
Unsupervised Clustering of
Bitcoin Transaction Data

Midyear Report

AMSC 663/664 Project

Advisor: Dr. Chris Armao

By: Stefan Poikonen

1

Bitcoin: A Brief Refresher

• Bitcoin is a decentralized cryptocurrency used for digital
transactions

• The Bitcoin Network was first implemented January 1st, 2009

• In early 2014 market capitalization of Bitcoin surpassed $8 billion

• Utilizes Private/Public Key structure for signature and verification

• History of every transaction is stored in the publically available
“Block Chain”

Lee, Timothy B. "What Is Bitcoin?" Vox. Vox, 14 Oct. 2014. Web. 01 Dec. 2014.

2

Project Goal

• Categorize Bitcoin transactions utilizing Blockchain data

• Without a training set, this is accomplished via unsupervised
learning of transaction data

• Form clusters (K-means, C-means (fuzzy logic), Hierarchical,
“CURE” Algorithm)

• Evaluate the efficacy of the clusters

• Evaluate the computational time of each clustering method

• List potential anomalous transactions

3

Raw
Blockchain

Transaction
Table

User-Level
Metrics and

Tags

PCA
Clustering
Algorithms

Analysis

High Level Flow of Project

Current project status.

4

The Data to Transaction Table

• The public ledger, or “block chain” is available to download

• Reid and Harrigan, and Brugere describe in detail transformations from
the raw block chain to transaction line tables

• We reproduced their methods to convert the Blockchain to an easily
usable transaction table

• Around 50 million transaction lines

• Each transaction line contains the following data elements:
• Source ID
• Destination ID
• Timestamp
• Amount Of Bitcoin Transferred

5

Reid, Fergal, and Martin Harrigan. An analysis of anonymity in the bitcoin system. Springer New York, 2013.

Tagged Addresses

• Blockchain.info maintains a database of “tagged” public addresses

• Tags associate a public address with an entity, cause, website, etc.

• These tags have been categorized: gamer, charity, hacking, etc.

• We can compute the number of times a given user has been
adjacent to certain categories, or other measures of a users
closeness to a particular category of tag

6

Screenshot from: https://blockchain.info/tags

Other User Level Metrics

• Compute metrics on every user by looping through every
transaction.

• User metrics include average transaction amount, join date,
maximum transaction, local centrality, page rank (through power
iteration), etc.

• Naively looping over every user and transaction is infeasibly large
at O(n2), where n is the number of transactions.

• Sorted transactions by userID O(n log(n)), then computing metrics
is only O(n) complexity

• With the computed user-level data, the data set grows from 4
columns to 98 columns.

7

Sample of Computed User-Level Metrics 8

Clustering Prerequisites: Norming of Data

• There is no natural way to compare “distance” in each column of
user data.

• Each column of data has different scale.

• Measuring “distance” between augmented transaction lines in
clustering is dependent on this scaling

• It would be possible to learn a metric with “good” scaling, if we
had a training set.

• Without a training set we:
• Normalize data, such that for each column: μ 0 and σ2

 1

• Log transformations to enhance normality of some data columns

9

Clustering Prerequisites: Principal Component
Analysis

• Once data is normed, we use a principal
component analysis.

• PCA preserves as much variability as possible
with a reduced number of orthogonal
components.

• Principal components may be computed
through power iteration or singular value
decomposition.

Illustration of PCA on 2-D sample points: arrows

point in the direction of the two principal

components. (Image credit: Wikimedia Commons)

10

Principal Component Analysis: Algorithms

Power Method to compute p
principal components of matrix A

• For i = 1 to p:

• Start with arbitrary x0 vector.

• Repeat until xn+1xi :

• xn+1=Axn

• xn+1= xn+1/||xn+1||

• limn ∞ ||Axn+1||/||xn+1|| = λi

• A = A - λixixiT

• Store xi and λi as principal
component.

Singular Value Decomposition

• SVD decomposes an m x n matrix A as: A = USVT

• Where U is m x n, S is n x n, V is n x n, and U
and V are orthogonal.

• Key insight: ATA =VS2VT , is diagonalization of ATA.

• The columns of V are the eigenvectors of ATA.

• S is a diagonal matrix containing the eigenvalues
of A in descending order.

• Computational cost O(mn2)

11

O'Leary, Dianne P. "Chapter 5: Matrix Factorizations." Scientific Computing with Case Studies. Philadelphia:

Society for Industrial and Applied Mathematics, 2009. 68-75. Print.

Principal Component Analysis: Results

• Sampled 100,000 data points
(smaller n) to reduce memory
usage.

• Utilized Matlab’s built in pca
function.

• Run time on the order of a few
minutes

12

K-means Clustering: A Description

• Suppose we choose p principle components, and now have n data lines,
each in p-dimensional space.

• This algorithm initiates k centroids.

• Next it loops through all n data vectors and computes the distances
between each data vector and each centroid.

• Each data vector becomes of a member of the nearest centroid.
(Opportunities for heuristic optimization?)

• The algorithm is O(nkip) where n is the number of transactions, k the
number of clusters, and i the number of iterations.

• Though n is large (~50 million), k, i, and p may be chosen as small.

• Highly parallelizable.

13

Ding, Chris, and Xiaofeng He. "K-means clustering via principal component analysis." Proceedings of the

twenty-first international conference on Machine learning. ACM, 2004.

K-means Clustering: Pseudocode 14

Clustering Validation

• There exist dozens of implementations of K-means and
accompanying small data sets listed online.

• In the remainder of the semester I will test my
implementation utilizing these datasets. If I arrive at
the exact same clusters after numerous examples, this
will validate my code.

• Detailed analysis of K-means and other algorithms is
scheduled for the second half of the project.

• In general, as the number of clusters increase we
expect:
• Decrease in distance to cluster centroids

• Greater compactness within clusters

• We may compare performance of various clustering with
“area under curve”

• As the limit we should expect as k  n, average distance to
nearest centroid  0.

Time Line

• Now-November 15: Data transformation, parsing, user-metric
computation, tag-metrics, etc. [Done]

• November 15-December 15: PCA [Done] and K-means clustering [In
progress]

• February 1-March 31: Fuzzy C-means clustering, CURE clustering,
other clustering algorithms (time permitting)

• April 1 – April 25: Analysis of cluster quality, parallelization (time
permitting)

• April 25 – May 15: Paper and presentation

16

Deliverables

• C++/Python code for transforming data to transaction line table [Done]

• C++ code for computing user-level metrics [Done]

• C++ code for computing tag-related metrics [Done]

• C++ code for normalizing data prior to PCA [Done]

• C++ code for computing K-means clusters [In Progress]

• C++ code for computing Fuzzy C-means clusters [Spring]

• C++ code for other clustering (time permitting) [Spring]

• Evaluation metrics from clustering with different numbers of clusters across different clustering
algorithms [Spring]

• First-Semester Progress Report [Done]

• Final Reports [Spring]

• Weekly Reports [In Progress]

17

Summary

• Parsing Blockchain and creating usable transaction tables were
major overhead components of the first half of this project and
are now done.

• Data norming and PCA are also complete.

• K-means is scheduled to finish before end of semester.

• Next semester more clustering algorithms will be implemented,
leading to mathematically interesting results, analysis and
performance comparisons.

18

The End

• Questions?

19

