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Abstract 

     The present paper aims to provide a brief review on several deterministic ensemble Kalman 

filtering (EnKF) methods and the related practical techniques to prevent filter divergence. Since 

Evensen (1994), several formulations of EnKF have been proposed, and Whitaker and Hamill 

(2002) suggested that a deterministic method, a.k.a. an ensemble square root filter (EnSRF, 

Andrews 1968), is expected to outperform the classical perturbed observation methods (e.g., 

Houtekamer and Mitchell 1998) especially in a limited ensemble size, which is usually the case 

in realistic atmospheric models. There are several EnSRFs proposed for atmospheric data 

assimilation, including an ensemble transform Kalman filter (ETKF) by Bishop et al. (2001), an 

ensemble adjustment Kalman filter (EAKF) by Anderson (2001), an EnSRF by Whitaker and 

Hamill (2002), all of which are effective when observational data are assimilated serially, and a 

local ensemble Kalman filter (LEKF) by Ott et al. (2002; 2004), where observations are 

assimilated simultaneously in a local patch. As Tippett et al. (2003) indicated, ensemble 

formulations in the deterministic method are not theoretically unique, and it is not clear if there is 

a unique preferable choice in the various possible implementations. In addition, there are several 

practical techniques to avoid filter divergence such as localization of the forecast error 

correlations, hybrid combinations with three-dimensional variational (3DVAR) method, a double 

ensemble method, covariance inflation, and random noise addition to analysis ensemble. 
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1 Introduction 

     Modern methods of data assimilation are a maximum likelihood estimation that combines 

background information (usually a forecast state) and measurements (observations) using their 

second order error statistics. It can be assumed that the measurement error statistics depends only 

on measurement systems that are independent of flow. However, the background error statistics 

depend on the flow, and the time evolution of second order error statistics requires  model 

time integrations, where  denotes the dimension of the phase space of the system. A realistic 

atmospheric model has millions of dimensions, which makes the direct computation impossible. 

Thus, it has been necessary for a long time to assume that the background error statistics are 

constant, i.e. flow-independent, in atmospheric data assimilation. This includes both the optimum 

interpolation (OI) and the three-dimensional variational (3DVAR) methods used in operational 

numerical weather prediction. 

N

N

     It is natural to anticipate that the inclusion of flow-dependence of error statistics should 

improve data assimilation substantially. The recent four-dimensional variational (4DVAR) 

method implemented at European Centre for Medium-Range Weather Forecasts (ECMWF), 

MeteoFrance, and Japan Meteorological Agency (JMA) provides an approach to include 

flow-dependence. Under the assumption of a perfect model, if the initial background error 

covariance for an assimilation interval is given by Kalman filter (KF), the final 4DVAR analysis 

is identical to the KF analysis. However, 4DVAR does not provide an updated analysis or 

background error covariance to start the next cycle. A method that does provide an estimate of the 

new error covariance is ensemble Kalman filtering (EnKF), first proposed by Evensen (1994), 

which explicitly includes the time evolution of error statistics, assuming that they are low-rank. 

     Since then, a number of approaches have been proposed for EnKF including various kinds 

of implementations for the same basic algorithm of Kalman filtering (Kalman 1960). Independent 

forecast-analysis cycles for each ensemble member are a typical implementation of EnKF 

(Evensen 1994; Houtekamer and Mitchell 1998). As Burgers et al. (1998) mentioned, 

observational data need to be perturbed in the algorithm so that analysis covariance is not 

underestimated. However, the inclusion of random perturbations in observational data introduces 

a new source of sampling errors. Thus, Whitaker and Hamill (2002) suggested that the perturbed 

observation method is expected to be worse than an alternative, deterministic method, especially 

in a limited ensemble size, which is usually the case in realistic atmospheric models. This 
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deterministic method solves data assimilation equations for the ensemble mean state and for the 

analysis error covariance. Analysis ensemble perturbations are computed by a linear combination 

of forecast ensemble perturbations that span the error covariance, which is why this approach is 

called square root filter (SRF). There have been several implementations proposed for the 

ensemble SRFs (EnSRFs) in atmospheric data assimilation. They include an ensemble transform 

Kalman filter (ETKF) by Bishop et al. (2001), an ensemble adjustment Kalman filter (EAKF) by 

Anderson (2001), an EnSRF (Andrews 1968) by Whitaker and Hamill (2002), all of which are 

effective when observational data are assimilated serially, and a local ensemble Kalman filter 

(LEKF) by Ott et al. (2002; 2004) where observations within a local patch are assimilated 

simultaneously. As Tippett et al. (2003) indicated, ensemble formulations in the deterministic 

method are not theoretically unique, and it is not clear if there is any preferable choice among the 

various possible implementations. 

     In addition, not only the implementations in SRFs in analysis ensemble update formula, but 

also practical techniques to avoid filter divergence (i.e., a temporary or permanent separation 

between the truth and the analysis) caused by sampling errors and covariance underestimation, 

introduce various different methods. The low-rank assumption that enables EnKF with relatively 

small ensemble size is a key source of sampling errors of covariance estimation, especially with 

the error correlation between distant points, which can be addressed by localization. Originally 

proposed by Houtekamer and Mitchell (1998), the serial treatment of observational data makes 

localization around observations preferable. The localization was done by defining a cut-off 

radius and by forcing zero correlation beyond the radius. To avoid the discontinuity in the 

localization, Houtekamer and Mitchell (2001) advanced the same idea to introduce a Schur 

product which is a smooth function similar to the Gaussian function but compactly supported 

(e.g., Gaspari and Cohn 1999; Hamill et al. 2001). Another approach is to introduce local analysis 

patches, which was introduced by Kalnay and Toth (1994) and Ott et al. (2002; 2004). Other than 

localization, hybrid use with three-dimensional variational (3DVAR) method provides another 

solution to avoid filter divergence. Defining error covariance as a weighted mean between 

flow-independent covariance in 3DVAR and flow-dependent covariance estimated by ensemble, 

the hybrid method performs significantly better than 3DVAR (Hamill and Snyder 2000; Corazza 

et al. 2002; Etherton and Bishop 2004) at a relatively low computational cost. 

     As for covariance underestimation, the main sources are model errors and nonlinearity. 

- 3 - 



Even under the perfect model assumption, model nonlinearity is an inevitable source because 

Kalman filtering is a linear estimation theory. Additionally, using the same ensemble to estimate 

the gain matrix for data assimilation and to obtain representation of analysis errors is a possible 

source of filter divergence, which was pointed out as an “inbreeding” problem by Houtekamer 

and Mitchell (1998). They designed a double ensemble method to avoid this problem. Whitaker 

and Hamill (2002) found that the double ensemble method outperforms single ensemble method 

in a given ensemble size, though the method used in EnSRFs requires significantly large 

additional computation. Covariance inflation, that simply multiplies covariance by a slightly 

larger number than 1, is a common solution for covariance underestimation. Since covariance 

inflation makes the filter suboptimal, Ott et al. (2004) created an enhanced variance inflation to 

minimize the suboptimality. Adding small random perturbations to each ensemble member is 

another solution, though it makes the filter suboptimal. 

     Thus, there are many possible combinations of SRFs and practical techniques, and it is not 

known if there is an optimal choice. The present paper aims to provide a brief review on the 

various methods and techniques. 

     The outline of the present paper is as follows. The Kalman filter algorithm is introduced, 

and the perturbed observation method and the EnSRF are described briefly in section 2. In 

section 3, several implementations of EnSRFs are described. Several practical techniques to 

prevent filter divergence are described in section 4. Summary and discussions are provided in 

section 5. The notation basically follows Ide et al. (1997) unless otherwise noted. Throughout the 

present proposal,  and  denote dimension of the system and ensemble size, respectively, 

and  denotes an identity matrix. 

N m

I

 

 

2 Overview of ensemble Kalman filtering 

     The Kalman filter algorithm is given by the following five equations (e.g., Jazwinski 1970; 

Gelb et al. 1974; Kalnay 2003): 
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Note that the square root is not unique because  is also a square root if  is any arbitrary 

unitary matrix ( ). (2.6) gives ensemble-forecasting formula: 
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where we ignore , the error covariance introduced by model deficiencies, and  denotes 

the th column of the matrix , which can be regarded as an ensemble perturbation vector. 

Here, the tangent linear model is approximated by the original nonlinear model under the 

assumption that 

Q n
i 1−xδ

n aE

xδ  is small compared to . In realistic atmospheric models,  is a huge 

number of the order of millions, and (2.7) requires 

x N

1+N  model integrations, which makes this 

method practically impossible. However, when the covariance matrix is degenerate, i.e. when 

most of the eigenvalues of the covariance matrix are very close to 0, which is usually the case in 

realistic atmospheric models, a covariance matrix could be approximated by relatively small 

ensemble size  much smaller than . This fact enables the matrix  to be , thus, 

(2.2) can be realized by an ensemble forecasting with relatively small ensemble size. 

m N aE mN ×

     The next step is to obtain the gain matrix (2.3). One approach is a sequential treatment of 

observations. Theoretically, uncorrelated observation can be treated serially (see for example, 
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Houtekamer and Mitchell 2001), which reduces the dimension of an observational space. Since 

the observational error correlation matrix R  is usually almost diagonal, the reduced dimension 

of an observational space is an order of 1. Using the square root of covariance matrix, (2.3) can 

be written as 
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This equation requires transformation from ensemble to observational space and inverse of a 

matrix in observational space that is a scalar when observational errors are uncorrelated. Thus, 

using the ensemble, (2.3) can be directly computed. In the case that the dimension of 

observational space is larger than the ensemble size, (2.8) can be further simplified as 
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which requires inverse of an  matrix, where  denotes ensemble size as previously 

defined. The derivation of (2.9) is provided in Appendix A. 

mm× m

     The final step is an ensemble update given by (2.5). In the classical approach to ensemble 

Kalman filtering, in which the forecast-analysis cycles are computed independently for each 

member, the analysis ensemble satisfies , which yields 

 (e.g., Burgers et al. 1998; see also Appendix B). The factor 

 represents reduction of covariance due to data assimilation, so the analysis covariance 

is reduced too much (cf. 2.5). Thus, Burgers et al. (1998) discussed the necessity of observational 

ensemble which is realized by perturbing the observations. Since each member is analyzed by 

(2.4), (2.5) is derived from (2.4) as follows in the presence of observational perturbations: 
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(cf. (3) in Whitaker and Hamill 2002). The second term that comes from observational 

perturbation is important to prevent the excessive reduction of the estimation of the analysis error. 

This is the reason why perturbed observations are necessary in the classical EnKF (see also 
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Appendix B). 

     However, as Whitaker and Hamill (2002) suggested, perturbed observations introduce a 

new source of sampling errors, which is expected to be worse than deterministic algorithms, a.k.a. 

square root filters, especially in a limited ensemble size, which is usually the case in realistic 

atmospheric models. In general, deterministic algorithms solve (2.5) explicitly. Assume the 

analysis ensemble is given by linear combination of the forecast ensemble: . Then, 

(2.5) is written as 

TEE fa =

 

         (2.11) TffTfTf EEKHIETTE ][ −=

 

Solving for , one can get a solution for a deterministic ensemble update which satisfies (2.5). 

Note that the choice of , like the square root of covariance matrix, is not unique, i.e.  is 

also a solution. There are several implementations of EnSRFs that give solutions of (2.5), which 

are described in the next section (see also, Tippett et al. 2003). 

T

T TU

 

 

3 EnSRFs 

 

  3.1 Serial method (Whitaker and Hamill 2002) 

     This method assumes ensemble update of the form 

 

  fa EHKIE ]~[ −=         (3.1.1) 

 

In order for (3.1.1) to give a solution of (2.5), 

 

  fTf PKHIHKIPHKI ][]~[]~[ −=−−       (3.1.2) 

 

has to be satisfied (cf. (9) in Whitaker and Hamill 2002). In this algorithm, data assimilation is 

performed only once on the ensemble mean using (2.4), and (3.1.1) is used for ensemble update. 

The solution of K~  is given by 
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(Andrews 1968) cf. (10) in Whitaker and Hamill (2002). This formula is used for correlated 

observations. If observations are uncorrelated, i.e. R  is diagonal, each observation is treated 

serially, which makes the terms  and TfHHP R  scalar. In this case, (3.1.2) can be simplified, 

and assuming KK α=~  where α  is a scalar value, one can get the formula for α : 
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which was first derived by Potter in 1964, cf. (13) in Whitaker and Hamill (2002). Thus, the 

explicit computation of K~  can be avoided, and almost no additional computation is required. 

 

  3.2 ETKF (Bishop et al. 2001) 

     This algorithm assumes an ensemble update of the form 

 

           (3.2.1) TEE fa =

 

where  is an  matrix called transformation matrix. The solution of  is given by T mm× T

 

          (3.2.2) 2/1][ −+= IΓCT

 

cf. (11) in Bishop et al. (2001). Here,  is an C mm×  matrix composed of eigenvectors of 

fTTTf HERRHE 2/12/1 −− , and  is a diagonal matrix composed of eigenvalues of the same 

matrix. Thus, the bracket of (3.2.2) is diagonal, so it is easy to compute the inverse of square root. 

Γ

 

  3.3 EAKF (Anderson 2001) 

     This algorithm aims to apply rotation and scaling (i.e. coordinate transformation) to the 

original space, in which the covariance can be treated as an identity matrix. The adjustment 
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process, denoted by , is applied to forecast ensemble to obtain analysis ensemble, that is, 

. Let  be the singular value decomposition of . By virtue of non-negative 

definite symmetric matrix, singular value decomposition is equivalent to eigenvalue 

decomposition with . Because of the degeneracy of , there are only m  

non-negative eigenvalues (or singular values) at most, which are equal to the eigenvalues of the 

 matrix . The adjustment  is given by 

A
fa AEE = TFDF fP

1−= FFT fP

mm× fTf EE A
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as of given in the appendix A of Anderson (2001). Here,  is a unitary matrix ( ). As 

Tippett et al. (2003) described, this is equivalent to the ensemble update of 

U IUU =T

 

         (3.3.2) fTfa EFDΓICEE 2/12/1][ −−+=

 

cf. (20) in Tippett et al. (2003). Here,  and  are the same as in (3.2.2) of the previous 

subsection. Because of the degeneracy of ,  is an 

C Γ
fP D mm×  matrix, and  is an F mN ×  

matrix in this equation. The difference from the ETKF is the factor . fTEFD 2/1−

 

  3.4 LEKF (Ott et al. 2002; 2004) 

     The important differences of LEKF are in the way of the localization, which is described in 

the next section. In this section, apart from the localization, we describe the data assimilation and 

ensemble update scheme in the LEKF which is the core concept of SRF. 

     A low-dimensional subspace (hereafter, “hat space”) spanned by the ensemble members is 

defined in the LEKF for the analysis step, and all the analysis computations are performed in this 

“hat space”. Generally, the forecast ensemble perturbations are not orthogonal to each other. Thus, 

an  matrix , which is similar to the forecast ensemble , is formed from 

eigenvectors of  whose corresponding eigenvalues are not zero. Here,  denotes number 

of non-zero eigenvalues, which satisfies 

mN ˆ× G fE
fP m̂

mm ≤ˆ . Thus,  gives a good approximation of 

. Now,  can be regarded as coordinate transformation from the -dimensional real space 

to the -dimensional space that each eigenvector forms, i.e. “hat space”, because other 

TGG
fP G N

m̂
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directions are not important (null space by virtue of the zero eigenvalues). Thus, an arbitrary 

vector in -dimensional real space  is transformed to an -dimensional vector  by 

. Similarly, an arbitrary 

N v m̂ v̂

vGv T=ˆ NN ×  matrix  is transformed to an  matrix  by 

. Since the other directions are not important as mentioned above, everything in the 

real space can be treated in the “hat space” throughout the whole data assimilation processes. 

Thus, Kalman filter equations (2.3), (2.4), and (2.5) are computed in the “hat space”. Note that 

(2.1) and (2.2) cannot be done in the “hat space” because model integration requires real space. 

The coordinate transformation G  is formed once at every analysis step, then the data 

assimilation and ensemble update is computed in the “hat space”, and finally, updated ensembles 

are transformed to real space by the inverse transformation, which is just  itself. 

A mm ˆˆ × Â

AGGA T=ˆ

G

     To enable simultaneous treatment of observational data, the LEKF solves (2.2) and (2.3) by 

the following equations (cf. (22) and (23) of Ott et al. 2004): 
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Thus, the matrix inverse in the observational space can be avoided and (3.4.2) requires matrix 

inverse in the “hat space”. 

     The ensemble update is formed as YEE fa ˆˆ =  which is similar to ETKF. To satisfy 

ensemble update formula (2.5) in the “hat space”,  has to be 

satisfied, which is the “hat space” version of (2.11). This  is not unique as mentioned before, 

but the “optimal” choice is provided as (42) of Ott et al. (2004), that is, 

TffTfTf EEHKIEYYE ˆˆ]ˆ[ˆˆ −=

Y

 

        (3.4.3) 2/111 ]ˆ)ˆˆ(ˆ[ fffafTf EPPPPEIY −−
−+=

 

 

4 Related techniques to prevent filter divergence 

     The previous section describes the theory of EnSRFs, but in practice, these are not 

sufficient for stable filtering. Usually, the assumptions of the Kalman filter are not strictly 
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satisfied because of various reasons such as model nonlinearity, systematic errors, non-Gaussian 

error statistics, and sampling errors due to limited ensemble size, which is why the filter tends to 

diverge. To prevent the filter divergence, several techniques have been proposed, which are 

described in this section. 

 

  4.1 Localization (Houtekamer and Mitchell 2001, Ott et al. 2004) 

     An important problem of EnKF is that the ensemble size  is merely of order 100 due to 

computational limitations, which is very small compared to the system size  that is usually an 

order of millions. Thus, the approximation 

m

N
TEEP =  using an mN ×  matrix  composed of 

ensemble contains large sampling errors especially in the error covariance between distant points 

(graphically, see for example, fig.6 of Houtekamer and Mitchell (1998); fig.10 and fig.11 of 

Hamill and Snyder (2000)). To prevent the sampling errors at large distances, covariance 

localization is a straightforward and simple solution. Houtekamer and Mitchell (1998) introduced 

a cut-off radius that defines the distance that an observation affects. This is also favorable since 

 becomes smaller in analysis computation, but the cut-off process is discontinuous, which 

causes noisiness in the analyzed field. Thus, Houtekamer and Mitchell (2001) advanced the idea 

to introduce a Schur product, which applies a smooth function known as a fifth-order piecewise 

rational function ((4.10) of Gaspari and Cohn (1999)) to the terms  and . This 

localization method is also used in Anderson (2001), and more precise explanation is found in 

Hamill et al. (2001). 

E

N

TfHP TfHHP

     A different method of localization was proposed by Ott et al. (2002; 2004), which utilizes 

local analysis patches based on the findings of Patil et al. (2001) and Kalnay and Toth (1994). A 

local patch around every grid point is constructed, and data assimilation is performed for every 

local patch independently. This procedure automatically forces zero covariance outside the patch. 

The overlapped analyses may be averaged to obtain a final product. This averaging process 

produces a smooth analysis. Each local patch has much smaller dimension than the whole domain 

(Patil et al. 2001), which makes the approximation TEEP =  much easier with a limited 

ensemble size. 

 

  4.2 EnKF/3DVAR hybrid method (Hamill and Snyder 2000) 

     With small ensemble size, the localization may not be sufficient to prevent filter 
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divergence; eventually, EnKF may not work at all, while 3DVAR is a rather robust method. The 

hybrid method aims to obtain better analysis than 3DVAR using flow-dependent information 

from ensemble. 3DVAR looks for the solution that minimizes the cost function 

 

  )]()()()[()( 11
2
1 HxyRHxyxxBxxx −−+−−= −− oTobTbJ    (4.2.1) 

 

where the background error covariance  is constant in time. Usually, dimension of  is so 

huge that many assumptions, such as isotropic and spatial uniformity, need to be made. With the 

assumptions,  is approximated as , where variable transformation S  makes the 

covariance  diagonal. The hybrid method mixes the constant covariance with flow-dependent 

covariance by 

B B

B TSCSB =

C

 

         (4.2.2) TTff SCSEEB αα +−= )1(

 

where α  is a numeric between 0 and 1 that determines the weight of flow-dependence. Thus, 

insufficient ensemble representation requires α  close to 1, whereas better representation favors 

a smaller value of α . 

 

  4.3 Double ensemble 

     Houtekamer and Mitchell (1998) pointed out the usefulness of a double ensemble, which 

aims to prevent the “inbreeding” effect that is a possible source of filter divergence. In this 

method, two parallel ensemble data assimilation cycles are computed separately using the gain 

matrix estimated from the other batch of ensemble. Houtekamer and Mitchell (1998; 2001) 

described the usefulness of double ensemble by comparing to single ensemble with the same total 

ensemble size. Whitaker and Hamill (2002) also discussed the usefulness of double ensemble in 

their appendix. However, at the same time, they mentioned the increase of computational cost in 

an EnSRF because it requires two separate ensemble update processes. 

 

  4.4 Covariance inflation 

     Covariance inflation (e.g., Anderson and Anderson 1999; Whitaker and Hamill 2002) is a 
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simple and straightforward idea to prevent covariance underestimation. Covariance inflation 

multiplies a number slightly larger than 1 to covariance, i.e., )1(~ δ+×= ff PP , where δ  is a 

small positive number called an inflation factor. This process can be done after the assimilation 

process, i.e., 

 

  )1(~ δ+×= aa PP         (4.4.1) 

 

which is equivalent to lengthening ensemble perturbation vectors by a factor δ+1 . These 

processes make the filter suboptimal. 

     Ott et al. (2004) advanced the idea of “enhanced variance inflation” so that the 

suboptimality by the covariance inflation becomes minimal. The basic hypothesis is that the 

covariance underestimation is more important when a forecast departure ( ) is large, 

which is based on the idea that the filter divergence means the larger and larger departure. A 

forecast departure is equivalent to summation of an observational error and a forecast error, 

where the former is constant in time. Consequently, a forecast departure represents a forecast 

error as well as an analysis error. Thus, the enhanced variance inflation defines an inflation factor 

fo Hxy −

δ  proportional to analysis error, which is measured by the trace of , to yield aP

 

  IPPP ×+=
m

tr a
aa )(~ ε         (4.4.2) 

 

where  denotes trace, and )(•tr ε  is a constant. (4.4.2) inflates only diagonal components of 

, i.e. variance, which is different from (4.4.1) that inflates the whole covariance. aP

 

  4.5 Adding random errors to the ensemble analyses (Corazza et al. 2002) 

     This method is adding small random errors to the ensemble analyses 

 

  ),0(~ εµEE += aa         (4.5.1) 

 

where ),0( εµ  denotes an  matrix whose components are random numbers with mN ×
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zero-mean and standard deviation of ε  where ε  is a small number. (4.5.1) looks similar to the 

square root of covariance inflation (4.4.1), but (4.5.1) introduces another source of sampling 

errors. This method can be interpreted as a representation of model error covariance  in (2.2) 

( ), but random errors are added not to forecast ensemble but to analysis ensemble in 

(4.5.1). Since we do not have sufficient knowledge about model error covariance, the addition of 

perturbations can be interpreted as representing the model nonlinearity or other sources of model 

error covariance even under the perfect model assumption. 

Q
TµµQ =

     Alternatively, it has been known that random errors “seed” bred vectors to keep them 

“young” (Corazza et al. 2003), which is favorable to data assimilation. Corazza et al. (2002) 

found that adding random perturbations to bred vectors significantly improved data assimilation 

skill using an EnKF/3DVAR hybrid method in a quasi-geostrophic channel model. In addition, 

Miyoshi and Kalnay (2004) found that random error addition (“stochastic seeding”) let bred 

vectors capture instabilities that are missed by the leading bred vector but captured by higher 

order orthogonal bred vectors using Lorenz 96 model (Lorenz 1996; Lorenz and Emanuel 1998). 

In view of the similarity of breeding cycle to EnKF, adding random errors acts not only as a 

representation of the model error covariance but also as the “stochastic seeding” to keep analysis 

ensemble members “young” spanning additional possible unstable directions, though adding 

random errors might introduce another source of sampling errors. 

 

 

5 Discussion 

     In the present paper, several formulations of EnSRF (a serial method, ETKF, EAKF, and 

LEKF) and several practical techniques to prevent filter divergence (localization, an 

EnKF/3DVAR hybrid method, a double ensemble method, covariance inflation, and random error 

addition to each ensemble member) are introduced and described. However, as Tippett et al. 

(2003) indicated, it is not clear if there is an optimal choice among the various possible 

formulations and techniques. Thus, it is important to compare the methods and techniques in a 

unified way, but there has been no such research so far; the comparison is still an open question. 

     Another important problem is on model errors, which is not mentioned in the present paper. 

It is known that advanced data assimilation schemes including EnKF are more sensitive to model 

errors compared to flow-independent schemes (e.g., Miyoshi 2004). A Kalman filter seeks a truly 
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optimal solution assuming a perfect linear model, thus, merely the nonlinearity of a model can 

introduce ill conditioning into a Kalman filter, which leads to filter divergence. It is natural to 

anticipate that an imperfect model that contains various kinds of biases can be a more significant 

source of ill conditioning. Thus, it has been a common understanding that the treatment of model 

errors is a very important issue in applying EnKF to realistic situations such as actual numerical 

weather prediction. Since EnKF has been mainly applied to ideal conditions under perfect model 

assumptions in related research so far, the problem had not been treated in a comprehensive 

manner. 

     Dee and da Silva (1998) discussed forecast bias estimation in the context of data 

assimilation. The basic idea is considering a forecast bias as a time evolving variable for which 

we also have observation: the departure . Thus, if the time evolving law of the bias is 

given by 

fo Hxy −

af Mbb ~=  where  and b M~  denote a bias variable and a bias-evolving model, 

respectively, the most probable bias is estimated using Kalman filtering theory. Dee and da Silva 

(1998) used persistence model (identity) as the “forecast” model M~  for the bias because of the 

lack of knowledge of the bias-evolving model. Although there have been some investigations on 

the dynamics of model errors (e.g., Zupanski 1997; Nicolis 2003), nothing seems to have 

provided an accurate bias-evolving model so far. 

     This basic concept naturally leads to the possibility of ensemble formulation of bias 

estimation. Thus, assuming ensemble of biases, the same technique as EnKF can be used. The 

source code for filtering may be shared, thus, no significant additional effort would be required. 

The flaw of the bias-evolving model could be treated by additional bias variables that define 

“bias of bias”. In principle, this process could be repeated as many times as desired, though the 

additional variables require additional memory spaces and filtering computations. 

     Another issue is treating asynoptic observations such as satellite observations whose timing 

and place are not fixed. To treat observations of different timing at the same time, 4DVAR 

provides a common solution. However, 4DVAR requires tangent linear and adjoint versions of a 

forecast model, whose development and maintenance cost is large. Furthermore, 4DVAR does 

not provide an updated analysis error covariance to start the next assimilation cycle, so that 

alternative approaches such as combining 4DVAR with a reduced rank Kalman filter (RRKF, 

Fisher 1998; Fischer et al. 2001) have been tried without much success. An alternative way has 

been proposed by Hunt et al. (2004), so-called 4D-EnKF. The basic assumption of this method is 
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that ensemble members span all the analyzed directions in EnKF. In other words, linear 

combination of ensemble members can express all directions in analysis. Ensemble forecasting 

provides time evolution of ensemble members, thus, if observational data are expressed by a 

linear combination of ensemble members, the observations of different timing can be obtained by 

the same linear combination of the ensemble members. More precisely, if the timings of 

observation  and background  are different (o
jy

f
ix ji ≠ ), the term  can be treated as 

 (cf. (8) of Hunt et al. 2004) where each column of  is an ensemble 

member as defined before. Using this technique, observations of different timings can be treated 

in EnKF just by storing ensemble members at different timings. 

f
i

o
j Hxy −

f
i

T
ii

T
ij

o
j xEEEHEy 1)( −− E

     EnKF has important advantages in the context of application in operational numerical 

weather prediction: (1) low cost of development and maintenance because it does not require 

tangent linear and adjoint versions of forecast models; (2) efficiency with ensemble prediction 

system that most operational numerical weather prediction centers already have. Because of the 

advantages, EnKF is a possible direction in the future operational ensemble forecast-analysis 

system, but at the moment, the new technique is not ready for operational implementation 

because of the lack of experience and the open questions discussed above. With further research 

and investigations, this new technique has great potential to be implemented operationally and to 

provide significantly improved products. 
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Appendices 

 

A. Derivation of (2.9) 

     Using a formula of linear algebra: 
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the RHS of (2.3) is transformed as follows: 
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  (A.2) 

 

 

B. Perturbed Observation 

     Let , , and  be perturbations of , , and , respectively, that is, fxδ axδ oyδ fx ax oy
fff xxx δ+= , and so on, where an overbar denotes a mean. Then, (2.4) is written as 

 

  )]([ ffooffaa xxHyyKxxxx δδδδ +−+++=+     (B.1) 

 

Mean states satisfy (2.4), which yields 

 

         (B.2) ][ fofa xHyKxx δδδδ −+=

 

Without observational perturbation ( ), which is usual in independent data assimilation, 

(B.2) is simplified as 

0=oyδ
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          (B.3) fa xKHIx δδ ][ −=

 

This is equivalent to , which gives excessive reduction of perturbation variance. 

In the presence of observational perturbation, however, (B.2) is the equation for ensemble update, 

whose perturbation variance is larger than that of (B.3) by the term . The covariance 

 and cross terms such as  yield the correct solution (2.10). 

fa EKHIE ][ −=

oyKδ+

Ryy =Too )(δδ 0)( =Tof yxH δδ
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