Homework Set 3

Due: Th April 13, 2011. 10:45am By the end of the class

- 1. Norms: Compute $||\cdot||_1$, $||\cdot||_2$, and $||\cdot||_{\infty}$,
- a) Vectors Compute $||\cdot||_1$, $||\cdot||_2$, and $||\cdot||_\infty$ for
- i) **a**=[1 2 3]
- ii) $\mathbf{a} = [1 \ 1/10 \ 3/7 \ 4/9]$ ';
- b) matrix: Compute $||\cdot||_1$, $||\cdot||_2$, and $||\cdot||_{\infty}$ for **A** = **a b** where $\mathbf{a} = \sin([0; \pi/4; \pi/2])$ $\mathbf{b} = \cos([0 \pi/3 2\pi/3 \pi])$
- i) keeping $(2)^{1/2}$ & $(3)^{1/2}$, then using calculator on $(2)^{1/2}$ & $(3)^{1/2}$
- ii) using MATLAB, plot [1:N]' vs column vectors of A & [1:M] vs row vectors where NxM is the dimension of **A**
- 2. MATLAB code writing for linear system $\mathbf{A} \mathbf{x} = \mathbf{b}$ where \mathbf{A} and \mathbf{b} are given Note:
- You can call functions in your functions, as long as you write them all.
- a) Gaussian Elimination:
- (i) Write a MATLAB function pseudo-code for naïve Gaussian elimination function [x]=GaussElim_naïve(A, b)
- (ii) Write a MATLAB function pseudo-code for Gaussian elimination with partial pivoting

function [x]=GaussElim_pivp(A, b)

(iii) Write a MATLAB function pseudo-code for Gaussian elimination with scaled partial pivoting

function [x]=GaussElim pivsp(A, b)

- (iv) Write MATLAB codes for (i)-(iv). Verification problem is given in 3.
- b) LU Factorization
- (i) Write a MATLAB function pseudo-code for LU factorization that returns ${\bf L}$, ${\bf U}$, and pivoting (permutation) vector ${\bf p}$

function [L, U, p]=LU(A)

- (ii) Write a MATLAB function pseudo-code for solving **L y** = **b** with **p** function [**y**]=Ltri p(**L**,**b**,**p**)
- (iii) Write a MATLAB function pseudo-code for solving **U x** = **y** function [**x**]=Utri(**U**, **y**)
- (iv) Write a MATLAB function pseudo-code for solving the linear system $\mathbf{A} \mathbf{x} = \mathbf{b}$ using the LU factorization.

function [x]=LU sys(A, b)

- 3. MATLAB code application
- a) Apply your code (2.a.iv) to

$$\left(\begin{array}{cc} \varepsilon & 1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} \chi_1 \\ \chi_2 \end{array} \right) = \left(\begin{array}{c} 1 \\ 2 \end{array} \right)$$

for $\epsilon\text{=}10^{n},$ where n=[-2:-2:-18]. For each n,

- (i) Obtain (x1, x2)'.
- (ii) Compute residual r.
- b) Apply MATLAB Command "\" and repeat (a)