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[1] Scales of temporal and spatial variability of clear‐sky land surface temperature (LST)
in middle latitudes are empirically evaluated using data from satellite and land surface
observations. We consider separately the time‐dependent expected value, its spatial
variations, weather‐related temporal and spatial anomalies, and errors of LST observation.
Seasonal and diurnal cycles in the time‐dependent expected value of LST are found to be
the main components of temporal variations of clear‐sky LST. The scale of spatial
variability in the expected value of LST is found to be much smaller than the scale of
spatial variability of the weather‐related signal. The scale of temporal autocorrelation of
weather‐related LST variations is found to be in a good agreement with our earlier
preliminary estimate and equal to 3 d, which corresponds to the time scale of weather
system variations. This weather‐related signal in clear‐sky LST is statistically the same as
in surface air temperature (SAT) observations at regular meteorological stations. The scale
of spatial autocorrelation of weather‐related LST variations exceeds 1000 km, which is the
spatial scale of synoptic weather systems. These estimates provide us with a basis for
better understanding and interpretation of LST observations from past, current, and future
geostationary satellites and polar orbiters.
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1. Introduction

[2] Meteorologists have used land surface temperature
(LST) in the energy balance equations for a long time, but
they have only recently obtained a real opportunity to
observe it from satellites. Unfortunately, desirable high
spatial resolution infrared satellite observation of LST is
possible only during clear‐sky weather conditions. Micro-
wave radiometers that can monitor LST in cloudy conditions
are not yet able to provide sufficiently high spatial resolu-
tion. Of course, satellite observations should be able to
monitor very strong diurnal/seasonal cycles in clear‐sky
LST. But, can LST anomalies be distinguished from these
regular diurnal/seasonal variations, are these anomalies
weather‐related, can they be monitored? How large is land
cover/topography‐related spatial variability of LST? Is it
masked by the weather‐related signal? Unless we under-
stand the scales of spatial and temporal variability of LST,
we do not know if it is possible to accurately separate
diurnal/seasonal cycles, weather‐related signals, and land

cover/topography related variations in satellite observed
LST. In this paper, we are trying to evaluate the scales of
temporal and spatial variations of clear‐sky LST using the
available data from satellite and land surface observations.
The effects of cloudiness on LST will be discussed in a
separate paper. Results of analogous empirical studies of the
scales of temporal and spatial variability of soil moisture
[Vinnikov and Yeserkepova, 1991; Vinnikov et al., 1996;
Entin et al., 2000] are often used for development and
justification of requirements for satellite monitoring of soil
moisture. Results of this study should be used same way for
optimization of spatial and temporal resolution of satellite
observations. Such statistical information is needed for
developing a new approach to assimilation of satellite‐
observed clear‐sky LST into weather analysis and prediction
models. The same statistical information is needed for
monitoring long‐term climatic trends in LST. There are
many applications of statistical information when we are
trying to optimize monitoring of specific component of LST
temporal or spatial change on the background of all other
components of its variability.
[3] The boundary between atmospheric air and bare soil

(or rocks) and/or land cover (water, vegetation, snow, roads,
buildings, etc.) has complicated three dimensional shape.
Physical temperature of the part of this boundary that con-
tributes in emitting upward hemispheric flux of thermal
radiation into atmosphere can be considered as LST or
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radiative skin temperature. Observed from different direc-
tions, this temperature has an angular anisotropy. The same
type of definition can be used for land surface emissivity. A
comprehensive discussion of LST and emissivity definitions
for heterogeneous and non isothermical surfaces has been
provided by Becker and Li [1995]. The main requirement is
that a properly defined LST and emissivity should allow
accurate computation of radiation and sensible heat fluxes
between land surface and atmosphere.
[4] Standard meteorological observations usually do not

include measurement of LST. An exception is the recently
established Climate Reference Network (CRN) in the United
States, which provides hourly averages of LST observed by
narrow angle infrared radiometers, blackbody calibrated.
More reliable LST data with higher (3 min averages) tem-
poral resolution can be obtained from upward (Iu) and
downward (Id) broadband infrared hemispheric fluxes
observed at the Surface Radiation Network (SURFRAD) in
the United States and analogous stations in other countries
[Augustine et al., 2000]. Assuming that land surface emis-
sivity (E) is known, an efficient LST can be estimated from
traditionally used equation LST = {[Iu−(1−E)Id]/(sE)}0.25,
where s is Stefan‐Boltzmann constant. Unfortunately, nei-
ther CRN nor SURFRAD stations observe cloudiness.
Nevertheless, data from these stations can be combined with
geostationary satellite observations for cloud detection. A
simple Russian technique of LST observations uses a liquid‐
in‐glass thermometer laying horizontally, half buried in bare
soil, in an observational plot. When the ground is snow
covered, the thermometer is placed on the snow surface and
the temperature of the snow cover is measured [Razuvaev et
al., 2007]. Such observations may be considerably biased
when the thermometer is exposed to direct solar radiation
and cannot be accurately used for studying daytime clear‐
sky LST.
[5] Downward looking pyrgeometers at SURFRAD sta-

tions are installed at height of 8 m above land surface. This
footprint is much smaller compared to footprints of satellite
radiometers used in this study: ∼4 km at nadir for GOES‐10
Imager and ∼90 m for TERRA ASTER observations.
[6] Surface air temperature (SAT) at SURFRAD stations

is observed by a Sun‐shielded thermistor installed near the
top of the 10 m tower. It is usually observed at meteoro-
logical stations at standard heights of 1.5 m or 2 m above
land surface. This difference is not significant for this study.
As all other SURFRAD variables, SAT is averaged for
3 min time intervals. Efficient spatial averaging of SAT data
depends on wind speed and is of the order of 1 km. We will
see later that this scale is much smaller than the scale of
spatial autocorrelation of weather‐related signal in this
variable.

2. Method

[7] The method used here to retrieve clear‐sky LST from
observations of geostationary satellite GOES‐10 over the
continental part of the United States is described by Yu et al.
[2008, 2009]. The temporal increment in this LST data is
1 h or longer when cloudiness does not permit satellite
observations of the land surface. Temporal and spatial
variability of meteorological variables is often studied using
a theory of random stationary processes and fields. It is well

established that the regular autocorrelation function of
meteorological variable decreases with an increase of time
lag or distance between observations [Czelnai et al., 1976;
Kagan, 1997]. The distances or lags at which spatial or
temporal autocorrelation functions approach zero (or sta-
tistically insignificant level) are used here to characterize
scales of spatial or temporal variability. This definition of
LST variability scales is different than used for soil mois-
ture with exponential correlation functions [Vinnikov et al.,
1996; Entin et al., 2000]. The estimates show that correla-
tion functions of LST are not quite exponential.
[8] We assume that long‐term climatic trends are insig-

nificant in satellite and surface observed LST and SAT data
used in our analysis. There were no instrumental problems
or other events that made the observed records inhomoge-
neous. We understand that interannual and interdecadal
climate variability is not well represented in the data used
here. Let us denote satellite observed LST as f(t, x, y), where
t is time; x and y are horizontal coordinates. As discussed by
Vinnikov et al. [2008], we present all temporal variations of
LST as a sum of three independent components. The leading
components of temporal variability of LST in the middle
latitudes are the systematic diurnal and seasonal cycles de-
noted as F(t, x, y) which is the time‐dependent expected
value of this temperature. The observed value of LST also
contains the weather anomaly (weather‐related signal), f ′(t,
x, y), and the random error of observation, "(t, x, y). From
that, we can write

f t; x; yð Þ ¼ F t; x; yð Þ þ f ′ t; x; yð Þ þ " t; x; yð Þ: ð1Þ

Random errors of observations at different locations and at
different times are assumed to be uncorrelated and can be
characterized by their variance

" t; x; yð Þ" t þDt; xþDx; yþDyð Þ

¼ �2 t; x; yð Þ for Dt ¼ Dx ¼ Dy ¼ 0;

0 forDt 6¼ 0 or Dx 6¼ 0 or Dy 6¼ 0:

� ð2Þ

For the same satellite radiometer, the dependence of stan-
dard error d(t, x, y) on horizontal coordinates is weak and
can be ignored for nearby pixels. We also ignore the
dependence of standard error on time, but such errors may
vary between day and night, as well as between wet and dry
atmospheric conditions. For a stationary instrument at a
surface station, random error of observation is considered to
be statistically independent of errors of other instruments at
the same or at other locations.
[9] Temporal variations of weather‐related signal (anoma-

lies) at a location (x, y) can be characterized statistically by the
lag‐covariance function:

Rf �; x; yð Þ ¼ f ′ t; x; yð Þf ′ t þ �; x; yð Þ ¼ �2
f x; yð Þr �ð Þ: ð3Þ

Here rf (t) is a temporal lag‐correlation function that depends
on time lag t, and sf (x, y) is standard deviation of f ′(t, x, y) that
depend on horizontal coordinates and has weak diurnal and
seasonal cycles that can be ignored in (3) based on estimates
discussed in the section 4 below.
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Figure 1
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[10] Spatial variations of the weather‐related signal can be
characterized statistically using a spatial autocovariance
function:

Rf x; y; �ð Þ ¼ f ′ t; x; yð Þf ′ t; xþDx; yþDyð Þ
¼ �f x; yð Þ�f xþDx; yþDyð Þrf �ð Þ; ð4Þ

where sf (x, y)is standard deviation of the same f ′(t, x, y) as
in (3), r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þDy2

p
is a distance and r(r) is the spatial

autocorrelation function.
[11] The signal F(t, x, y), which represents systematic

seasonal and diurnal cycles, is spatially and temporally
dependent. The following simple mathematical model,
which is applicable for its approximation, was tested for
LST and other meteorological variables by Vinnikov and
Grody [2003] and Vinnikov et al. [2004, 2006, 2008]:

F t; x; yð Þ ¼
XK
k¼�K

XN
n¼�N

akn x; yð Þei�t n
Tþ k

Hð Þ: ð5Þ

This expression represents a result of amplitude modulation
of a diurnal cycle variation, approximated by K Fourier
harmonics with a period of H = 1 d, by an annual cycle
variation, approximated by N harmonics with period T =
365.25 d. The ak,n coefficients can be estimated using
ordinary or generalized least square techniques. F(t, x, y) is
a periodic function of two periods H and T and can be
displayed in a two‐dimensional plot as a function of two
arguments, which are time intervals from the beginning of
a day and from the beginning of a year.
[12] The dependence of F(t, x, y) on horizontal co-

ordinates cannot be studied using observations of existing
stations. There are not many pairs of LST stations with small
distances between them. Locations of LST observing sta-
tions are usually chosen to be representative for their sur-
rounding region. Observations of such stations do not
represent the main part of spatial variability of F(t, x, y),
which depends on spatial variations of topography and land
cover. For example, outside of the tropics there is a well
known difference in the temperature regime on southern and
northern slopes of hills. For this reason, observation plots
are never chosen on a slope, and are usually placed at
horizontal locations. At the same time, vegetation at
observational plots usually does not represent agricultural

activity in the vicinity of stations. Real spatial variability in
the expected value of clear‐sky LST F(t, x, y) can be seen
only from very high resolution satellite and aerial images.
This component of spatial variability in the expected value
can be characterized statistically using a geostatistical
technique of structure functions. For spatially homogeneous
and isotropic random fields, the structure function can be
defined as the mean square of the difference between two
values of our variable as a function of a distance (r) between
points:

bF t; �ð Þ ¼ F t; x; yð Þ � F t; xþDx; yþDyð Þð Þ2: ð6Þ

The relationship between the structure and covariance
functions can be found in the work of Kagan [1997]. We
will see later that the scale of the weather‐related spatial
variability of LST is much larger than the scale of spatial
variations in the expected value of LST. Reasonable esti-
mates of b(t, r) for relatively small distances, when f ′(t, x, y) ≈
f ′(t, x + Dx, y + Dy), can be obtained from high‐resolution
satellite observations of LST. Using equations (1), (2), and
(5) and the assumption that the standard error of this
observation does not depend on coordinates d2(x, y) = d2 =
const, we get

bF t; �ð Þ � f t; x; yð Þ � f t; xþDx; yþDyð Þð Þ2 � 2�2: ð7Þ

This means that random errors of LST observation do not
affect estimates of the spatial scale of F(t, x, y) variations
and observed f (t, x, y) can be used instead of the not
observable F(t, x, y).

3. Data

[13] Hourly data used for studying temporal variations of
LST are from three (2001, 2004, and 2005) years of ob-
servations of four SURFRAD stations listed in Table 1, and
GOES‐10 satellite retrieved LST at the locations of these
stations. The statistical algorithm that has been applied to
eliminate cloud contaminated data uses both satellite and
SURFRAD observations. This algorithm is more objective
than the earlier one used by Vinnikov et al. [2008], and
detects nighttime cirrus cloudiness more accurately than the
algorithm that does not use satellite observations [Long and
Turner, 2008; Long et al., 2006; Long and Ackerman,

Table 1. List of SURFRAD Stations

SURFRAD
Station Name Land Cover Type

Location Number of
Observations

Surface Emissivity
[Snyder et al., 1998] Biasa (°C)Lat. (°N) Lon. (°W)

Fort Peck, Montana Grassland 48.31 105.10 7,443 0.984 −2.1
Boulder, Colorado Cropland 40.13 105.24 7,083 0.982 −1.8
Bondville, Illinois Cropland 40.05 88.37 6,884 0.982 −1.3
Desert Rock, Nevada Open Shrub Land 36.63 116.02 11,870 0.957 −1.9

aThe bias is defined as �LSTGOES‐10 ‐LSTSURFRAD�.

Figure 1. Time‐dependent expected value: first row depicts hLSTSi of SURFRAD observed LSTS; second row depicts
STD(LSTS), standard deviation of this temperature; third row depicts hSATSi, SURFRAD surface air temperature; fourth
row depicts hLSTG‐LSTSi, systematic difference between GOES‐10 and SURFRAD observed LST; fifth row depicts
hLSTS‐SATSi, systematic difference between SURFRAD observed LST and SAT. Dashed lines display sunrise and sunset
times. Sixth row depicts monthly numbers of available daytime and nighttime clear‐sky observations at each station.
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2000]. Table 1 also contains the total number of available
clear‐sky observations for each of these stations. The
SURFRAD stations provide LST averages for each 3 min
interval. Each clear‐sky satellite LST has been collocated
with the corresponding ground station and time matched to
the nearest 3 min surface observation. Only coincided in
time satellite and surface data that exist in both data sets has
been used. Additional information about number of clear‐
sky observations for daytime and nighttime for each month
is given in the sixth row of the panels in Figure 1. At
nighttime, there is no visible cloud reflectance data for
use in cloud screening algorithm. So, tighter thresholds
based on infrared channels are applied to minimize cloud‐
contaminated LST. This explains the fewer number of night-
time clear‐sky data at the Desert Rock SURFRAD station.
[14] GOES‐10 observed LST has been retrieved using a

split window algorithm by Ulivieri and Cannizzaro [1985]
as modified by Yu et al. [2009]. LST at the SURFRAD
stations is computed using observation of broadband
upward and downward infrared fluxes as has been explained
in section 1. The surface emissivities by Snyder et al. [1998],
which are dependent on land cover type, are shown in
Table 1. The same emissivities have been used to compute
LST from satellite and surface observations. Seasonal cycles
and differences in emissivities of different crops are ignored.
These assumptions do not influence results of this scale
analysis.

4. Seasonal and Diurnal Cycles in the Expected
Value of LST

[15] Earlier, Vinnikov et al. [2008] used one (2001) year
of independent observations of LST from two geostationary
satellites (GOES‐8 and GOES‐10) at the locations of five
SURFRAD stations to evaluate the time‐dependent ex-
pected value. It was found that systematic differences
between these three estimates themselves have seasonal and
diurnal cycles and are comparable in magnitude with ran-
dom errors of observation. Here we use three years (2001,
2004 and 2005) of LST observations at four SURFRAD
stations and one (GOES‐10) satellite with a new objective
statistical algorithm to filter out cloud‐contaminated satellite
and surface‐measured LSTs. Estimates of diurnal/seasonal
variations, the term F(t, x, y) in (1), of SURFRAD observed
clear‐sky LSTs (Figure 1, first row) update estimates dis-
cussed by Vinnikov et al. [2008]. These new estimates better
represent interannual variability of the LST because they are
based on three years of observation. The longer time series
provides an opportunity to estimate the diurnal/seasonal
variations of standard deviations (Figure 1, second row). To
obtain these estimates, the approximation (5) has been
applied to the time series of squared residuals (f ′(t, x, y) +
"(t, x, y))2, as has been done earlier by Vinnikov and Robock
[2002] and Vinnikov et al. [2002, 2004]. The computed
variance is overestimated because it is equal to a sum of real
LST variance and variance of observation error. Fortunately,
the errors are significantly smaller than weather‐related
fluctuations [Vinnikov et al., 2008]. Standard deviations for
GOES‐10 observed LSTs are not shown here because they
reveal the same diurnal/seasonal patterns and values very
close to values to those presented in Figure 1. However,

these patterns vary from station to station and cannot be
easily interpreted.
[16] The expected value of annual average LST is equal to

the coefficient a00 in (5). Mean differences of annual LST
temperatures estimated from the observations of GOES‐10
and SURFRAD stations are given in Table 1 as �LSTG‐
LSTS�. The estimations show that the GOES‐10 observed
LST is systematically underestimated, by about 1.8°C,
compared to LST observed at the four SURFRAD stations.
If annual biases in expected values are removed, we still
have a diurnal/seasonal pattern of systematic differences
between satellite and surface observed LST (Figure 1, fourth
row) denoted as hLSTG‐LSTSi. These differences manifest
angular anisotropy of LST field and depend on viewing and
illumination geometry. They also depend on differences in
land cover of a pyrgeometer footprint at SURFRAD sta-
tions, that never have large trees and agricultural activity,
and the much larger footprint of the satellite pixel.
[17] The expected value of surface air temperature (SAT)

at the SURFRAD stations (Figure 1, third row) is analyzed
and compared to the LST. Again, we use SAT observations
which are simultaneous with satellite and SURFRAD clear‐
sky LST data. Seasonal and diurnal cycles of the LSTS are
significantly larger than those of the SATS. Mean differ-
ences, hLSTS‐SATSi, of these temperatures at clear‐sky
conditions (Figure 1, fifth row) are positive during daytime
(LST > SAT) and negative at nighttime (LST < SAT) and
are dominated by much larger daytime differences, LSTS‐
SATS ≈ 5–20°C. By magnitude, these differences are sev-
eral times larger in daytime than nighttime. The largest
systematic differences, LSTS‐SATS ≥ 20°C, are observed at
Desert Rock, NV, which has a very dry desert climate and
little or no vegetation or water.

5. Scales of Temporal Autocorrelation
of Weather‐Related LST Variations

[18] Empirical estimates of temporal lag‐correlation
functions of residuals, f (t, x, y)−F(t, x, y) = f ′(t, x, y) + "(t, x,
y), which are weather‐related anomalies of the GOES‐10
observed LSTG, the SURFRAD observed LSTS, and the
SURFRAD observed SATS, and are contaminated by ran-
dom errors of measurements, are shown in Figure 2. The
traditional Fast Fourier Transformation (FFT) technique
could not be applied because of large time gaps in the data
caused by cloud cover. So, we estimated and plotted cor-
relation coefficients for hourly time lags ∣t∣ = 1, 2, 3 …,
168 h using all pairs of observations inside of the hourly
time intervals [t − 0.5, t + 0.5]. As was found by Vinnikov
et al. [2008] from one year data, the scale of the temporal
autocorrelation of the weather‐related component of clear‐
sky LST variation Tf is about 3 d.

Rf �; x; yð Þ ¼ �2
f x; yð Þrf �ð Þ; if � � Tf then rf �ð Þ � 0; Tf � 3 dy:

ð8Þ

We come to the same conclusion looking at lag‐correlation
LST estimated from 3 years of satellite and SURFRAD LST
data. Only one station, Desert Rock, NV, shows the exis-
tence of long‐term interannual variability. We also esti-
mated lag‐correlation functions for the SAT for clear‐sky
conditions and found that autocorrelation functions of clear‐
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sky SATS and LSTS are almost indistinguishable. Does this
mean that LST and SAT carry the same weather‐related
signal? To answer this question we evaluated the temporal
cross‐correlation functions of the GOES‐10 observed LSTG

and the SURFRAD observed LSTS and SATS for the same
stations, which are presented in Figure 3. These three cross‐
lag‐correlation functions for each of the stations look the
same and they are not very different when compared to the
autocorrelation functions presented in Figure 2. Small dif-
ferences in the cross‐correlations reflect differences in errors
of observations, which are not very large. Cross‐correlations
of two LST time series, observed from the GOES‐10 and
from the SURFRAD stations are totally symmetric. An
asymmetry in estimates of cross‐correlation functions of the
LST and the SAT can be seen but it is very small. One
should expect from simple physics that changes in clear‐sky
LST should precede changes in SAT. It looks as if temporal

variations in both of these variables at each location are
primarily modulated by changes in synoptic weather sys-
tems. This means that useful information in clear‐sky LST
observations, beyond that of systematic seasonal and diurnal
cycles, is mostly the same as in routine observations of
temporal variations of SAT at regular meteorological sta-
tions. Note that this conclusion is for clear‐sky weather
only. The life cycle of moving weather systems is about one
week and that is longer than the time scale of LST and SAT
perturbations at clear skies at fixed locations.

6. Scales of Spatial Autocorrelation of Weather‐
Related LST Variations

[19] Spatial autocorrelation functions of surface air tem-
perature are well studied. A well‐known comprehensive
review on the statistical structure of meteorological fields

Figure 2. Lag‐correlation functions of satellite GOES‐10 observed LSTG, SURFRAD observed LSTS,
and SURFRAD observed SATS. These estimates are biased (underestimated) because of random errors of
observation.
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discusses results of 20 related publications [Czelnai et al.,
1976]. There is no need to repeat these studies. The scales
of spatial autocorrelation of SAT are found to be generally
larger than 1000 km at different times of day for all seasons
at most more or less homogeneous midlatitudinal regions of
Europe and Asia [Rakoczi et al., 1976]. Hrda [1968]
showed that for distances up to ∼150 km spatial autocor-
relation functions of SAT under clear‐sky conditions are
significantly larger than for all sky conditions and overcast
sky conditions. This means that scale of spatial autocorre-
lation of SAT for clear‐sky conditions should be larger than
one estimated for all sky conditions. The same is expected
for midlatitude America. Since the scales of temporal
autocorrelation of weather‐related variations in LST and
SAT are equal, the scales of spatial autocorrelation should
be equal for weather‐related variations in LST and SAT
fields. This is because the temporal local weather signal is

generated by the moving pattern of the same weather sys-
tems. The scale of spatial autocorrelation of clear‐sky LST
can be approximately evaluated from estimates of the scale
of temporal autocorrelation obtained in section 5. Using a
mean speed of 5 to 10 m/s for the Northern hemisphere
midlatitudinal weather systems propagation [van den Dool,
2007] we have to multiply this speed by the scale of tem-
poral lag‐correlation, which is 3 d. The resulting estimate of
a distance at which the spatial autocorrelation of the LST
field is near zero was found to lay somewhere between
1300 km and 2600 km. On the basis of these estimates we
can conclude that the scale of spatial autocorrelation in
the weather related component of clear‐sky LST variations
exceeds 1000 km. This is important for understanding that
as long as the footprint of a satellite radiometer is much less
than the scale of weather systems, less than 10 km for
example, it can be efficiently used for monitoring the

Figure 3. Cross‐lag‐correlation functions of GOES‐10 observed LSTG, SURFRAD observed LSTS and
SURFRAD observed SATS. These estimates are biased (underestimated) because of random errors of
observation.
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weather‐related spatial signal in the LST field. We can
summarize this as

Rf �ð Þ ¼ �2
f rf �ð Þ; if� � Lf then rf �ð Þ � 0; Lf > 1000 km: ð9Þ

More accurate empirical estimates of spatial autocorrelation
functions of the weather‐related component of LST vari-
ability can be obtained using not less than one full year of
satellite LST observations for regions with linear size of
about a few thousand km. Time‐dependent expected value
should be computed for each location and subtracted from
observed LST to compute weather‐related anomalies f ′(t, x,
y). This time‐consuming task is for future research.

7. Scales of Spatial Variability in the Expected
Value of LST

[20] The time‐dependent expected LST, F(t, x, y), de-
pends on horizontal coordinates. By default, the main goal
of satellite observations of LST is to monitor its spatial and
temporal weather‐related variations. From this point of
view, the large spatial and temporal variation of expected
value of LST interferes with the weather signal and makes it
unrecognizable and undetectable in observed data. So we
need information about scales of variability of both, weather
signal and expected value. Let us assume that F(t, x, y) can
be considered as a random, homogeneous and isotropic
function of coordinates x and y at each time t. The structure
function defined in equations (6) and (7) for such a field at
time t depends on the distance between two arbitrarily
selected points and can be estimated using single high‐
resolution spatial images of LST for the selected region. An
example of the structure function estimates for the vicinity
of the SURFRAD station Bondville, Illinois, is given in
Figure 4. These estimates are for daytime and nighttime
observations of LSTs derived from Advanced Spaceborne
Thermal Emission and Reflectantion Radiometer (ASTER)

data, a relatively high (90 m at nadir) spatial resolution
radiometer onboard Terra, a satellite launched in 1999 as
part of NASA’s Earth Observation System (EOS). Both
curves in Figure 4 show the same, close to LF ≈ 1.5–2 km,
distance of saturation of the structure functions, which
correspond to the scale of spatial autocorrelation. Spatial
variability of the expected value of LST has two main
sources, topography and pattern of vegetation cover. The
primary cause of daytime spatial variation in LST is the
fraction of the surface covered with active transpiring veg-
etation. Evapotranspiration decreases the amount of net
radiation at the surface that goes into specific heat and in-
creases the latent heat flux from the surface. For this reason
vegetated surfaces are substantially cooler than bare soil and
dead vegetation. At night, without insolation to supply large
surface energy fluxes, surface LST is less spatially variable
at the local scale although some nighttime spatial variation
in LST can be caused by concentration of cold air in low
spots. Nevertheless, we expect that the variance and the
shape of the structure functions change with a diurnal cycle,
not the distance at which the structural functions are satu-
rated. Generally, the main scale of spatial autocorrelation
(LF) should be approximately the same at daytime and at
nighttime because of its dependency on the topography and
vegetation pattern which change slowly. Our preliminary
estimates show that LF � Lf. By converting the structure
functions into covariance functions we can summarize

RF t; �ð Þ ¼ �2
F tð ÞrF t; �ð Þ; where rF t; �ð Þ � 0 for � � LF :LF � Lf :

ð10Þ

Note that variances of observation errors in structure func-
tions estimates shown in Figure 4 are negligibly small
compared to spatial variance of expected value of LST itself.

8. Concluding Remarks

[21] Observed spatial and temporal variations in LST can
be considered as a sum of three independent components
shown in equation (1); each has its own temporal and spatial
variability.
[22] First, F(t, x, y) is the time‐dependent expected value

of LSTs. At each location (x, y) it represents climatology of
diurnal and seasonal cycles of LST. Its temporal variation is
the largest signal in the observed LSTs. The change rate of
mean LST in the diurnal cycle at some of the stations
reaches 5–6°C/h. According to its temporal cycles for
diurnal and seasonal variations, once we accumulate enough
data to accurately estimate the cycle signal, no more ob-
servations of LST are needed to know its expected value
each day of a year and at each time of day. The proposed
approximation for this function as described in equation (5)
is well tested, though it contains too many empirical para-
meters (e.g., 25 for K = N = 2) to be easily determined at
each location. Fortunately, many of them are negligibly
small and statistically insignificant. Because the LST field
has angular anisotropy, the functions F(t, x, y) estimated for
the same location from observations of two American geo-
stationary satellites GOES‐EAST and GOES‐WEST are not
the same [Vinnikov et al., 2008]. Sooner or later, multiyear
LST observations from each geostationary satellite should
be used to evaluate time‐dependent expected value of LST

Figure 4. Empirical estimates and approximations of struc-
ture functions of F(t, x, y) for two satellite high‐resolution
LST images made by ASTER in the vicinity of the Bond-
ville, Illinois, SURFRAD station. Nighttime image obtained
on 12 March 2004 at ∼2230, and daytime image obtained on
19 September 2004 at ∼1030 local solar time. Exponential
functions used for approximation bF(r) do not behave well
for distance r = 0 and are shown in this figure for visualiza-
tion of expected dependence of structure functions on r for
large distances.
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at each clear‐sky land pixel in the field of view of the
satellite radiometers. Observations of meteorological
satellites in polar orbits are not able to provide sufficient
information about the diurnal cycle of LST and are
more or less useless for evaluation of the time‐dependent
expected value F(t, x, y).
[23] Spatial variations in F(t, x, y) are mostly caused by

the topography and vegetation patterns. It is recognized that
they can be studied and evaluated statistically using a
technique that is traditional in geology and geostatistics. Our
analysis is based on assumption that at distances less than a
few tens of km at each specific time of a day and day of a
year, F(t, x, y) can be considered as a homogeneous and
isotropic random field of horizontal coordinates. In this
assumption it is found that the scale of spatial autocorrela-
tion in such a field in vicinity of selected SURFRAD station
does not exceed a few km in distance. So, the initial
assumption is acceptable. This scale dependence on time of
day or season still should be studied for different types of
topography and land cover. Spatial variance of F(t, x, y)
has very strong diurnal (and seasonal) cycles with its min-
imum at nighttime. Scales of this spatial variability are close
to the size of footprints of radiometers used for LST
observation with current and future generations of geosta-
tionary satellites. Many problems of characterization and
optimization of satellite instruments can be formulated and
solved using such statistics and theory of random meteo-
rological fields [Kagan, 1997]. Among them are evaluations
of the effects of pixel size and uncertainties in pixel geo-
location. If the size of a satellite radiometer footprint is large
enough, a significant part of this small‐scale spatial vari-
ability in the expected value is suppressed by spatial aver-
aging over the pixel area. The scale of such microclimatic
spatial variability of LST is much smaller than the synoptic‐
scale LST variations and even smaller than the size of
GOES‐10 footprint. Pixel averaged signal is close to LST
signal observed at well selected area representative obser-
vational plots of surface stations.
[24] Subtracting the expected F(t, x, y) from the observed

LST value f (t, x, y) we obtain a combination of the weather‐
related component of LST temporal and spatial variability f ′
(t, x, y), and a random error "(t, x, y). We found that the time
scale of temporal variability of LST is about 3 d in mid-
latitudes of North America. We showed that the weather‐
related signal in time series of clear‐sky LSTs is almost the
same (statistically indistinguishable) as that we see in time
series of clear‐sky SATs. We also concluded that the scale
of spatial variations in weather‐related clear‐sky LST vari-
ability exceeds 1000 km. This means that the current spatial
resolution of satellite LST observations from polar and
geostationary orbits is useful for monitoring of the weather‐
related spatial patterns of LST variability. However,
weather‐related signal f ′(t, x, y) cannot be separated from
diurnal cycle in observation of polar orbiters without
knowing F(t, x, y).
[25] Because of measurement errors, lag = 0 correlation

coefficients between GOES‐10 and SURFRAD observed
LST in Figure 3 are less than one (0.93–0.96). Assuming, as
has been shown earlier [Vinnikov et al., 2008], standard
errors of the LST observations from GOES‐10 satellite and
SURFRAD stations are approximately equal, we conclude
that variances of observation errors do not exceed 5% of the

variance of weather‐related signal at the locations of four
selected SURFRAD stations. This is an excellent accuracy
for the LST weather signal monitoring in middle latitudes.
[26] As noted earlier the satellite observes LST only under

clear‐sky conditions which mostly is over high‐pressure
regions. Total variability of LST for all sky conditions is
much larger than for clear‐sky only. Satellites cannot mea-
sure LST for cloud contaminated pixels. This makes satellite
retrieved LST fields discontinuous and more difficult to
assimilate in weather prediction models because of large
difference in regimes of LST at clear and overcast skies.
(Many other satellite products are discontinuous, satellite
soundings and winds for example, yet they are assimilated
in model very well). In many cases, SAT observed at ex-
isting networks of meteorological stations can be used as
proxy for LST in overcast sky conditions. For clear‐sky, we
found that weather‐related signal in LST and SAT fields are
statistically very close. This means that SAT observations
and satellite retrieved LST should be assimilated together. A
new approach for such assimilation should be developed.
The difference between clear‐sky LST and SAT provides
valuable information on stability of the atmospheric
boundary layer. Dry atmospheric conditions and clear skies
usually cause extremely low LST at nighttime and
extremely high LST in result of solar heating in the early
afternoon. Such information is very important in for realistic
high‐resolution modeling of the chemical cycles of such
atmospheric pollutants as ozone and other physical and
chemical processes in atmospheric boundary layer. LST for
clear‐sky conditions have special importance and have to be
monitored even in absence of such information for cloudy
sky.
[27] The main result of this study consists of evaluation of

all major components of temporal and spatial variability of
midlatitude satellite observed LST. We understand now
their physical nature and scales of their autocorrelation. The
same approach can be applied to study statistical properties
of LST field in equatorial, tropical, subtropical and high
latitudes for different land covers and different landscapes
include mountains. More research for midlatitude LST is
also needed.
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