilation cycle k is defined over a time interval [k− 1, k] between the two adjacent observation
events. It consists of the following two steps:

1. A deterministic forecast xf
k of xt

k from a given initial condition xa
k−1 as the best estimate of xt

k−1 based on the
model

xf
k = Mk,k−1xa

k−1. (52)

The forecast is based on the analysis performed at the previous time step.
2. This forecast is then used to construct the new analysis xa

k which is mixed with the assimilated observation.
This leads to the probabilistic analysis xa

k of xt
k obtained as the weighted average of xf

k and yo
k under the unbias

assumption at time k:

xa
k = xf

k + Kk(yo
k − Hkxf

k) = (I − KkHk)xf
k + Kkyo

k. (53)

Accordingly, the errors associated with xf
k and xa

k are auto-regressive processes.

xf
k − xt

k = Mk,k−1(xa
k−1 − xt

k−1)− ηηηt
k−1, (54)

xa
k − xt

k = (I − KkHk)(xf
k − xt

k)+ Kkεεεo
k = (I − KkHk)Mk,k−1(xa

k−1 − xt
k−1)− (I − KkHk)ηηηt

k−1 + Kkεεεo
k,

(55)
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and the only unknown to be determined is the so-called “gain matrix” Kk needed in order to complete the assimilation
cycle.

Our goal is therefore to determine the gain matrix KL
k , where the superscript L refers to the KL filter, which results

in the least uncertainty in xa
k in each assimilation cycle when the noises are distributed according to the power or

Lévy law with the exponent µ. As in (36), we express the sample error vectors as linear sums of N independent
µ-variables

ηηηk ≡ Gηkωωω
η
k, εεεk ≡ Gεkωωω

ε
k. (56)

Because (54) and (55) define linear autoregressive processes with Lévy-stable or power law probability distribution
of the noises, the errors in forecast and analysis are also distributed according to the power or Lévy laws with the
same exponent µ. Without loss of generality, they can thus be written as

xf,a
k − x̂k ≡ Gf,a

k ωωω
f,a
k , (57)

which defines the matrices Gf,a
k and the vectors ωωωf,a

k of independent Lévy or power law processes. Consequently,
all error and noise distributions in the assimilation cycles are characterized by the corresponding tail-covariance
matrices

Bf,a
k ≡ (Gf,a

k )
[µ/2]Cf,a

k (G
f,a
k )

T[µ/2], (58)

Bη,εk ≡ (Gη,εk )[µ/2]Cη,εk (G
η,ε
k )

T[µ/2], (59)

where C ∈ RN×N is a diagonal scale-factor matrix associated with ωωω and G[µ/2] is the corresponding eigenvector
matrix. Given B, the corresponding G and C can be obtained by diagonalization.

4.2. Solution

The optimal KL filter KL
k which minimizes the global average error is obtained by minimizing the trace of the

tail-covariance matrix Ba
k of the resulting probabilistic analysis xa

k of xt
k . Since the expression for Ba

k is not smooth
in KL

k due to the presence of the absolute values, some care must be taken in the minimization as already discussed.
The non-smooth character of Ba

k makes the differentiation approach to the minimization more cumbersome, as one
must keep track of the discontinuities. However, we use the approach described in Appendix B to check if the two
conditions are simultaneously verified

∂

∂KL
k

trace Ba
k = 0, (60)

and positive-definiteness of the Hessian matrix

∂2

∂(KL
k )

2
trace Ba

k. (61)

We solve the first condition and then examine the second condition. This is achieved by taking the following two
steps in each assimilation cycle:

Step 1.

Dynamic forecast: Given a set of initial conditions described by the subscript {·}k−1 which are known, the
forecast is performed deterministically to advance from k − 1 to k based on (52) and (54)

xf
k = Mk,k−1xa

k−1 (62)
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leading to the tail-covariance of the forecasts at time k:

Bf
k = (Mk,k−1Ga

k−1)
[µ/2]Ca

k−1(Mk,k−1Ga
k−1)

T[µ/2] + Bηk−1, (63)

where the definition (38) and (39) is used.

Step 2.

Probabilistic analysis: Given the forecast xf
k with Bf

k from Step 1 along with the observations yo
k with tail-covariance

Bεk , the analysis provides the optimal estimate

xa
k = xf

k + KL
k (y

o
k − Hkxf

k) (64)

with tail-covariance

Ba
k = (Gf

k − KL
kHkGf

k)
[µ/2]Cf

k(G
f
k − KL

kHkGf
k)

T[µ/2] + (KL
kGεk)

[µ/2]Cεk(K
L
kGεk)

T[µ/2], (65)

where the definition (38) and (39) is used. By letting subscripts represent the matrix elements and dropping
the time index k for simplicity, we solve for the optimal filter KL so that it satisfies the conditions (60). The
diagonal elements of Ba can be explicated as follows:

Ba
ii =

N∑
p=1

∣∣∣∣∣Gf
ip −

L∑
m=1

KimH
G
mp

∣∣∣∣∣
µ

Cf
p +

L∑
q=1

∣∣∣∣∣
L∑
m=1

KimG
ε
mq

∣∣∣∣∣
µ

Cεq (66)

with

HG ≡ HGf . (67)

Because Ba
ii does not depend on Kqj for q �= i, the first condition for the optimal KL

k (60) is

∂

∂KL
ij

trace Ba = ∂

∂KL
ij

Ba
ii = 0

=µ

−

N∑
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(
Gf

ip −
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KL
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G
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jpC

f
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q=1

(
L∑
m=1

KL
imG

ε
mq

)[µ−1]

GεjqC
ε
q


 = 0,

(68)

using the signed power operator as in the case of (44).

For the optimal filter KL so obtained, positive definitiveness of the Hessian matrix

∂2

∂(KL
ij )∂(K

L
iq)

trace Ba

= ∂2
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ij )∂(K

L
iq)
Ba
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= µ(µ− 1)
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ε
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 , (69)

is satisfied for µ > 1, following the same approach as discussed in Section 3.2 and in Appendix B.
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The optimal estimate xa
k and tail-covariance Ba

k obtained by substituting KL
k into (64) and (65) become a set of

initial conditions for the next assimilation cycle k + 1.
Similar to the case of the multivariate estimator which is solution of (44) discussed in Section 3.2, the first

condition for the optimal KL filter (68) for a fixed i leads to a set of N self-contained nonlinear equations for N
unknowns for j = 1, . . . , N . Minimization of the average scale factor is therefore equivalent to the minimization
of each tail-covariance element Ba

ii for xa
i − xt

i with respect to the elements of Kk with at least one of the indexes
equal to i. Such a set of solutions of the nonlinear equations for an arbitrary µmay not be available analytically but
can be obtained numerically. For µ = 2, the KL filter is reduced to the same formula as the conventional KG filter,
i.e., the forecast error tail-covariance (63) is

Bf
k = Mk,k−1Ba

k−1MT
k,k−1 + Bηk−1. (70)

The analysis error tail-covariance (65) is

Ba
k = (I − KG

k Hk)Bf
k, (71)

where the optimal KG gain that satisfies (60) is given by

KG
k = Bf

kH
T
k (HkB

f
kH

T
k + Bεk)

−1. (72)

The analysis state variable xa
k is also obtained by substituting (72) into (64). In this case, sequential data assimilation

does not require any diagonalization of the tail-covariance matrix.

4.3. Univariate KL filter

4.3.1. Solution
To understand the fundamental properties of the KL filter, we study the univariate problem with N = 1 and

L = 1 in detail for the case where the exponent µ is larger than 1. The case µ ≤ 1 has been discussed in Section 2
and leads to a Kalman weight equal to either 0 or 1.

In this case, the tail-covariances Bf,a,t correspond to the scale factors Cf,a,t directly and we have the following
data assimilation cycle.

Step 1.

Dynamic forecast:

xf
k = Mk,k−1x

a
k−1, (73)

with tail-covariance matrix

Bf
k = |Mk,k−1|µBa

k−1 + Bηk−1, (74)

as derived from (54) using the calculation rules given above in points (1)–(4).

Step 2.

Probabilistic analysis:

xa
k = (1 −KkHk)xf

k +Kkyo
k , (75)

leading to the following scale factor:

Ba
k = |1 −KkHk|µBf

k + |Kk|µBεk . (76)
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Its minimization with respect to Kk leads to

xa
k = (λHk )

µ/(µ−1)

1 + (λHk )µ/(µ−1)
xf
k + H−1

k

1 + (λHk )µ/(µ−1)
yo
k , (77)

Ba
k = (λHk )

µ

[1 + (λHk )µ/(µ−1)]µ−1
Bf
k, (78)

after substituting the optimal KL gain

KL
k = H−1

k

1 + (λHk )µ/(µ−1)
(79)

with the modified relative error ratio

λHk ≡ λk

Hk
= (Bεk )

1/µ

Hk(B
f
k)

1/µ
. (80)

Notice that expression (78) is nothing but rewriting (14).

4.3.2. Properties of the solution
Because the KL filter is designed to minimize Ba

k , we gain insight into its performance by investigating Ba
k along

with Bf
k in each assimilation cycle. While the state variable xf,a

k has a stochastic dynamics through the observation

yo, their scale factors Bf,a
k are completely deterministic. Using (74) and (78), the evolution of Bf,a

k can be expressed
as uncoupled one-dimensional maps

Bf
k = |Mk,k−1λ

H
k−1|µ

[1 + (λHk−1)
µ/(µ−1)]µ−1

Bf
k−1 + Bηk−1, (81)

Ba
k = (λHk )

µ

[1 + (λHk )µ/(µ−1)]µ−1
[|Mk,k−1|µBa

k−1 + Bηk−1], (82)

where λHk in Ba
k can be given in terms of Ba

k−1 for (82) by substitution of (74) into (80).
Two limiting cases can be analyzed. First, in the limit where the main origin of variability in the factor F

multiplying Bf
k−1 in the right-hand side of (81) comes from eitherMk,k−1, Bεk orHk and not from Bf

k , this factor F
can be considered to be approximately independent of Bf

k−1. The expression (81) becomes a multiplicative noisy
auto-regressive equation which has been much studied in the literature [5,15,22,23]. The most important result
is that Bf

k remains finite at all times if the expectation of the logarithm of the factor F multiplying Bf
k−1 in (81)

is negative. This condition ensures that Bf
k does not grow exponentially at large times. Usually, in this regime, if

the factor F exhibits intermittent excursions to values larger than one, it can be shown that the scale factors Bf
k−1

themselves will be distributed according to a power law distribution. A similar result holds for Ba
k , whose upper

limit is bounded by Bf
k .

The second interesting case occurs when the system is stationary, i.e.,M = Mk,k−1, H = Hk , and Bη,ε = Bη,εk
for all k. By defining non-dimensional tail-covariances (which are replaced by scale factors in this single variable
case) normalized by the dynamical error’s scale factor Bη,

b
f,a
k = B

f,a
k

Bη
, (83)
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the corresponding dynamical maps (81) and (82) are reduced into

bf
k = |Mλb|µ

{1 + [λb/(bf
k−1)

1/µ]µ/(µ−1)}µ−1
+ 1, (84)

ba
k = (λb)µ

{1 + [λb/(|M|µba
k−1 + 1)1/µ]µ/(µ−1)}µ−1

. (85)

For a given µ, the two parameters controlling the evolution of bf,a
k are the dynamical coefficientM and the ratio of

the characteristic error sizes of the dynamics over the observation defined by

λb ≡ 1

H

(Bε)1/µ

(Bη)1/µ
. (86)

The corresponding KL gain is

KL
k = H−1

1 + [λb/(bf
k−1)

1/µ]µ/(µ−1)
, (87)

which can be expressed in terms of ba
k−1 as well. The KL filter parameter (86) and gain (87) are the counterpart of

(12) and (13), and the resulting KL analysis (85) takes the form similar to (14) of the Lévy estimator in Section 2.2.
For any values of bf,a

k−1, the scale factors bf,a
k at the next time step are bounded:

1 < bf
k < |Mλb|µ + 1, (88)

(λb)µ

[1 + (λb)µ/(µ−1)]µ−1
< ba

k < (λ
b)µ, (89)

indicating that the univariate sequential estimation system cannot diverge as long as the exponent µ is finite.
The evolution of the scale factors is demonstrated in Fig. 4a. The maps are represented by the graphs of bf

k and ba
k as

functions of ba
k−1 for four values of the exponentµ = 1.2, 1.5, 2 and 3 with the set of parameters (λb,M) = (1, 0.9),

corresponding to a contracting map. Starting from ba
k−1 on the diagonal line, the dynamic forecast takes ba

k−1 to
bf
k on the corresponding µ-curve (upper group), which is followed by the probabilistic analysis down to ba

k on the
corresponding µ-curve (lower group) to complete one data assimilation cycle, ba

k−1 → bf
k → ba

k . A new analysis
ba
k is moved horizontally onto the diagonal line to become an initial scale factor value for the next cycle.

On each ba
k curve for a fixed µ, the symbols (circle, square, diamond and triangle for µ = 1.2, 1.5, 2 and 3,

respectively) at the intersection with the diagonal line, i.e. b̄a = ba
k = ba

k−1, are the stable solutions of the KL filter.
The maps (84) and (85) in fact have each a stable fixed-point solution, b̄f and b̄a that attracts any initial condition
for any exponent µ, given a set of parameters (λb,M). For µ = 2 retrieving the case of the KG filter, this stable
fixed-point can be obtained analytically [9].

The error probability distributions for the stable fixed-points corresponding to the Student’s distribution (24) are
shown in Fig. 4b–e based on the scale factor b̄f,a. We use (xf , yo) = (0, 1) and H = 1, so that xa = KL. For small
µ, the KL filter favors more strongly the better sample characterized by the smaller scale factor between the two
(b̄f for xf and (λb)µ for yo). This effect is stronger when µ decreases to 1, as discussed in Section 2. The value of
the fixed-point b̄a is larger for smaller µ, i.e., a system with a probability distribution with heavier tail has greater
uncertainty, not only because of its slow decay measured by the exponent µ, but also due to its overall amplitude
quantified by the scale factor. Furthermore, the slope of the curve ba

k as a function of ba
k−1 shown in Fig. 4 is closer

to the horizontal for smaller µ, indicating that the convergence to the stable fixed-point is faster for the heavy tail
probability distribution. This is because the KL filter with smaller µ tends to favor either forecast or observation
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Fig. 4. (a) Graphs of bf
k and ba

k as a function of ba
k−1 for (λb,M) = (1, 0.9). For both bf

k and ba
k , the lines represent the corresponding maps and

the symbols are the stable fixed-points; solid, dash, dash-dot, and dash-dot-dot lines, as well as circle, square, diamond, and triangle symbols
correspond to µ = 1.2, 1.5, 2 and 3, respectively. (b) Error probability distribution for the stable fixed-point corresponding to µ = 1.2 and
parameters (xf , yo) = (0, 1) and H = 1, so that xa = KL. (c)–(e) Same as (b) but corresponding to µ = 1.5, 2, and 3, respectively.

strongly, depending on their relative noise amplitude quantified by the scale factor of their noises as discussed in
Section 2.3.

Since the stationary KL assimilation system quickly approaches a unique steady state for a given set of parameters
(λb,M) and exponent µ, the stable fixed-point defined by b̄f and b̄a along with the corresponding optimal KL gain
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Fig. 5. Stable fixed-point of the KL filter as a function of λb andM: (a) (b̄f )1/µ; (b) (b̄a)1/µ; (c) K̄L for µ = 1.2; (d)–(f) same as (a)–(c) but for
µ = 1.5; (g)–(i) same as (a)–(c) but for µ = 2.

K̄L suffice to provide a complete description of the stationary assimilation process. Fig. 5 shows the stable solution
obtained from (84), (85) and (87), which are plotted in the parameter space (λb,M) for µ = 1.2, 1.5 and 2. All
tail-covariances (scale factors) are plotted in terms of (b̄)1/µ so as to preserve the characteristic scale as in (6) of
the error, independently of the value of µ.

For convergent dynamicsM < 1 with sufficiently large relative observational error λb > 1, λH � 1 and hence
K̄L ≈ 0 favors the forecast (Fig. 5c, f and i) and hence results in b̄a ∼ b̄f . For divergent dynamics with a larger
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value of M > 1, however, it yields a large value for the forecast’s scale factor b̄f (Fig. 5a, d and g) with respect
to relative observational error λb. Here, the KL filter correctly derives that the errors are amplified by the unstable
evolution of the system. Since b̄f is large and hence λH ≈ 0, K̄L ≈ 1 favors the observation over the forecast and
hence results in b̄a ∼ (λb)µ (Fig. 5b, e and h). This effect derived by the KL filter is more significant for heavy
tail probability distributions with a smaller µ, and it is manifested in the much steeper gradient of K̄L for µ = 1.2
(Fig. 5c) in contrast to the widely spread contour maps observed for µ = 2 (Fig. 5i).

Note that for M = 0, we retrieve the univariate filter studied in Section 2. In particular, for λb = 1, KL = 1
2 ,

corresponding to equal weights of the assimilation on observation and forecast for any exponent µ. The curvature
to the right taken by the contour maps of the Kalman gain K as a function ofM can easily be rationalized: a larger
M implies a larger forecast error, hence a smaller effective λb. One thus needs a large observation over dynamical
error ratio to get the same effective effect, hence the downward convexity of the contour maps.

4.3.3. Relative performance of the KL and KG filters
We now examine the case where the KG filter KG (corresponding to putting µ = 2 in the solutions) is applied

to the system whose true noise distribution is the heavy tail power law (µ < 2). This may happen in a practical
implementation of Kalman filtering when we do not know the nature of the noises very well and a finite variance as-
sumption is made. This is also probably the only choice left to the operator in absence of our solution presented in this
paper. This exercise is thus aimed at quantifying what we have gained concretely by recognizing the non-Gaussian
nature of the noise and by providing the corresponding solution. We stress that what matters according to the KG
framework is whether the noise has a finite variance or not. In other words, all non-Gaussian noises with finite
variance are treated in the same fashion within the KG approach by analyzing the variance only. In contrast, the
KL solution distinguishes noises even if they have a finite variance by analyzing the structure of their “fat-tail”
characterized by the exponent µ. For instance, the KL gain is different for noise distributions with power law tails
with µ = 3 and 4, while in contrast the KG solution is the same for both if they have the same variance.

We formulate this scenario in a general form when an incorrect model exponent µ̃ is used to assimilate the data
from the system with true exponent µ. In case of the KG filter application, this means µ̃ = 2. The model for data
assimilation that we obtain is equivalent to (73)–(80) by replacing

(x
f,a
k , B

f,a
k ,Kk)→ (x̃

f,a
k , B̃

f,a
k , K̃k), (90)

[µ,Bη,εk ,Hλ
H
k ] → [µ̃, (B̃η,εk )

µ/µ̃, (H λ̃Hk )
µ/µ̃], (91)

where {·̃} represents the model filtering. The exponent factor {·}µ/µ̃ arises so as to preserve the characteristic scale
of the noises.

Use of the model gain K̃k �= KL
k due to an incorrect model exponent µ̃ yields a non-optimal filtering by definition,

in a sense that the analysis scale factorBa
k is not a minimum. In addition, such a model filtering estimates both forecast

and analysis tail-covariances B̂f,a
k incorrectly as B̃f,a

k , because the real evolution of the tail-covariances using the
non-optimal model gain K̃k should follow the non-optimal KL filtering scheme which itself uses the true exponentµ

B̂f
k = |Mk,k−1|µB̂a

k−1 + Bηk−1, (92)

B̂a
k = |1 − K̃kHk|µB̂f

k + (K̃k)µBεk . (93)

Accordingly, there are three filtering representations, i.e.:

(1) true and optimal KL filtering Bf,a
k using (µ, K̄L);

(2) true but non-optimal filtering B̂f,a
k using (µ, K̃G);

(3) model and incorrect filtering B̃f,a
k using (µ̃, K̃G).
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Table 1
Stable fixed-points of (1) optimal KL, (2) non-optimal KG and (3) incorrect KG, using the exponents (µ, µ̃) = (1.2, 2) and system parameter
set (λb,M) = (1, 0.9)

Optimal KL (b̄)(µ, K̄L) Non-optimal (b̂)(µ, K̃G) Model ( ¯̃b)(µ̃, K̃G)

bf 1.87 2.09 1.48
ba 0.99 1.24 0.59
K 0.96 0.60 0.60

By definition, the optimal filtering (1) is always superior to the non-optimal filtering (2) (Ba
k )

1/µ ≤ (B̂a
k )

1/µ. It is
possible, however, that the incorrect model filtering (3) returns a value for the scale factor which is numerically
smaller (see Table 1). Since the model exponent µ̃ is different from the true exponent µ, the scale factors cannot be
compared directly to infer the quality of the assimilation process.

When the system is time-independent, the normalized one-dimensional maps of the tail-covariances using the
non-optimal KL filter with model gain K̃ are

b̂f
k = |M(1 − K̃H)|µb̂f

k−1 + |MK̃Hλb|µ + 1, (94)

b̂a
k = |M(1 − K̃H)|µb̂a

k−1 + |1 − K̃H |µ + (K̃Hλb)µ. (95)

This non-optimal filtering also has a unique stable fixed-point

¯̂
b

f = |MK̃Hλb|µ + 1

1 − |M(1 − K̃H)|µ , (96)

¯̂
b

a = |1 − K̃H |µ + (K̃Hλb)µ
1 − |M(1 − K̃H)|µ , (97)

provided the condition for stability is satisfied

0 < |M(1 − K̃H)| < 1. (98)

To see this effect of non-optimal filtering for the KG filter application, we apply the model gain K̃ = K̃G with
µ = 2 (Fig. 5i) to a time independent system (84)–(87) subjected to the Lévy noise with true exponent µ = 1.2.
The stable assimilation cycle for this optimal KL filtering have been presented in Fig. 5a–c. The unique stable
fixed-points of the non-optimal filter given by (96) and (97) are shown in Fig. 6a and b, in terms of the characteristic

scale ( ¯̂bf,a
)1/µ. Because the KG filtering is no longer optimal, ¯̂

b
f,a

are now larger than the corresponding optimal
scale factors b̄f,a of the KL fixed-point (Fig. 5a and b).

To quantify the difference between the KL and KG solutions, we construct the differences of the normalized
stable fixed-point found in the three assimilation representations (1)–(3). In Fig. 6c–f, we present the comparison
for the following two cases:

1. difference between the non-optimal filtering ((2) as in Fig. 6a and b) and optimal KL filtering ((1) as in Fig. 5a
and b);

2. difference between non-optimal filtering (2) and incorrect model filtering (3).

All results are shown in terms of the characteristic error scales, b1/µ or b1/µ̃, so that the comparison can be made
independent of the exponents µ and µ̃ in the filters.

The first comparison between (2) and (1) corresponds to the difference between the optimal and non-optimal
filtering. In Fig. 6c and d, we observe a bimodal structure in the difference (b̂f,a)1/µ − (b̄f,a)1/µ, caused by the
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Fig. 6. Stable fixed-point of the KG filter applied to a heavy tail system with µ = 1.2: (a) (b̂f )1/µ; (b) (b̂a)1/µ; (c) difference ( ¯̂bf )1/µ − (b̄f )1/µ

between the non-optimal filtering solution ( ¯̂bf )1/µ shown in (a) and the optimal KL filtering solution (b̄f )1/µ shown in Fig. 5a; (d) difference
(b̂a)1/µ− (b̄a)1/µ between the non-optimal filtering solution (b̂a)1/µ shown in (b) and the optimal KL filtering solution (b̄a)1/µ shown in Fig. 5b;
(e) difference KG − KL between the non-optimal filtering solution and the model filtering solution; (f) difference (b̂f )1/µ − (b̃f )1/µ̃ between
the non-optimal filtering solution (b̂f )1/µ shown in (b) and the model filtering solution (b̃f )1/µ̃; (g) difference (b̂a)1/µ − (b̃a)1/µ̃ between the
non-optimal filtering solution (b̂a)1/µ shown in (b) and the mode filtering solution (b̃a)1/µ̃.
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maximum–minimum structure in the gain K̃G − K̄L (Fig. 6e), whose origin is the following. For M < 1 for
which M2 < Mµ for µ < 2, K̃G > K̄L. The non-optimal gain K̃G obtained from the model KG solution thus
overestimates the uncertainty of the forecast. On the other hand, for M > 1 for which M2 > Mµ for µ < 2,
K̃G < K̄L. The non-optimal gain K̃G now underestimates the reliability of the observation. Both ways, it increases
the non-optimal solution b̂a in comparison to the optimal solution b̄a.

The second comparison between (2) and (3) relates to the actual mistake in the model solution b̃f,a made by using
the model gain K̃G to the system which reaches a different, non-optimal stable fixed-point b̂f,a. As shown in 6f and
g (b̂f,a)1/µ − (b̃f,a)1/µ̃ are positive and therefore the model filtering incorrectly underestimates the error.

Fig. 7 is the KG filtering application when the true exponentµ = 1.5 is not as heavy as the previous caseµ = 1.2.
Although the KL solution is better than the KG one as expected, the difference is smaller: the improvement is of the
order of 5–10% at most. The fact that the improvement has a smaller amplitude is clear: a larger exponent implies
a thinner tail and thus a behavior closer to the Gaussian case. Recall that at µ goes to 2, the Gaussian case and
solution are recovered.

4.3.4. Numerical experiment
To check these results derived from the analysis of the deterministic behavior of the tail-covariances (scale factors)

b
f,a
k , we present a numerical experiment of the stochastic dynamics, observation construction and assimilation

processes. We use the parameter set (λb,M) = (1, 0.9) with noises distributed according to a Lévy law with
exponentµ = 1.2. The one-dimensional map and probability distribution of the stable fixed-point for this parameter
set are shown in Fig. 4a and b. To generate the Lévy noises, we follow the standard algorithm described initially in
[4] and use the software available in [17]. The stochastic variables xt

k and yo
k are generated over 10 000 time steps.

Typical results of the KL filtering (µ, K̄L
k ) are shown in Fig. 8. The true evolution xt

k is shown over the 10 000
time steps in Fig. 8a. Note the occurrence of a few very large fluctuations that dwarf most of the remaining dynamics.
To get a closer view, we enlarge Fig. 8a in the narrow time interval [1000, 1050] shown in Fig. 8b and c. Fig. 8b
gives the dynamical evolution of the true, forecasted, observation and analysis variables, when using the optimal KL
filtering, while Fig. 8c corresponds to the use of the non-optimal filtering. Note that the two filtering’s use the same
gain K̃G

k and therefore result in the same x̃f,a
k . One can observe on Fig. 8b that the optimal KL filtering xa

k follows
rather closely the observation yo

k . This results from the high value of K̄L
k . In contrast, the non-optimal filtering puts

x̃a
k midway between yo

k and x̃f
k . The tail-covariances (scale factor) quickly approaches the stable fixed-point after a

few iterations as given in Table 1, along with the stable fixed-points of the non-optimal filtering b̂f,a with (µ, K̃G
k )

and model filtering b̃f,a with (µ̃, K̃G
k ).

Because the KL filter is designed for the global control of the uncertainty by minimizing the tail-covariance, we
propose to compare the tails of the distribution of errors (xa − xt) resulting from the two methods (KL and KG)
to assess their relative performance. Note that since the covariance does not exist for µ < 2, it cannot be used to
evaluate the performance of the heavy tail KL filtering.

Fig. 9a shows the (complementary) cumulative distribution of (xa −xt) and (xf −xt), as well as that of (yo/H)−
xt for reference. For this parameter set (λb,M) = (1, 0.9), the two optimal KL and model KG gains at their
stable fixed-points differ by 37.5% (Table 1). This shows that the model KG filter underestimates the reliability of
observation and overestimates the value of the forecast.

Although the difference in the cumulative distributions is rather subtle to determine from visual inspection of
Fig. 9a, the cumulative distribution of the error between the analysis and the true trajectory obtained from the optimal
KL filter is consistently below that obtained by using the non-optimal filter, apart from expected fluctuations. In
probability terms, the optimal KL error distribution exhibit the property of being “stochastically dominant” over
the model KG error distribution. This shows that the optimal KL filter is indeed superior to the model KG filter in
the presence of heavy tails.
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Fig. 7. Same as Fig. 6 for dynamical and observational noises given by Lévy distributions with exponent µ = 1.5.

In fact, our theory predict the difference of 37.5% (Table 1) based on the stable fixed-point presented in
Section 4.3.2. It is confirmed by the synthetic simulation of the Lévy random variables with µ = 1.2 as pre-
sented in Fig. 9b based on the corresponding scale factors of the stable fixed-point b̄f,a and b̂f,a

(Table 1).
The superficial visual effect in Fig. 9a can be explained as follows. In the tails, Lévy laws with exponent µ

are power law given by C/(xa − xt)µ, where C is the scale factor of the errors. If C is higher by 37.5% for the
non-optimal filtering compared to the optimal KL filtering (Table 1), this represents a significant error reduction.
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Fig. 8. Numerical experiment for the parameter set (λb,M) = (1, 0.9)withµ = 1.2: (a) evolution of true state variable xt
k for k = 1, . . . , 10 000.

Note the occurrence of a few large peaks corresponding to rare but extreme noise fluctuations distributed with the Lévy distribution. Panels (b)
and (c) show a magnification of panel (a) in the time interval [1000, 1050] and compare this true dynamics (continuous line) with the forecasts xf

(squares), the observations yo (circles) and the assimilation analysis xa (diamonds). Panel (b) corresponds to the use of the optimal KL filtering
while panel (c) corresponds to the model filtering with µ̃ = 2, i.e. standard KG filter. It appears clear by visual inspection that the optimal KL
analysis xa is much closer more often than not to the true dynamics.
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Fig. 9. (a) (Complementary) cumulative distribution (i.e. number of time steps where the error is larger than a value read on the abscissa) of the
error between the analysis and the true trajectory for (λb,M) = (1, 0.9) and µ = 1.2, obtained by using the optimal KL filter KL (xa − xt ;
in thick solid line) and model KG filter K̃k(x̃a − xt ; in thick dashed line). We observe clearly that the distribution of xa − xt is below that of
x̃a − xt , i.e. the errors are globally reduced in distribution by application of the KL method compared to the standard KG method. We also
show the cumulative distributions of the difference between forecast and true trajectory for the optimal KL filter KL(xf − xt ; in solid line) and
model KG filter K̃k(x̃f − xt ; in dashed line), as well as the cumulative distributions of the observations ((yo/H) − xt ; in dotted line, which is
almost identical to xa −xt and thus hardly visible due to the thickness of the lines). (b) (Complementary) cumulative distribution of the synthetic

simulation of random Lévy variables based on the scale-factors of the stable fixed-points b̄f,a and ¯̂
bf,a (Table 1) predicted by the theory. The

cumulative distributions of the same observations ((yo/H)− xt ; in dotted line) as in (a) is also shown for reference. This alternative method for
constructive the distributions of errors shows the full consistency of the approach.

However, this will not be strikingly visible in the log–log representation of Fig. 9, since ln 1.375 ≈ 0.32 leads to a
translation of the two cumulative distributions by only 0.32, hence the small but still visible effect.

Another more compact way of quantifying the relative performance of the two solutions is to calculate a typical
error amplitude, which generalizes the covariance. Since we have considered the situation whereµ > 1, the average
of the absolute value 〈|xa−xt|〉 of the errors corresponds to a moment of order 1, which is defined mathematically and
is numerically well behaved. Our direct numerical simulations show a decrease of the typical error amplitude (〈|xa −
xt|〉) by approximately 20% when going from the non-optimal solution (≈ 3.3) to the optimal KL filtering (≈ 2.8).

5. Conclusion

We have presented the solution of the Kalman filter problem for dynamical and forecast noises distributed
according to power laws and Lévy laws. The main theoretical concept that we have used is to optimize the Kalman
filter to chisel the tail of the distribution of residual errors so as to minimize it globally. In order to implement this
program, we have introduced the concept of a “tail-covariance” that generalizes the usual notion of the covariance.
The full solution, called the KL filter, is obtained by the solution of a general nonlinear equation. We have investigated
in detail the quality of this solution in the univariate case and have shown by direct numerical experiments that the
improvement is significant, all the more so, the heavier the tail, i.e. the smaller the power law exponent µ.
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Appendix A. Stable Lévy laws

The stable laws have been studied and classified by Paul Lévy, who discovered that in addition to the Gaussian
law, there is a large number of other p.d.f.’s sharing the stability condition

PN(x
′) dx′ = P1(x) dx, where x′ = aNx + bN (A.1)

for some constants aN and bN , where x′ is the sum of N independent variables of the type x distributed according
to the p.d.f. P1(x). One of their most interesting properties is their asymptotic power law behavior.

A symmetric Lévy law centered on zero is completely characterized by two parameters which can be extracted
solely from its asymptotic dependence

P(x) ∼ C

|x|1+µ for x → ±∞. (A.2)

C is a positive constant called the tail or scale parameter and the exponent µ is between 0 and 2 (0 < µ < 2).
Clearly, µ > 0 for the p.d.f. to be normalizable. As for the other condition µ < 2, a p.d.f. with a power law tail
with µ > 2 has a finite variance and thus converges (slowly) in probability to the Gaussian law. It is therefore not
stable. Only its shrinking tail for µ > 2 remains of the power law form. In contrast, the whole Lévy p.d.f. remains
stable for µ < 2.

All symmetric Lévy law with the same exponent µ can be obtained from the Lévy law Lµ(x) with the same
exponent µ, centered on zero and with unit scale parameter C = 1, under translation and rescaling transformations

P(x) dx = Lµ(x′) dx′, where x′ = C1/µx +m, (A.3)

m being the center parameter.
Lévy laws can be asymmetric and the parameter quantifying this asymmetry is

β = C+ − C−
C+ + C−

, (A.4)

where C± are the scale parameters for the asymptotic behavior of the Lévy law for x → ±∞. When β �= 0, one
defines a unique scale parameter C = 1

2 (C+ + C−), which together with β allows one to describe the behavior at
x → ±∞. The completely antisymmetric case β = +1 (resp. −1) corresponds to the maximum asymmetry.

For 0 < µ < 1 and β = ±1, the random variables take only positive (resp. negative) values.
For 1 < µ < 2 and β = +1, the Lévy law is a power law for x → +∞ but goes to zero for x → −∞ as

P(x) ∼ exp(−|x|µ/µ−1). This decay is faster than the Gaussian law. The symmetric situation is found for β = −1.
An important consequence of (A.2) is that the variance of a Lévy law is infinite as the p.d.f. does not decay

sufficiently rapidly at |x| → ∞. When µ ≤ 1, the Lévy law decays so slowly that even the mean and the average
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of the absolute value of the spread diverge. The median and the most probable value still exist and coincide, for
symmetric p.d.f. (β = 0), with the centerm. The characteristic scales of the fluctuations are determined by the scale
parameter C, i.e. they are of the order of C1/µ.

There are no simple analytic expression of the symmetric Lévy stable laws Lµ(x), except for a few special cases.
The best known is µ = 1, called the Cauchy (or Lorentz) law,

L1(x) = 1

x2 + π2
for − ∞ < x < +∞. (A.5)

The Lévy law for µ = 1
2 is [19]

L1/2(x) = 2√
π

exp(−1/2x)

(2x)3/2
for x > 0. (A.6)

This p.d.f. L1/2(x) gives the distribution of first returns to origin of an unbiased random walk.
Lévy laws are fully characterized by the expression of their characteristic functions:

L̂µ(k) = exp(−aµ|k|µ), (A.7)

where aµ is a constant proportional to the scale parameter C:

aµ = πC

µ2Γ (µ− 1) sin(πµ/2)
for 1 < µ < 2. (A.8)

A similar expression holds for 0 < µ < 1, while µ = 1 and 2 requires a special form (see [10] for full details). For
β �= 0, we have

L̂βµ(k) = exp

[
−aµ|k|µ

(
1 + iβ tan

(µπ
2

) k
|k|
)]

for µ �= 1. (A.9)

For µ = 1, tan(µπ/2) is replaced by (2/π) ln |k|.

Appendix B. Proof of the optimality of the solution of (44)

To prove the optimality of the solution Ko solving (44), it is sufficient to consider only one of the system of N
equations for a single and fixed index i. We thus drop the index i and define the matrix***f,o ∈ RN×N and the vector
κκκ ∈ RN as follows:

Ω f
pq =

{ |Gf
ip −∑N

m=1K
o
imG

f
mp|µ−2Cf

p for p = q,
0 for p �= q,

Ωo
pq =

{ |∑N
m=1K

o
imG

o
mp|µ−2Co

p for p = q,
0 for p �= q,

κq =Ko
iq. (B.1)

Expression (45) can then be written as

∂2

∂κκκ2
B̂ii = µ(µ− 1)[Gf***f(Gf)T + Go***o(Go)T]. (B.2)
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It is clear in this form that the Hessian matrix is positive definite for µ > 1 because the linear sum of symmetric
positive definite matrices results in a positive definite matrix.

There are two issues associated with this formulation for the optimal κκκ (i.e., Ko): (1) the possible existence of
singular terms for µ < 2; and (2) the solvability of the nonlinear system. To address these issues, we rewrite (44) as

∂

∂κκκ
trace B̂ii = f(κκκ, µ) = 0, (B.3)

and seek for a solution branch κκκ(µ) of (B.3) using implicit function theory as µ varies.
At µ = 2, the system is linear in κκκ and a unique solution κκκ(µ = 2) can be obtained analytically (this is nothing

but the standard linear least-variance estimation). For 1 < µ < 2, f(κκκ, µ) is bounded. Its derivative with respect to
κκκ , (∂/∂κκκ)f(κκκ, µ), is given by (B.2) which is always positive definite. It can be singular and diverge to +∞ due to
absolute value terms behaving like limx→0 |x|µ−2 = ∞ as can be seen in Eq. (B.1). The derivative of f(κκκ, µ) with
respect to µ is

∂

∂µ
f(κκκ, µ)= ∂2

∂κκκ∂µ
B̂ii = µ

N∑
p=1


−

(
log

∣∣∣∣∣
(
Gf

ip −
N∑
m=1

Ko
imG

f
mp

)∣∣∣∣∣
)(
Gf

ip −
N∑
m=1

Ko
imG

f
mp

)[µ−1]

Gf
jpC

f
p

+
(

log

∣∣∣∣∣
(
N∑
m=1

Ko
imG

o
mp

)∣∣∣∣∣
)(

N∑
m=1

Ko
imG

o
mp

)[µ−1]

Go
jpC

o
p


 . (B.4)

This derivative can also be singular due to the absolute value terms behaving like limx→0 x
[µ−1] log|x| = ±∞. Note

that (∂/∂κκκ)f(κκκ, µ) and (∂/∂µ)f(κκκ, µ) become singular simultaneously, but the former is more singular than the
latter because limx→0|x|µ−2/x[µ−1] log|x| = ±∞. Implicit function theory can therefore be applied to guarantee
that a unique solution branch κκκ(µ) exists for 1 < µ < 2, starting from the analytical solution at µ = 2. Indeed, if
there exist other solution branches, then there must be at least one bifurcation as µ varies because the solution at
µ = 2 is globally unique due to linearity. The fact that (∂/∂κκκ)f(κκκ, µ) is a positive definite matrix globally (though
it can be singular), however, guarantees that there is no bifurcation. Accordingly, the solution branch from µ = 2
provides the unique solution of the system as µ varies.

The solution on the branch can be obtained numerically, either by directly solving for the N nonlinear equations
for each µ or by following the branch using the pseudo arc-length continuation method [14].
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