Project IV. Ensemble Kalman Filter

- Dates
 - 12min presentation: 2016.04.12 (& 04.14) in-class
 - Order to be announced
 - Report: 2016.04.15 5pm by email

- Objectives: Implementation of Ensemble Kalman Filter based on
 - Data Assimilation Framework developed in Project 1
 - Ensemble representation of minimum variance approach initially developed for OI in Project 2
 - Ensemble representation of EKF in Project 3
 - Understanding of dynamic propagation of uncertainty using tangent linear model, and accuracy
 - Schemes to improve the performance: Inflation of the error covariance
 - Enhancement of diagnostic tools
 - Additional scheme to support performance: localization of error covariance

Project V. Ensemble Kalman Filter

- Project Description (as reference – you are welcome to improvise)
 - Objective:
 - Implementation of at least
 - Perturbed-Observation EnKF
 - Serial Ensemble square-root KF (EnSRF)
 - [Local] Ensemble Transform KF ([L]ETKF)
 - Verification of ensemble analysis
 - in comparison with “adjusted” EKF analysis, given the choice of the EnKF method (slide 3)
 - Diagnostics: Having successfully implemented the EnKF,
 - Comparison of the results with:
 - EKF (& 3D-Var/OI) and 4D-Var
 - truth: actual error $|x^b-x^t|^2$ & $|x^a-x^t|^2$ vs estimated error by $\text{var}(x^b_m)$ & $\text{var}(x^a_m)$
 - Study the effects of
 - Size of ensemble (start from $M=N$, and in/decrease)
 - Covariance inflation
 - Covariance localization
 - Case study (not statistics) in which EnKF failed, and identify the cause, for example
 - Observations: Insufficient obs? Too large obs error?
 - Background: Failed forecast due to nonlinearity?
 - Analysis: Inappropriate inflation and Localization?
Basic Ensemble Operations (Notation)

- In \(\mathbf{x} \)-space based on ensemble \(\{ \mathbf{x}_m \} \)

 - Ensemble \(\mathbf{X} = (\mathbf{x}_1, \ldots, \mathbf{x}_M) \in \mathbb{R}^{N \times M} \)

 - Mean \(\bar{\mathbf{x}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{x}_m \in \mathbb{R}^N \)

 - Spread \(\mathbf{P} = \frac{1}{M-1} \mathbf{XX}^T \in \mathbb{R}^{N \times N} \)

- In \(\mathbf{y} \)-space based on ensemble \(\{ \mathbf{y}_m \} \)

 - Ensemble \(\mathbf{Y} = (\mathbf{y}_1, \ldots, \mathbf{y}_M) = (h(\mathbf{x}_1), \ldots, h(\mathbf{x}_M)) \in \mathbb{R}^{L \times M} \)

 - Mean \(\bar{\mathbf{y}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{h}(\mathbf{x}_m) \in \mathbb{R}^L \)

 - Spread \(\mathbf{Y} = (\mathbf{y}_1 - \bar{\mathbf{y}}, \ldots, \mathbf{y}_M - \bar{\mathbf{y}}) \in \mathbb{R}^{L \times M} \)

 - Projection of covariances (\(\approx \) holds if linear, i.e., \(h(\mathbf{x}) = \mathbf{H} \mathbf{x} \))

 \(\mathbf{P} \mathbf{H}^T = \frac{1}{M-1} \mathbf{YX}^T \in \mathbb{R}^{L \times \ell} \) & \(\mathbf{H} \mathbf{P} \mathbf{H}^T = \frac{1}{M-1} \mathbf{YY}^T \in \mathbb{R}^{\ell \times \ell} \)

- Essential schemes for analysis

 - Inflation

 - Localization
Formulation: Perturbed observation EnKF & ETKF

- Perturbed observation EnKF
 \[\mathbf{x}_m^+ = \mathbf{x}_m^- + \mathbf{K}(\mathbf{y}_m^- - \mathbf{y}_m^0) \]
 \[\mathbf{K} = \frac{1}{M-1} \hat{\mathbf{X}}^\top (\mathbf{1}_M - \frac{1}{M-1} \hat{\mathbf{Y}}^\top \mathbf{R}^{-1}) \in \mathbb{R}^{N \times N} \]
 \[\mathbf{y}_m^0 = \mathbf{y}^0 + \mathbf{e}_m^0 \quad \mathbf{e}_m^0 \text{ is drawn from } \mathcal{N}(\mathbf{0},\mathbf{R}^0) \]

- ETKF
 \[\mathbf{\hat{x}}^+ = \mathbf{\hat{x}}^- + \mathbf{\hat{X}}^- \mathbf{\omega}^w \quad \mathbf{\omega} \in \mathbb{R}^M \]
 \[\mathbf{\hat{x}}^- = \mathbf{\hat{x}}^- \mathbf{\omega}^- \quad \mathbf{\omega} \in \mathbb{R}^{M \times M} \]

 where \((\hat{\mathbf{P}}^w)^{-1} = (M-1) \]
 \[\hat{\mathbf{P}} = (\mathbf{P}^w)^{-1} + (\hat{\mathbf{Y}}^\top (\mathbf{R}^-)^{-1} \hat{\mathbf{Y}})^{-1} \]
 and
 \[\mathbf{\omega}^w = \hat{\mathbf{P}} (\hat{\mathbf{Y}}^\top (\mathbf{R}^-)^{-1} \mathbf{y}^o - \mathbf{y}^b) \]
 \[\mathbf{W}^w = (M-1) \hat{\mathbf{P}}^{w/2} \]

Formulation: EnSRF

- EnSRF by serial assimilation

 - Starting from

 \[\mathbf{\hat{x}}^{(0)} = \mathbf{\hat{x}}^0 \]
 \[\mathbf{\hat{X}}^{(0)} = \mathbf{\hat{X}}^0 \]

 - For \(l=1,\ldots,L \):

 \[\mathbf{\hat{x}}^{(l)} = \mathbf{\hat{x}}^{(l-1)} + \mathbf{\hat{X}}^{(l-1)} (\mathbf{y}_m^o - h_\alpha (\mathbf{\hat{x}}^{(l-1)})) \]
 \[\mathbf{\hat{X}}^{(l)} = \mathbf{\hat{X}}^{(l-1)} - \beta (\mathbf{\hat{X}}^{(l-1)} \mathbf{\hat{X}}^{(l-1)}) \]
 [\(= \{1-\beta (\mathbf{\hat{X}}^{(l)}) \mathbf{\hat{X}}^{(l)} \} \mathbf{\hat{X}}^{(l-1)} \) if \(h_\alpha (\mathbf{x}) \) is linear]

 where
 \[\mathbf{\hat{P}}^{(l-1)} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{h}_m (\mathbf{\hat{x}}^{(l-1)}) \]
 \[\mathbf{\hat{Y}}^{(l-1)} = (\mathbf{h}_m (\mathbf{\hat{x}}^{(l-1)}) - \mathbf{\hat{P}}^{(l-1)}) \in \mathbb{R}^{N \times M} \]
 \[(\mathbf{\mathbf{y}}^{(l)}, \mathbf{\alpha}^{(l)}, \beta^{(l)}) = (\mathbf{\hat{Y}}^{(l)} (\mathbf{\hat{Y}}^{(l)} \mathbf{\hat{Y}}^{(l)}) / (M-1), \mathbf{\hat{Y}}^{(l)} + \mathbf{R}^{(l)} , (1+\sqrt{\mathbf{R}^{(l)} / \alpha^{(l)} })^{-1}) \]
 \[\mathbf{K}^{(l)} = (M-1)^{-1} \alpha^{-1} \mathbf{\hat{X}}^{(l-1)} (\mathbf{\hat{Y}}^{(l)} \mathbf{\hat{Y}}^{(l)}) \in \mathbb{R}^{N \times N} \]

 - At \(L=1 \)

 \[\mathbf{\hat{x}}^o = \mathbf{\hat{x}}^{(L)} \]
 \[\mathbf{\hat{x}}^o = \mathbf{\hat{x}}^{(L)} \]
Essential Schemes: Inflation & Localization

- **Inflation**: common to all EnKF methods
 - For simplicity, multiplicative inflation to background ensemble spread:
 \[\hat{X} \rightarrow \rho \hat{X} \quad \text{with} \quad \rho \geq 1 \]
 - Other approaches to inflation
 - Additive: \[\hat{X} \rightarrow \hat{X} + \hat{X} \quad \text{where} \quad \hat{X}' \in \mathbb{R}^{N \times M} \text{ is small random matrix} \]
 - Relaxation to background:
 \[\hat{X} \rightarrow \mu \hat{X}^* + (1-\mu) \hat{X}^* \quad \text{with} \quad \mu \in [0,1] \]

- **Localization**:
 - Model dependent (Lorenz 3 variable model does not require localization)
 - Typical localization function: Gaussian
 \[c(r) = \begin{cases} \exp(-r^2 / R^2) & \text{if} \quad r \leq R, \; (\approx 3R) \\ 0 & \text{otherwise} \end{cases} \]

Essential Schemes: Localization Based on Observation

- For Perturbed Observation EnKF & EnSRF
 \[K = \frac{1}{(M-1)} \hat{X} \hat{Y}^T \left(\frac{1}{(M-1)} \hat{Y} \hat{Y}^T + R \right)^{-1} \]

- Spurious correlation in \(\hat{X} \hat{Y}^T \) and \(\hat{Y} \hat{Y}^T \)

- Localization is imposed based on distance from observation
 \(\hat{X}_{(l)} \hat{Y}_{(j)}^T \rightarrow c(r_{(l)}) \cdot \hat{X}_{(l)} \hat{Y}_{(j)}^T \)
 \(\hat{Y}_{(j)} \hat{Y}_{(i)}^T \rightarrow c(r_{(j)}) \cdot \hat{Y}_{(j)} \hat{Y}_{(i)}^T \)

- \(r_{(l)} \): distance between
 - obs position \(\ell : Y_{(l)} \) [subset of \(Y \)]
 - grid point \(n : \hat{X}_{(l)} \) [subset of \(\hat{X} \)]
Essential Schemes: Localization Based on Observation

- For ETKF (becomes LETKF)
 \[\hat{P}^* = (\hat{P}^\text{a})^{-1} + (\hat{Y}^\text{a})^T (R_o)^{-1} (\hat{Y}^\text{a})^{-1} \]

 - ETKF is performed at each grid point \(i\)
 - Inverse of observation error covariance \(R_o\) for observation \(i\) used are weighted based on distance from the grid point
 \[(R_o)^{-1} \Rightarrow c(r_i)(R_o)^{-1} \]