Update: W April 27, 2011
Due: Th April 28, 2011. 10:45am
By the end of the class

Analytical Problems

1. [No need to do this problem]

Find a function form of $\mathrm{y}=\exp (\mathrm{Cx})$ that best fits the data set consisting of 2 data
a. $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0,1 / 2) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(0,1)$
b. $\left(x_{1}, y_{1}\right)=(0, A) \&\left(x_{2}, y_{2}\right)=(0, B)$
c. Verify consistency of your results from (a) and (b)
2. Determine the best approximate solution of the linear system

$$
\left\{\begin{array}{l}
2 x+3 y=1 \\
x-4 y=-9 \\
2 x-y=-1
\end{array}\right.
$$

in the least-square sense.

Computational Problem

3. Generate a data set $\{t(I)$, $b(I)\}$ by
$b(I)=a 0+a 1^{*} t(I)+a 2^{*} t(I)^{\wedge} 2+a 3^{*} \sin (t(I))$
for $I=1, . ., L=100$, where
(a0, a1, a2, a3)=(2, 3, 0.1, -0.1);
t=linspace(0,2,L)';
4a. Develop a general MATLAB code for the least-square estimation using the QR factorization with partial scaled pivoting, following the steps in Exercise 3.
b. Using the code, compute the coefficient c0 and c1 of the linear function $q(t)=c 0+c 1^{*} t$
that fits your data generated by Problem 3 in the least square sense.
c. Plot in one figure

- all data points
- linear line that you obtained by the QR decomposition.

5a. Develop a general MATLAB code for the least-square estimation using Cholesky factorization following the steps in Exercise 4.
b. Using the code, compute the coefficient c0 and c1 of the linear function $q(t)=c 0+c 1^{*} t+c 2^{*} t^{\wedge} 2$
that fits your data generated by Problem 3 in the least square sense.
c. Plot in one figure

- all data points
- linear line quadratic line that you obtained by the Cholesky factorization.

