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The impact of rapid rotation can be very dramatic. ‘Rapid’ rotation means a flow for
which the Rossby number Ro=UJ/fL, introduced in Section 2.4, is small compared
to 1. When the rotation is slow, so the Rossby number is large compared to 1, the
effects of rotation are no more than a small correction and can often be ignored
completely. So, in the context of flow in the Earth’s midlatitude atmosphere, is the
rotation of the Earth rapid or slow?

By way of example, in the Earth’s midlatitude troposphere, a typical flow speed
Uis 10ms™ and a typical large length scale over which U varies is 10°m. The rota-
tion rate of the Earth is (to the nearest power of 10) around 10~*s™. The correspond-
ing Rossby number is around 0.1. So rotation dominates. For ocean flows, which
are generally much slower, the Rossby number may be as small as 107,

One might say that appreciable, or indeed, rapid rotation is the defining charac-
teristic of geophysical fluid dynamics. Stratification also plays an important role,
but rotation is crucial. In this section, some dramatic results in simple situations will
be described. Later sections will show how these extreme examples relate to the
flows observed in more realistic circumstances.

Consider a tank of fluid which has been standing on a rotating turntable for
sufficient time to come to rest relative to the rotating frame of reference fixed in the
turntable (Figure 3.4). It is then gently stirred to generate some weak motion relative
to the turntable. We shall make three assumptions about the flow:

e
1. The relative motions are weak, in the sense that the Rossby number U/QL is
small compared to 1.

2. The fluid is incompressible, with constant density, so that (1/p)Vp — V(p/p).
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Figure 3.4 A tank of homogeneous fluid on a rotating tumtable
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3. The flow is inviscid in the sense that viscous stresses are much smaller than other
forces acting.

The equations of motion for the tank of fluid are
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Incorporating the three assumptions given earlier provides
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Take the curl of this equation; the gravitational and pressure gradient terms, being
pure gradients, have zero curl, and so

Vx(Qxun)=0 (3.20)
From the standard vector identity,
Vx(AxB)=(B-V)A-B(V-A)-(A-V)B+A(V-B) (3.21)

and noting that for incompressiblé-fluid, the continuity equation is V -u=0, the curl
of the equation of motion reduces to

(Q-Viu=0 (3.22)

That is, the velocity vector u cannot vary in a direction parallel to the rotation axis.
Let the rotation axis be parallel to the vertical (z-) axis, parallel to unit vector k.
Then, splitting Equation 3.22 into its vertical and horizontal components gives
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Now the boundary condition at the bottom of the tank is w=0. Equation 3.23(a)
implies that if w is zero for any particular value of z, it must be zero at all other
values of z. Thus, rapid rotation suppresses vertical motion,

The constraints on the horizontal components of the flow implied by Equation
3.23(b) are not quite as strong. No particular value is implied for v. However, what-
ever value v has at any point in the fluid, it must have the same value at all other
points on a line parallel to the rotation axis which passes through that point. That
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Figure 3.5 Taylor’s inkwall experiment. (a) top view and (b) side view

means that the fluid must move as coherent columns orientated parallel to the
rotation axis, with the same velocity at every level in the fluid.

The effect of rapid rotation on fluid flow expressed by the Taylor-Proudman
theorem is both dramatic and counter-intuitive. It is as if the rotation imparts a
degree of rigidity to the flow. Many beautiful experiments can be devised to illus-
trate the Taylor—Proudman theorem. One of the simplest is ‘Taylor’s inkwall experi-
ment’. A tank of water on a turntable is allowed to spin up and is then lightly stirred.
The flow is visualized by dropping a droplet of dense dye into the tank. As the dye
falls, it leaves a vertical trail behind. After a short time, this trail is spread and dis-
torted by the weak motions in the fluid. But the velocity field is the same at every
level, according to the Taylor-Proudman theorem. So each column is pulled out into
a curving thin sheet, with the same distortion at every level, a sheet which Taylor
called an ‘inkwall’. Seen from above, the round spot of dye left by the droplet is
pulled and sheared into long curving streamers, but with a high degree of vertical
coherence (Figure 3.5).

Another experiment which illustrates the Taylor—Proudman theorem consists of
towing a shallow obstacle slowly across the base of a rotating tank. The tank is filled
with water which has been allowed to spin up to rest in the rotating frame of refer-
ence of the tank. At a level below the summit of the shallow obstacle, the flow must
part and move around the obstacle. But because the Taylor—-Proudman theorem
operates, the flow at every other level, even those well above the obstacle, must also
pass around the obstacle edge. As a result, a column of fluid extends through the
depth of the tank, from the obstacle to the surface, apparently attached to the obsta-
cle. The rest of the flow passes around that column. It is as if the obstacle had been
extended to fill the entire depth of the tank. Such a column is called a ‘Taylor
column’. There is some evidence for such structures in the ocean, where gentle
currents pass over isolated seamounts on the oceans’ abyssal plains. Taylor columns
have been suggested as the origin of long-lived features in the outer fluid layers of
the giant planets: Jupiter’s ‘Great Red Spot’, in particular, has been interpreted in
these terms,
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The Taylor-Proudman theorem does not apply directly to the atmosphere, princi-
pally because the density is not constant. Also, the Rossby number, though small, is
not infinitesimal. However, we can generalize the theorem to the atmospheric situ-
ation, and we can devise a continuum of behaviour linking the Taylor regime to
more realistic situations. Chapter 12 and later chapters will address these issues.






