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Abstract 
 
     Using Lorenz96 model with 40 variables, classical methods of advanced data assimilation 
are explained, implemented and examined. The classical methods include full Kalman filter (KF), 
extended Kalman filter (EKF), full Kalman smoother (KS), its iterative versions, and sawtooth 
algorithms (Johnston and Kurishnamurthy 2001). A brief explanation of the theoretical 
background of ensemble Kalman filter (EnKF) is also provided. The methods are tested under the 
perfect model assumption, and it is shown that KS clearly outperforms KF as expected thanks to 
the use of the future information. In addition, it is shown that iterative KF works more stably and 
outperforms KF especially in less dense observations both temporally and spatially. Furthermore, 
model errors are considered in a very simple way. It is shown that the effect of model errors was 
significantly reduced by increasing the variance inflation parameter. 
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1 Introduction 
 
     It is important to find the best estimate of the atmospheric and oceanic states using all 
available information. In numerical weather prediction (NWP), for example, the better initial 
state provides the more accurate forecast. For climate studies, more accurate estimation of the 
atmospheric and oceanic states in past years, i.e. more accurate reanalysis products, provides 
important fundamental information. Data assimilation systems are designed to provide the most 
probable estimation of atmospheric and oceanic states, when observation data and a time 
evolving model are given. Thus, it is important to develop better data assimilation systems in 
earth sciences for daily NWP as well as climate studies. 
 
     The main difficulties in practical data assimilation on atmospheric and oceanic models 
exist in their high dimensionality, nonlinearity, and imperfectness. In general, the models used in 
atmospheric and oceanic sciences have millions of dimensionality, which makes it extremely 
difficult or almost impossible to implement truly optimal data assimilation system. Thus, some 
simplified methods such as successive correction method and optimal interpolation (OI) have 
been used for long in the operational NWP. These simplified methods assume constant second 
order statistics of forecast error, which is actually evolving in time. Recently, the growth of 
computational capability makes it possible to implement so-called advanced data assimilation 
methods including four-dimensional variational (4DVAR) data assimilation, which considers time 
evolution of the error covariance matrix implicitly. Even in this stage, however, the other 
difficulties, the model nonlinearity and imperfectness, are not considered thoroughly. 
 
     Away from the difficulties, Kalman (1960) proposed an optimal data assimilation algorithm 
known as Kalman filter (KF), which has been used widely in control systems including 
satellite-tracking calculations. Basically, if a time evolution model and observation data are given, 
KF solves the optimal estimation in terms of the second order statistics which of course evolves 
in time. It is known that in linear systems, KF and 4DVAR are equivalent (see for example, 
Bouttier and Courtier 1999). In large dimensional systems, KF is too expensive to implement, but 
Evensen (1994) proposed an efficient way to implement KF algorithms using ensemble 
forecasting, which is known as ensemble Kalman filter (EnKF), and various implementations of 
EnKF have been proposed so far (Tippet et al. 2003). Thus, it is a current issue to implement KF 
using computationally effective methods in atmospheric and oceanic sciences, which is why the 
full KF is cited as a classical method in the present paper. In nonlinear generalization, extended 
Kalman filter (EKF) is a general extension of the classical KF using tangent linear 
approximations, whereas EnKF does not linearize the model and have shown some advantages in 
nonlinear systems (Evensen 1994). 
 
     Smoothing problem is also an important issue in data assimilation. Filtering problem is a 
time forwarding process and only past information is used, whereas smoothing problem includes 
time backwarding processes and future information is also included. Because of the additional 
future information, smoothers can provide better estimation than filters. Even in nonlinear 
systems that forget past information in some finite time scales, smoother significantly 
outperforms filters because more amount of useful information is included from future. In NWP, 
smoothing problem seems useless because the latest data are assimilated to produce the latest 
analysis, that is, future observation is not available. However, if smoothers can create better 
estimation compared to filtering solutions, smoothers could be a better choice in reanalysis of 
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past years, where future observations are also available. In this sense, smoothing problem 
deserves to be considered in atmospheric and oceanic sciences. As a smoother, Kalman smoother 
(KS) is a well-known algorithm that uses KF in time forwarding and a similar algorithm in time 
backwarding. Extended Kalman smoother (EKS) is a nonlinear generalization of KS just like 
EKF is that of KF. At this point, since EKS provides both time forwarding (i.e. EKF) and 
backwarding algorithms, it is possible that these time forwarding and backwarding processes are 
repeated iteratively, which is known as iterative EKS (IEKS). It is said that IEKS gives better 
solution than simple EKF or EKS especially in nonlinear cases. In addition, there is another 
approach known as sawtooth IEKS (SIEKS) based on alternating expectation conditional 
maximization (AECM) formalism, whereas IEKS is based on expectation-maximization (EM) 
formalism. As EKS and EKF is a simplified version of IEKS, SIEKS has its simplified versions: 
sawtooth EKS (SEKS) and sawtooth EKF (SEKF), which give better estimations in some 
particular cases (Johnston and Kurishnamurthy 2001). 
 
     As a classical methods tour in the present paper, we forget about the problem of high 
dimensionality. As mentioned above, it is impossible to implement classical methods in 
high-dimensional systems. Using a low-dimensional system known as Lorenz 1996 model (L96, 
Lorenz 1996, 1998), classical methods of advanced data assimilation are introduced, 
implemented, and examined. The classical methods include full KF which is described later, EKF, 
full KS, an iterative method, and a sawtooth method. The system simulates atmospheric-like 
chaotic dynamics in one spatial dimensionality. In addition to the perfect model situation, 
constant and temporally varying biases are considered in a simple way. In realistic cases, a model 
cannot be perfect, and it is important to consider model errors. In the present paper, model errors 
are not treated comprehensively, but a simple treatment has shown to stabilize KF, which is 
described in section 3. 
 
 
2 Theory 
 
2.1 Kalman Filter 
 
     KF algorithms consist of two parts: time evolution and innovation. In a linear model , 

 and  are time evolution equations, where , , and Q  
denote state vector (model variables), error covariance matrices, and a model error covariance 
matrix, respectively. The upper subscripts mean analyses (a) and forecasts (f), and the lower 
subscript denotes time steps. Innovation equations are given as  and 

, where  is a Kalman gain matrix, which gives an 
optimal solution of this algorithm (for mathematical proof of the optimality of KF, see for 
example, Jazwinski 1970). Here  denotes linear observation operator defined as a mapping 
from model variables to observation data. For a nonlinear extension, tangent linear approximation 
is assumed by expanding the nonlinear model 
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     For an effective implementation of this algorithm, taking square root of analysis error 
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In this form, the adjoint model is not needed. Furthermore, this formulation enables to use 
nonlinear model instead of tangent linear model. This is just a practical treatment, but this has an 
advantage in the same way as EnKF, and this is called full KF in the present paper. Because the 
analysis error covariance matrix is positive definite, the real square root exists. Each column of 
the square root matrix  is considered as a perturbation around , which is an input to the 
model. Therefore, if nonlinear model is used in the eq.(2.1.6), 
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should be computed, where ε  is a small number so that tangent linear approximation is valid. 
Note that eq.(2.1.7) is equivalent to ensemble forecasts. 
 
     It is helpful to mention that E  can be a reduced matrix, that is, the rank of the matrix is 
much less than its full dimension. This is usually the case in atmospheric dynamical systems even 
in the simple L96 system. The eigenvalue decomposition of real symmetric matrix gives 

, where  is a diagonal matrix whose values are real non-negative eivenvalues, and 
 is composed of corresponding eigenvectors which are orthogonal to each other. Usually  

shows degeneracy, that is, there are only limited number of positive eivenvalues and remaining 
are 0. Thus, there exist only limited number of eigenvectors, and the effective dimension of the 
square root matrix  is much smaller than the full matrix, which can reduce the number of 
model integrations. Note that EnKF is based on this sort of discussion, where  consists of 
ensemble perturbations. The degeneracy of  implies that a relatively small number of 
ensemble members can reproduce  fairly well. If the effective number of perturbations are 
significantly smaller than the number of observations, eq.(2.1.3) to calculate Kalman Gain matrix 
can be significantly simplified as follows: 
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where , and subscripts are omitted. Eq.(2.1.9) is simpler because TEEP = pp×  matrix 
inversion is converted to  matrix inversion, where mm× p  and  denote number of 
observations and effective perturbations (i.e. ensemble members), respectively. The square root of 
forecast error covariance matrix in eq.(2.1.9) (denoting ) is straightforward because of 
eq.(2.1.6), that is, . Thus, except eq.(2.1.5) for innovating , we do not need to 
compute covariance matrices explicitly, but we just compute ensemble perturbations and their 
model integrations. The covariance information is implicitly included by eqs.(2.1.6) and (2.1.9). 
For the complete EnKF formalism, we need to form an ensemble update algorithm to realize 
eq.(2.1.5) implicitly, which is beyond the scope of the present paper. The derivation of eq.(2.1.9) 
is shown in appendix A. 
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     In the case that observation is given as a nonlinear function of model variables, i.e. 
observation operator H  is nonlinear mapping, it is generally impossible to solve eqs.(2.1.3) and 
(2.1.5). Usually this problem is treated by linearizing H  under the tangent linear assumption. 
However, by virtue of the square root formulation of covariance matrices, this problem can be 
solved practically. Eq.(2.1.9) shows, for example, that the ensemble perturbations of  are 
projected to observation space by , which can be nonlinear mapping just in the same way as 
the model  in eq.(2.1.6) could be nonlinear. 
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     In the above discussion, the theory of KF is completed. In practical, however, the error 
covariance matrix  is always underestimated, and the filter is eventually getting unstable. 
Thus, introduction of the model error  or variance inflation is necessary for stable filtering. 
The theoretical explanation for the model error  can partially attribute to the model 
nonlinearity under the perfect model assumption. It is a common technique to add random noise 
as  in eq. (2.1.2). Alternatively, it is also a common technique to multiply a slightly larger 
number than 1 to the error covariance matrix at the end of the process. Namely, after the process 
of eq.(2.1.5), 
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is performed so that the underestimated covariance matrix is simply enlarged by a factor δ+1 , 
where δ  is a small number called variance inflation parameter. In the present paper, the model 
error covariance  is ignored, and the variance inflation is considered. The variance inflation 
factor is an adjustable parameter in the algorithm and plays an important role in the practical 
filtering performance. 

Q

 
 
2.2 Kalman Smoother 
 
     In smoother, time forwarding process is exactly the same as KF. The time backwarding 
process is realized by the following algorithm proposed by Rauch-Tung-Striebel (1965) known as 
RTS algorithm: 
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where the subscript s denotes smoothing solutions, and the square roots (  and 

) simplify eq.(2.2.1) in a similar way as in eq.(2.1.6) of the KF algorithm, thanks 
to which no further model integration is necessary. However, eq.(2.2.1) requires an  matrix 
inversion, where  denotes the dimension of model variables, which makes it extremely 
expensive or almost impossible to compute in high-dimensional systems. Eq.(2.2.1) can be 
further simplified as 
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but even in the case that  is a square matrix,  is not symmetric in usual, thus it is not 
easy to compute the inverse. In addition, all the covariance matrices or ensemble members need 
to be stored through the smoothing steps, which requires large amount of memory. Furthermore, 
eq(2.2.3) has a more complicated form compared to eq.(2.1.5), which also makes it difficult to 
form an ensemble formalization. Thus, in a practical point of view, it is not easy to implement 
this algorithm in realistic atmospheric and oceanic systems. 
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     Supposing far away from high-dimensionality, now that we have time forwarding and 
backwarding algorithms, we can use the future information to estimate the present state. This 
process is schematically shown in fig. 2.1.  is a smoothing solution at the initial time where 
all observations through the future time  is assimilated in the filtering processes. Thus, to 
obtain an optimal estimate at the initial time, filters use all the past information, whereas 
smoothers use additional N-step future information. To initiate the smoother, 
is used. Fig. 2.2 shows schematic of filter and smoother solutions. Generally, RMSE(x
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Figure 2.1. Schematic of smoothing processes. The upper subscripts denote 
filter solutions (a), forecast (f), and smoother solutions (s), respectively, 
and the lower subscripts denote time steps, where N is smoothing time 
window. 
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Figure 2.2. Schematic of Kalman filter and smoother solutions. The upper 

subscripts denote filter solutions (a), forecast (f), and smoother solutions (s), 
respectively, and O denotes observation. This shows the case of N=4, where 
N is smoothing time window. 

 
 
2.3 Iterative Methods 
 
     Using the algorithms described above, time forwarding and backwarding can be used 
iteratively as shown in fig. 2.3, which shows schematic of iterative Kalman smoother (IKS). If 
the iteration is performed using only past and present observations, the same algorithm becomes 
iterative Kalman filter (IKF), which is shown in fig 2.4 where the smoothing time window is 1. 
Note that it is not clear if the iterative solution is better than the non-iterative solution. 
Theoretically, KF itself is optimal, and it cannot be better using the same amount of information, 
on condition that the model is linear and perfect, and the error statistics is Gaussian. Model 
nonlinearity introduces non-optimality of KF, and it is expected that iterative processes reduce the 
effect of nonlinearity and provide better solution, that is, iterative KF is expected to outperform 
KF when observation is sparse in time and space. 
 

 

TIME 
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xs1i+N= xa1i+N xs1i 

xa2i= xs1i xa2i+N 

xs2i+N= xa2i+N xs2i 

i i+N 

 
Figure 2.3. Schematic of iterative Kalman smoother (IKS). The upper 

subscripts denote filter solutions (a) and smoother solutions (s), and their 
iteration numbers. N is smoothing time window. 
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Figure 2.4. Schematic of Iterative Kalman Filter (IKF) with smoothing time 

window 1. Iterative solution is denoted as upper subscript a2. It is not 
clear if iterative solution is better than the first filter solution. 

 
 
2.4 Sawtooth Methods (Johnston and Krishnamurthy 2001) 
 
     Extended Kalman filter is based on the expectation-maximization (EM) algorithm, whereas 
sawtooth extended Kalman filter is based on alternating expectation conditional maximization 
(AECM) algorithm. 
 
     Smoother gain matrix G can be computed without future observation. Expecting the 
structure of error vector  and error covariance difference  are similar to 

 and  respectively, we can compute one step smoothing process 
using one step forecast even if future observation is not available. This process uses only past 
observations, so this is filtering problem called a sawtooth Kalman filter (SKF). Fig. 2.5 shows 
schematic of SKF. In the same way, sawtooth Kalman smoothers (SKS) can be formed and their 
iterative methods are also straightforward. 
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Figure 2.5. Schematic of sawtooth Kalman filter (SKF). 
 
 

- 9 - 



METO658E Final Report                                          Takemasa Miyoshi 

3 Numerical Experiments 
 
3.1 Model description 
 
     The L96 model is defined by 
 

Fxxxx
dt
dx

iiii
i +−−= −+− )( 211 .       (3.1.1) 

 
Here, , where the boundary is cyclic, i.e. xNi ,,1L= 11 −− =

xNxx , , and 
xNxx =0 11 xx

xN =+ .  
This model behaves chaotically in the case of external forcing 0.8=F , in which case the time 
step of 0.2 non-dimensional units corresponds to about one day in terms of error growth rate of 
five days (Lorenz 1996).  The first term of right hand side simulates “advection”, and this model 
can be regarded as the time evolution of an arbitrary one-dimensional quantity on a constant 
latitude circle, that is, the subscript  corresponds to longitude.  As in Lorenz (1996), I choose 

 and . Eq (3.1.1) is solved using Runge-Kutta fourth order scheme with 
integration time step 0.01, thus, 5 steps correspond to 6 hours. Lag auto-correlation is shown in 
fig. 3.1. 
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Figure 3.1. Lag correlation of the Lorenz96 model. 

 
 
3.2 Design of experiments 
 
     Basic design is based on a simple observation system simulation experiments (OSSEs) in 
assuming true state is known. The true state is created by a long-term integration from an 
arbitrary chosen initial condition. Observations are simulated by simply adding random noise to 
the true state. Here, observation grid and model grid are the same; observation operator H  is 
simply an identity mapping or reducing observation points. The initial condition for data 
assimilation can be any arbitrary state, and a long-term mean state is chosen in the present 
experiment. The initial analysis error covariance matrix can also be any arbitrary real symmetric 
matrix as long as it is not too small and usually diagonal components are the largest. I chose a 
matrix whose each row/column is Gaussian shape with fairly large amplitude. The performance 
of data assimilation is measured by root mean square error (RMSE). Now that true state is known, 
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the error is easily computed by subtracting true state from analysis state. 
 
     It is important to know how data assimilation works in decreasing number of observation 
both spatially and temporally. Thus, the experiment using 40, 20, and 10 observations in every 6, 
12, 24, and 48 hours are performed. Every combination of these spatial and temporal densities is 
examined. For example, 40 observations in every 6 hours is the densest situation, whereas 10 
observations in every 48 hours is the sparsest situation. In this experiment, observation error 
standard deviation is set to 1.0. In short, the experiment settings are summarized in table 3.1. 
 
     For introducing model errors, a constant bias and temporally varying biases are added to 
true time evolution: 
 

i
t
i

t
i M bxx +=+1         (3.2.1) 

)sin(10 ii ωbbb +=         (3.2.2) 
 
where , , and 0b 1b ω  are constant bias, amplitude and frequency of temporally varying bias, 
respectively. Using this biased true time evolution, the same experiment described above is 
performed. 
 

Table 3.1. Summary of experiment settings. 
Initial state Longtime mean state 

Initial state of the true state From longtime integration 
Model integration time step 01.0=∆t  

Value of forcing of Lorenz96 F=8.0 
Definition of 1 day 0.2 time units (6hr=0.05) 

# of observation 40 / 20 / 10 
Observation error 1.0 
Assimilation cycle Every 6 / 12 / 24 / 48 hours 

 
 
3.3 Results 
 

3.3.1 Various methods in perfect model 
 
     For the criterion of RMSE, the RMSE of forecast with no assimilation (free run, i.e. doing 
nothing) is computed. The value is around 5.0. Thus, if the analysis RMSE is less than 5.0, the 
data assimilation works better than doing nothing. Because observation error is 1.0, 1.0 can be 
another criterion. For example, if every point has observation and analysis RMSE is larger than 
1.0, the direct insertion of observation is better than the data assimilation. 
 
     The graphical result how KF works is shown in fig. 3.2, where RMSE (upper panel) and 
the ratio of RMSE against free run (lower panel) are shown for first 14 days. The left two panels 
show in the case of 40 observations, and the right two panels show in the case of 20 observations, 
both at every 6 hours. In the upper two panels, black circle, white circle, green, yellow, red lines 
show RMSE of free run, that of analysis, that of forecast, square root of the mean of diagonal 
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components of forecast error covariance matrix, and that of analysis error covariance matrix, 
respectively. In the lower two panels, the ratio of analysis RMSE against free run is shown in 
percent. KF performs very well in both cases, though the initial spin-up period is longer in the 
case of 20 observations. 
 
     The result of the full KF is shown in table 3.2. Here, the RMSE is averaged over 365 days 
where the first 120 steps are eliminated in considering the initial spin-up of the filter. In 40 
observations, i.e. observing at every point, the data assimilation works well even in decreasing 
temporal density of observation to every 48 hours, though the filter is rather unstable in the 
choice of variance inflation parameter. By decreasing half of the observation, more than 24 hours 
interval of observation makes KF unstable. In 10 observations, KF is stable only in observing 
every 6 hours, but the performance is worse than free run, i.e. the data assimilation provides no 
useful information at all. 
 
     The result using EKF is shown in table 3.3 in the same way as table 3.2. Here, the only 
difference from the previous experiment exists in using tangent linear model instead of nonlinear 
model in computing eq. (2.1.6). RMSEs are comparable to full KF, although it is expected that 
the full KF outperforms EKF as temporal density of observation decreases, when model 
nonlinearity becomes important. In this case, however, the result shows EKF slightly outperforms 
full KF in 40 observations every 48 hours. Furthermore, EKF is more stable than the previous full 
KF in the choice of variance inflation parameter. This tendency is clear especially in the case of 
less observation densities such as 40 observations at every 48 hours. 
 
     KS uses future information and is expected to provide better solution than KF. The RMSEs 
of KF and KS are shown in table 3.3. Here, the RMSE is averaged over 180 days where the first 
150 steps are excluded because of the initial spin-up. In this experiment, number of observation is 
40 or 20 at every 6 hours. LEKF as well as KF and KS is also shown as an example of EnKF, 
where LEKF stands for Local Ensemble Kalman Filter (Ott et al. 2004). The detail of LEKF is 
not explained in considering the scope of the present paper. In the case of 40 observations with 
variance inflation factor of 0.05, RMSE of 0.11 seems lower limit even if smoothing time 
window is increased beyond 3. However, if the variance inflation parameter is decreased to 0.01, 
the assimilation skills are getting better in increasing smoothing time window. Smoothing time 
window decides how many future data are used in smoother; the longer the time window is, the 
more observations are used, and the better the performance is expected. Thus, variance inflation 

05.0=δ  makes the error covariance overestimated especially in  where substantial 
decrease of RMSE can be seen in 

1>N
01.0=δ . In the case of 20 observations, the optimal variance 

inflation parameter is chosen in each case. The result shows surprisingly better analysis by 
smoothers compared to filters even in decreasing observations by half. 
 
     Analysis RMSE of iterative full KF is shown in table 3.5 in the same way as table 3.2 
(365-day average). The algorithm is exactly the same as what figure 2.4 shows, that is, one step 
smoothing process is performed using only past information. Here, the iteration is only once. In 
more frequent observation, there is no advantage can be seen. However, there are significant 
advantages in less dense observations, and the filter is surprisingly much more stable which 
should be stressed here. For example, in the case of 40 observations at every 48 hours, the RMSE 
is about 0.5, that was 0.7 in KF. In the case of 20 observations, KF got unstable when observing 
less than every 24 hours, where iterative KF shows its stability. Furthermore, the case of 20 
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observations at every 24 hours shows fairly good data assimilation performance. Even in 10 
observations, the filter is stable, and data assimilation works better than doing nothing. As 
mentioned above, the stability of filter depends on the choice of variance inflation parameter, but 
this method is much more stable in the choice, too. 
 
     Sawtooth methods do not work well in this case. Even in observing 40 points every 6 hours, 
SEKF shows more than 3 of RMSE, where KF showed 0.2. There is no advantage using sawtooth 
methods in this particular problem. 
 
 

 
Figure 3.2. RMSE (upper two panels) and ratio of RMSE of analysis against free run 

(lower two panels) in the case of 40 observations (left two panels) and 20 
observations (right two panels) both at every 6 hours. In upper two panels, black 
circle, white circle, green, yellow, red show RMSE of free run, that of analysis, that 
of forecast, square root of trace of forecast error covariance matrix, and that of 
analysis error covariance matrix, respectively. In lower two panels, the ratio of 
analysis RMSE against free run is shown in percent. 
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Table 3.2. Analysis RMSE of full KF (365-day average after convergence). δ  denotes 
variance inflation parameter, and “–“ means unstable filter. 

 Obs# = 40 Obs# = 20 Obs# = 10 
6 hours 0.192 ( 05.0=δ ) 0.368 ( 1.0=δ ) 5.40 ( 3.0=δ ) 
12 hours 0.298 ( 2.0=δ ) 0.712 ( 5.0=δ ) - 
24 hours 0.481 ( 75.0=δ ) - - 
48 hours 0.763 ( 0.2=δ ) - - 

 
Table 3.3. Analysis RMSE of EKF. Notations are the same as table 3.2. 

 Obs# = 40 Obs# = 20 Obs# = 10 
6 hours 0.211 ( 05.0=δ ) 0.356 ( 1.0=δ ) 4.85 ( 5.0=δ ) 
12 hours 0.296 ( 2.0=δ ) 0.765 ( 5.0=δ ) - 
24 hours 0.471 ( 75.0=δ ) - - 
48 hours 0.699 ( 5.1=δ ) - - 

 
Table 3.4. Analysis RMSE of full KF, KS, and LEKF. For smoothers, the smoothing time 

window (N) is changed from 1 to 6. 
Assimilation cycle  RMSE (obs#=40) 

05.0=δ  
RMSE (obs#=40) 

01.0=δ  
RMSE (obs#=20) 
Optimal choice 

Filtering 0.193 - 0.358 ( 1.0=δ ) 
Smoothing (N=1) 0.138 0.124 0.198 ( 04.0=δ ) 
Smoothing (N=2) 0.124 0.0895 0.149 ( 02.0=δ ) 
Smoothing (N=3) 0.113 0.0728 0.102 ( 005.0=δ ) 
Smoothing (N=4) 0.110 0.0636 0.0864 ( 005.0=δ )
Smoothing (N=5) 0.111 0.0596 0.0790 ( 005.0=δ )
Smoothing (N=6) 0.111 0.0508 0.0707 ( 005.0=δ )

LEKF 0.246 0.377 
 

Table 3.5. Analysis RMSE of iterative KF. Notations are the same as table 3.2. 
 Obs# = 40 Obs# = 20 Obs# = 10 

6 hours 0.201 ( 05.0=δ ) 0.400 ( 1.0=δ ) 3.67 ( 2.0=δ ) 
12 hours 0.272 ( 05.0=δ ) 0.469 ( 1.0=δ ) 3.43 ( 4.0=δ ) 
24 hours 0.371 ( 2.0=δ ) 0.622 ( 3.0=δ ) 4.08 ( 45.0=δ ) 
48 hours 0.491 ( 5.0=δ ) 1.88 ( 2.1=δ ) - 

 
 

3.3.2 Introduction of model errors 
 
     The way to introduce model errors is given in eqs. (3.2.1) and (3.2.2), where constant bias 
and temporally varying biases are considered at the same time. Now, constant bias and 
temporally varying biases are introduced separately, that is,  is 0 when  has some value, 
and vice versa. The RMSE is averaged over 90 days where first 150 steps are excluded because 
of the initial spin-up. For comparison, the result of simple OI/3DVAR is shown. As clearly shown, 
the simple OI/3DVAR performs very stably in biases. The bias less than 0.2 does not affect at all, 

0b 1b
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whereas KF is affected very much. Note that 0.2 is the size of the analysis error of KF, which is 
one fifth of observation error, and it is hard to detect such small biases in realistic situation. KF is 
very sensitive to both constant and temporally varying biases. Even the bias of 0.1 makes KF 
significantly worse. Furthermore, even if constant bias is completely known and eliminated, 
temporally varying bias with amplitude of 0.1 and 3-day cycle makes KF worse significantly. 
Thus, in implementing KF in a realistic situation, the bias correction is a very important issue. A 
simple treatment of model biases can be done by just increasing variance inflation parameter. The 
table 3.6 shows the effect of small model biases can be significantly reduced by increasing 
variance inflation parameter that is equivalent to overestimating analysis errors. Thus, the 
increase in analysis errors caused by model errors can be treated as overestimation of analysis 
errors by large variance inflation parameter. Remember that  in eq. (2.1.2) introduces model 
error statistics in KF algorithms, but  is a second order statistics and not first order statistics 
such as biases, so  cannot treat the problem of model biases. 

Q
Q

Q
 

Table 3.6. Analysis RMSE of KF in introducing model biases. The bias is defined in eqs. 
(3.2.1). The RMSEs are 180-day (720-step) average values, where the first 150 steps 
are excluded, where 1 step corresponds to 6 hours. 

BIAS RMSE 
0b  1b  1−ω [Days] KF 

05.0=δ  
KF 

1.0=δ  
KF 

5.0=δ  
Simple 

OI / 3DVAR
0 - 0.18 0.20 0.38 0.65 

1 0.22 0.22 0.39 0.66 
3 2.99 0.57 0.41 0.65 
5 3.37 1.41 0.44 0.66 
10 4.55 1.30 0.46 0.66 
15 4.11 1.78 0.45 0.66 

0 
0.1 

30 4.17 3.37 0.47 0.65 
0.01 0 - 0.30 0.23 0.38 0.65 
0.1 0 - 3.69 3.08 0.50 0.66 
0.2 0 - 5.35 4.41 0.77 0.67 
0.5 0 - 6.44 5.90 1.61 0.74 

 
 
4 Summary and Future plan 
 
4.1 Main findings 
 
     Full KF, EKF, full KS, iterative KF, sawtooth KF are implemented and compared. The 
main findings in this comparison can be summarized as follows: 

1. RMSE of full KF using densest observations was 0.2 
2. EKF is more stable than full KF 
3. Full KS outperforms KF (the best performance shows RMSE ~0.05) 
4. Iterative KF outperforms KF in less dense observations both spatially and 

temporally 
5. Iterative KF is much more stable than full KF 
6. Sawtooth KF does not work at all in this particular case 
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     Introduction of model errors clarify the following findings: 

1. KF is very sensitive to model errors, whereas OI/3DVAR is very stable 
2. Even time mean bias is eliminated, temporally varying bias with frequencies more 

than 3 days affects very much 
3. Increasing variance inflation parameter can reduce the effect of model errors 

 
 
4.2 Future plans 
 
     Tippet et al. (2003) summarized various implementations of ensemble square root Kalman 
filters (EnSRF) that can be applied in realistic atmospheric models, which includes sequential 
method, ensemble transform Kalman filter (ETKF), and ensemble adjustment Kalman filter 
(EAKF). LEKF, which is one of the various implementations of EnSRF, proposed by Ott et al. 
(2004) has been already implemented and the result is shown in table 3.4, though the precise 
description was omitted in considering the scope of the present paper. In future, beyond the 
classical methods, these more realistic methods which can be used in high dimensional systems 
can be implemented and compared. As Tippet et al. (2003) mentioned, it is not clear if any 
implementation of efficient Kalman filter outperforms other methods. Thus, it is worth 
implementing and comparing different implementations of EnKF even in the simple L96 model. 
Of course, after the precise investigation using the simple model, it is desired to implement in 
more realistic models. 
 
     Another direction is on the model errors. In realistic situations, the model cannot be 
perfect; the source of model error is abundant. In addition, the estimation of model errors is not 
easy, and considering model errors in data assimilation algorithm is very important. Thus, it is 
important to discuss more precisely how to treat model errors. Dee and Da Silva (1998) discussed 
data assimilation in the presence of model errors. KF provides important information in real-time 
estimation of model errors. In developing EnKF, including such algorithm has much practical 
importance. 
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Appendix 
 
A. Derivation of eq. (2.1.9) 
 
     Using a formulae of the linear algebra: 
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the RHS of eq.(2.1.3) is transformed as follows: 
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