Due: Tu March 1, 2011. 10:45am
By the end of the class
1.
a) Obtain a polynomial of least degree that satisfies
$\left(x_{n}, y_{n}\right)=(0,7),(2,11),(3,28),(4,63)$
[Hint: Use the Lagrange form]
b) Use the same data as above and obtain the Newton representation.
2.
a) Show that the polynomials
$p(x)=3+2(x-1)+4(x-1)(x+2)$
$q(x)=4 x^{2}+6 x-7$
are both interpolating polynomials for

$$
\begin{aligned}
& \left(x_{n}, y_{n}\right)=(1,3),(-2,-7),(0,7) \\
& \left(x_{n}, y_{n}\right)=(1,3),(-2,-3),(0,-7) .
\end{aligned}
$$

b) Discuss uniqueness of the polynomial interpolation for $p(x)$ and $q(x)$.
3.
a) Write a MATLAB code that interpolates $\exp (x)$ by a polynomial of 10-degree polynomial on [0,2] and obtain the coefficients using

- Vandermonde approach
- Newton representation
- Lagrange form
[Include the MATLAB Codes]
b) Compare the results with the actual $\exp (x)$ using 100 data points over the integral and plot the results.

