
Numerical Methods for Ordinary

Differential Equations

By Brian D. Storey

1. Introduction

Differential equations can describe nearly all systems undergoing change. They are
ubiquitous is science and engineering as well as economics, social science, biology,
business, health care, etc. Many mathematicians have studied the nature of these
equations and many complicated systems can be described quite precisely with
compact mathematical expressions. However, many systems involving differential
equations are so complex, or the systems that they describe are so large, that a
purely mathematical representation is not possible. It is in these complex systems
where computer simulations and numerical approximations are useful.

The techniques for solving differential equations based on numerical approxima-
tions were developed before programmable computers existed. It was common to
see equations solved in rooms of people working on mechanical calculators. As com-
puters have increased in speed and decreased in cost, increasingly complex systems
of differential equations can be solved on a common PC. Currently, your laptop
could compute the long term trajectories of about 1 million interacting molecules
with relative ease, a problem that was inaccessible to the fastest supercomputers
just 5 or 10 years ago.

This chapter will describe some basic methods and techniques for the solution
of differential equations using your laptop and MATLAB, your soon to be favorite
program. We will review some basics of differential equations, though this will not be
mathematically formal: this you will learn in your math and physics courses. Next
we will review some basic methods for numerical approximations and introduce the
Euler method (the simplest method). We will provide a lot of detail of how to write
’good’ algorithms using the Euler method as an example. Next we will discuss error
approximation and discuss fancier techniques. We will then discuss stability and
’stiff’ equations. Finally we will unleash the full power of MATLAB and look into
their built in solvers.

2. Describing physics with differential equations

Just to review, a simple differential equation usually has a form

dy

dt
= f(y, t) (2.1)

where dy/dt means the change in y with respect to time and f(y, t) is any function
of y and time. Note that the derivative of the variable, y, depends upon itself. There
are many different notations for d/dt, common ones include ẏ and y′.

TEX Paper



2 Numerical Methods for ODEs

X 

Mass, m 

Spring, K 

Figure 1. Mass-spring system we will be analyzing. The mass, m, is on a frictionless surface
so it can freely slide back and forth in the x direction. Gravity acts normal to the motion
of the mass.

A simple example of a system described by differential equation is the motion
of mass on a spring, see figure 1. In your physics course you remember Newton’s
second law which says that

F = ma (2.2)

where F is the force exerted on mass m and a is acceleration. Springs come in many
shapes and sizes, but many obey a simple linear relation, that the force exerted by
the spring is proportional to the amount that it is stretched, or

F = −kx (2.3)

where K is called the spring constant and x is the displacement of the spring from
it’s equilibrium state.

Equating the above expressions lead to the expression

ma = −kx. (2.4)

Remembering that acceleration is the second derivative of position and we have a
differential equation,

m
d2x

dt2
= −kx (2.5)

When solving differential equations numerically we usually like to work with
systems of equations that involve only first derivatives. This is convenient because
the same program can be generalized to solve any problem. In the above example,
the second order system is transformed quite easily using the relationships

a =
dv

dt
(2.6)

v =
dx

dt
. (2.7)

where v is the velocity.
Using the above relationships we can easily rewrite equation 2.5 as two equa-

tions,
dv

dt
= −

k

m
x (2.8)



Numerical Methods for ODEs 3

dx

dt
= v. (2.9)

The reason for rewriting the equations as a system of two coupled equations will
become clear as we proceed. We say that the equations are coupled because the
derivatives of velocity are related to the position and the derivative of position is
related to the velocity.

Exercise: DEQ 1 Show that equations 2.5 is satisfied by x(t) =
x0cos(

√

k/mt) for the initial condition x(t = 0) = x0 and v(t = 0) = 0.
This states that the spring is pulled back to the position x0 and released
from rest. Plot the solution with MATLAB.

3. Dimensionless equations

Before implementing a method to solve differential equations, let us take a side trip
into dimensionless equations. While this section may seem weird at first, over time
you will start to realize the value of rescaling your equations so that they have no
physical dimensions.

When constructing solutions to differential equations it is always convenient to
recast the equations into a form that has no dimensions, i.e. the equations do not
depend upon parameters that have units such as meters, seconds, etc. The reason is
that rescaling the equations will always reduce the number of free parameters that
can be varied. Referring back to equations 2.9 & 2.8 we might think that we have
four free parameters: k, m, and x0. When we remove the dimensions we find that
there are no free parameters, i.e. all systems behave the same. Physically, looking
parameters with no dimensions makes sense; nature cannot depend upon the units
that people have created.

To create non-dimensional equations we are simply scaling variables by con-
stants. Let us use the * superscript to denote variables with no dimensions. The
equations have three variables, position, velocity, and time. To create a non-dimensional
variable we simply perform the transformation

x(t)∗ =
x(t)

x0
(3.1)

where the time dependent position is scaled by the initial condition. We could
use any length scale that we like (the size of your foot would work just fine),
however the initial position is a convenient scale because then the initial condition
in dimensionless variables is always x∗ = 1. Now let us rewrite the equations using
the following non-dimensional variables

v(t)∗ =
v(t)

v̄
(3.2)

t∗ =
t

t̄
(3.3)

where v̄ and t̄ are the velocity and time scale, constants that we will leave general
for now. Applying these transformations to equation 2.9 yields

x0
t̄

dx(t)∗

dt∗
= v̄v(t)∗. (3.4)



4 Numerical Methods for ODEs

Since we left the velocity and time scale arbitrary we can set them to be anything
that we would like. It is easy to see that Equation 3.4 would be convenient if

v̄ =
x0
t̄
. (3.5)

This scaling would make equation 2.9 become

dx(t)∗

dt∗
= v(t)∗. (3.6)

in dimensionless form, the same as it was in dimensional form.
Applying the non-dimensional scaling to equation 2.8 yields,

v̄

t̄

dv(t)∗

dt∗
= −

kx0
m

x(t)∗. (3.7)

recalling that v̄ = x0/t̄ and collecting all the constants on the right-hand-side of
the equation yields.

dv(t)∗

dt∗
= −

kt̄2

m
x(t)∗. (3.8)

Since the time scale, t̄, was arbitrary we see that it would be convenient if t̄ =
√

k/m. This scaling results in a system of equations with no free parameters!

dv(t)∗

dt
= −x(t)∗ (3.9)

dx(t)∗

dt
= v(t)∗. (3.10)

with initial conditions
x(t = 0)∗ = 1 (3.11)

v(t = 0)∗ = 0 (3.12)

What this non-dimensional scaling means is that we can solve the system of
equations once. We can plot the solution in non-dimensional form and anyone can
find dimensional solutions by multiplying the solution by a constant. Instead of
solving the equations for each choice of parameters, we only have to solve it once.

4. Taylor Series

When solving equations such as 2.8 & 2.9 we often have information about the
initial state of the system and would like to understand how the system will evolve
with time. We need a way to integrate this equation forward in time, given the
starting state. At the heart of such approximations is the Taylor series.

Consider an arbitrary function and assume that we have all the information
about the function at the origin (x=0) and we would like to construct an approxi-
mation for x > 0. As an example let’s construct an approximation for the function
ex, given only information at the origin. Let’s assume that we can create a polyno-
mial approximation to the original function, f̂ , i.e.

f̂ = a+ bx+ cx2 + dx3 + ... (4.1)



Numerical Methods for ODEs 5

0 0.5 1 1.5 2
1

2

3

4

5

6

7

8

exp(x)

1+x+x2/2+x3/6

1+x+x2/2

1+x

X

f(
X

)

Figure 2. Taylor series approximation of the function ex. We have included the first three
terms in the expansion, it is clear that the approximation is valid for larger and larger x
as more terms are retained.

where we will solve for the unknown coefficients a, b, c, d, etc.
The simplest approximation might be to take the derivative and extrapolate the

function forward, precisely we mean,

f̂ = f(x = 0) +
df

dx

∣

∣

∣

∣

x=0

x, (4.2)

where the notation df/dx|x=0 means you take the derivative of the function with
respect to x and then evaluate that derivative at the point x = 0. Since e0 = 1 ,
this approximation for our test case reduces to

f̂ = 1 + x. (4.3)

This approximation to the original function is plotted in figure 2. We see that
the approximation works well when x is small and deviates further away, this is
expected. By using the extrapolation technique we have simply stated that the
value of the function and its derivative must be the same in both the real function
and the approximation.

We can improve the approximation by matching the second derivative at the
origin as well, i.e.

f̂(x = 0) = a = f(x = 0) (4.4)

df̂

dx

∣

∣

∣

∣

∣

x=0

= b =
df

dx

∣

∣

∣

∣

x=0

(4.5)

d2f̂

dx2

∣

∣

∣

∣

∣

x=0

= 2c =
d2f

dx2

∣

∣

∣

∣

x=0

(4.6)

if we continued this approximation to higher and higher derivatives we would obtain
the expression



6 Numerical Methods for ODEs

0 5 10 15 20 25
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of terms

E
rr

or
 

Figure 3. Error in the Taylor series approximation of the function ex as more terms are
included in the sum. We see that the fundamental accuracy limit is hit at the roundoff
error of ε = 10−16 when 15 terms are included in the Taylor series. The error is computed
as the difference between the true function and the Taylor approximation at x = 1.

f̂(x) = f(x = 0) + x
df

dx

∣

∣

∣

∣

x=0

+
x2

2

d2f

dx2

∣

∣

∣

∣

x=0

+
x3

6

d3f

dx3

∣

∣

∣

∣

x=0

+ ...
xn

n!

dnf

dxn

∣

∣

∣

∣

x=0

(4.7)

Applying approximation 4.7 to our example function shows that the approxi-
mation improves as more terms are included. See figure 2 where we have plotted
the series up to terms of x3. The error for the approximation in the exponential
function with the Taylor series as more terms are included is plotted in Figure 3.

Exercise: DEQ 2 Write out the first 4 terms of the Taylor series for the
function f(x) = sin(x). Plot the true function and the approximation
as each term is added on the interval 0 < x < π. Compute and plot the
error in the approximation at each order.

Exercise: DEQ 3 Write out the first 4 terms of the Taylor series for
the function f(x) = ln(x) about the point x = 3. Plot the true function
and the approximation as each term is added on the interval 3 < x < 4.
Compute and plot the error in the approximation at each order.

5. Your first numerical method: Euler’s method

When solving an equation such as the motion of the mass on the spring it is often
described as an initial value problem. This means that you often know the initial
state of the system and the equations tell you how the system will evolve with time.
The initial state of the system might be that you pull back the spring, hold the
block at rest, and let go. The initial condition is then x = x0 and v = 0, the spring
is displaced but held still until you release.



Numerical Methods for ODEs 7

Applying this initial condition to the equations, 3.9 & 3.10 shows that the instant
that your release the spring

dv

dt

∣

∣

∣

∣

t=0

= −1 (5.1)

dx

dt

∣

∣

∣

∣

t=0

= 0. (5.2)

This simply means that the acceleration of the mass is negative (the spring is
contracting) but the position of the mass is not yet changed. The important thing
to note from the above equation is that you know the value of the function (position
and velocity are given from the initial condition) and you know the value of their
derivatives from the equation.

This problem is then very similar to the Taylor series considered in the pre-
vious section. We know information about the function at an given time and we
want to use this information to predict later times. The simplest way to construct
an approximation simply use the derivative information to propagate the solution
forward in time, i.e. keep only the first term of the Taylor series.

v(t = ∆t) = v(t = 0) + ∆t
dv

dt |t=0
(5.3)

x(t = ∆t) = x(t = 0) + ∆t
dx

dt |t=0
. (5.4)

These expression simply mean that we are using the value of the derivative to
extrapolate the initial condition to a new time ∆t. We know from figure 2 that the
smaller the time that we extrapolate, the better the approximation will be.

To continue integrating this equation forward in time we repeatedly apply this
approximation at each time step interval, ∆t.

vN+1 = vN +∆t
dv

dt

N

(5.5)

xN+1 = xN +∆t
dx

dt

N

, (5.6)

where the notation XN means the position of the mass at time step N. Equations
5.5 and 5.6 are simply iterative equations. Everything on the right hand side of the
equation is known, these are values of the position and velocity at the current time
step. The new value is simply updated and the equations are propagated forward
in time.

6. Implementing Euler’s method in MATLAB, in detail

Now we will solve the equations for the mass on the spring using Euler’s method
and the non-dimensional equations. In this section for simplicity we will drop the
* notation for non-dimensional variables. From the prior section we found that the
iteration equation for the position and velocity was given as:

vN+1 = vN +∆t
dv

dt

N

(6.1)



8 Numerical Methods for ODEs

0 5 10 15 20 25 30 35
−1.5

−1

−0.5

0

0.5

1

1.5

time

X
(t

)

Figure 4. Result of applying Euler’s method to the mass spring system.

xN+1 = xN +∆t
dx

dt

N

, (6.2)

Substituting equations 3.10 & 3.9 in to the above equations yields

vN+1 = vN − xN∆t (6.3)

xN+1 = xN + vN∆t. (6.4)

with the initial conditions x0 = 1, v0 = 0. To implement this method in MATLAB
you could type the following commands into an m-file and run it. The comments
are placed so you will know what each line is doing. You should type this up and
make sure that you can get the same result!

clear; %% clear exisiting workspace

x = 1; %% initial condition

v = 0; %% initial condition

dt = 0.1; %% set the time step interval

time = 0; %% set the time=0

figure(1); %% open figure

clf; %% clear the figure

hold on; %% accumulate contents of the figure

for i = 1:300 %% number of time steps to take

v = v - dt*x %% Equation 6.3

x = x + dt*v %% Equation 6.4

time = time + dt

plot(time,x,’*’);

end

Try this out and see if you can get the result shown in Figure 4.



Numerical Methods for ODEs 9

You may have noted that we cheated a little bit. Equation 6.4 was actually
implemented as

xN+1 = xN + vN+1∆t, (6.5)

you should be able to convince yourself of this by reviewing the lines of code.
Let’s take a different approach and implement the equations as specified by

equation 6.4. Instead of using separate variables for position and velocity we will
create a list of numbers (a vector) where each element of the list corresponds to
a variable that we are solving for. This representation will become valuable as we
increase the size of the system and have many variables to solve for. Try typing
in the example below and understand what each line of the program is doing. The
program is nearly the same as the last only the position and velocity are stored in
a vector, y, rather than as individual variables.

clear; %% clear exisiting workspace

y(1) = 1; %% initial condition, position

y(2) = 0; %% initial condition, velocity

dt = 0.1; %% set the time step interval

time = 0; %% set the time=0

figure(1); %% open figure

clf; %% clear the figure

hold on; %% accumulate contents of the figure

for i = 1:300 %% number of time steps to take

dy(2) = -y(1) %% Equation for dv/dt

dy(1) = y(2) %% Equation for dx/dt

y = y + dt*dy %% integrate both equations with Euler

time = time + dt

plot(time,y(1),’*’);

end

If you typed in the above program you should get the result shown in Figure 5
It seems that the method has gone haywire, and indeed it has. Soon we will cover
error estimation and be able to prove why the first method worked and the second
one did not. We will find that the error in Euler’s method is growing in time. The
effect of the error can be seen by reducing the time step and increasing the number
of time steps by a factor of ten. The comparison with ∆t = 0.1 and ∆t = 0.01
are compared in Figure 6. When we cover error analysis later we will find later
that Euler’s method is THE WORST POSSIBLE METHOD WE COULD USE.
It is however, very simple, and very intuitive so we will continue to use it for now.
Figure 6 represents a powerful idea, convergence. We will find that as we continue
to decrease the time step then the solution will converge.

Before we continue with the analysis of error, let’s look at the programming
aspects of the code that we have written and try to make it more flexible. A good
way to think how to make the program more flexible (i.e. for solving different
systems of equations) is to ask yourself the question, what would be different and
what would be the same in our program? Euler’s method is general, and therefore
much of that loop would be the same. Computing the derivatives is dependent on
each system of equations. The initial conditions are also dependent on the system.



10 Numerical Methods for ODEs

0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

4

time

X
(t

)

Figure 5. Result of applying ’true’ Euler’s method to the mass spring system. We left the
solution from Figure 4 for comparison. Clearly, the previous method worked much better.

0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

4

time

X
(t

)

Figure 6. Comparison of Euler’s method with ∆t = 0.1 and ∆t = 0.01

Let’s split this algorithm into a few separate functions so that we can reuse pieces
of the Euler algorithm.

First, create an m-file called euler.m and enter the following code for a general
Euler solver.

function euler(dydtHandle,y,dt,steps)

clf;

time = 0;

for i =1:steps



Numerical Methods for ODEs 11

dy = feval(dydtHandle,y,time);

y = y + dy*dt;

time = time+dt;

plot(time,y(1),’.’);

hold on

end

This code is nearly the same as that used in the previous section. The only
difference is now we have made the Euler solver a function, rather than part of
one big program. We would like to use the same Euler solver for many different
systems of equations, the above form allows us to generalize. You should have
read the MATLAB section on functions in the text so it should be clear what this
code is doing. The input arguments are the handle to a function which computes
the derivatives given the current values (dydtHandle), the vector of current values
(y), the time step size (dt), and the number of time steps (steps). The only new
programming feature might by the passing of a function handle to a function. This
is a very common programming trick that is very useful. The general idea is that we
would like our Euler solver to work for any general system of equations. Therefore a
MATLAB function which is computing the derivatives must be an input argument
to the Euler solver. You should read the MATLAB help on function handles and
the feval command to really understand what this code is doing. Just as we pass
variables to functions we can pass functions to functions.

Next we will write our main function which sets the initial conditions and creates
the function that computes the derivatives. Type the following code into a file called
spring.m.

function spring()

y = zeros(2,1) %% initialize to zero

y(1) = 1; %% initial condition, position

y(2) = 0; %% initial condition, velocity

euler(@derivs,y,0.01,3000)

function dy = derivs(y,time)

dy = zeros(2,1);

dy(2) =-y(1); %% dv/dt = -x

dy(1) = y(2); %% dx/dt = v

This code is composed of a main program, spring, and the function that com-
putes the current values of the derivatives, derivs. The format @derivs in the euler
function call means pass the handle of the function derivs. You should read about
function handles in the MATLAB book and help documentation. Now if we wanted
to solve a different set of equations, the function euler could stay the same and the
function spring and derivs could be rewritten for the new system.

We will do one final modification before we move on to the next section. The
functions above works fine, however it could become quite confusing if you had
many variables in the system of equations. While it may be easy to remember that
index 1 into the y array means position and index 2 is velocity, when the number
of variables is increased dramatically it is hard to keep track! One possible way to
fix this is to create variable names that refer to the indices into the list of numbers.



12 Numerical Methods for ODEs

Since you may want these index variables in other functions, it is convenient to
pack the variables together in a data structure. Note that we will be cleaning up
the Euler solver so that all the data at each time step is returned from the function.

function spring()

y = zeros(2,1) %% initialize to zero

in.X = 1; %% index for position, X

in.V = 2; %% index for velocity, V

y(in.X) = 1; %% initial condition, position

y(in.V) = 0; %% initial condition, velocity

[T, Y] = euler(@derivs,y,0.01,in,3000);

plot(T,Y(:,in.X));

function dy = derivs(y,time,in)

dy = zeros(2,1);

dy(in.V) =-y(in.X); %% dv/dt = -x

dy(in.X) = y(in.V); %% dx/dt = v

Let’s also clean up the Euler solver a little bit as well so that the function will
output all the data at each time step into a big box of numbers, data and t.

function [t,data] = euler(dydtHandle,y,dt,in,steps)

time = 0;

t = zeros(steps,1);

data = zeros(steps,length(y));

for i =1:steps

dy = feval(dydtHandle,y,time,in);

y = y + dy*dt;

time = time+dt;

t(i) = time;

data(i,:) = y’;

end

All the programs shown in this section are essentially equivalent. The last one
that we have written is really no simpler (and maybe even more complicated) than
the first. The power in the way we have developed the final program is that it is easy
to change for different equations. You now have a very general method for solving
any system of differential equations using Euler’s method. The way we solved this
problem is not unique. There are an infinite number of ways to implement this
code. We have tried to work toward a program that is easy to modify and easy to
understand. There might be even cleaner and easier programs that provide more
flexibility and easier reading, can you come up with one? You should make sure
that you understand the programs created in this section before moving on. You
should type them up, run them, change them, and experiment with them to help
make sense of all these ideas.

Exercise: DEQ 4 Lorentz Attractor. Lorentz proposed a system of
differential equations as a simple model of atmospheric convection. He
hoped to use the equations to aid in weather prediction. By accident



Numerical Methods for ODEs 13

−20 −15 −10 −5 0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

X

Z

Figure 7. Plot of X vs. Z produces the Lorentz ’butterfly’

he noticed that he when he solved his equations numerically, he got
completely different answers for only a small change in initial condition.
He also noticed that while the variables plotted as a function of time
seemed random, the variables plotted against each other showed regular
patterns. You will use your Euler solver to reproduce some of Lorentz’s
results. The equations Lorentz derived were:

dx

dt
= 10(y − x) (6.6)

dy

dt
= x(20− z)− y (6.7)

dz

dt
= xy −

8

3
z (6.8)

We will not discuss the derivation of these equations but they were
based on physical arguments relating to atmospheric convection. The
variables x, y, z represent physical quantities such as temperatures and
flow velocities, while the numbers 10, 20, and 8/3 represent properties
of the air.

Code up these equations using your Euler solver and explore their be-
havior. Plot the time series for the variable X for an arbitrary initial
condition. Save the plot and show the behavior for a slightly changed
(1 %) initial condition. Plot the variable x vs. z. You will know you are
on the right track if that plot looks like Figure 7. Adjust the time step
and see if the solution is converging.

7. Error Estimates: Local Error

Let us return to the Taylor series approximation and use it to estimate the error in
the approximation to the derivative. If we assume that we have all the data (f and



14 Numerical Methods for ODEs

it’s derivatives) at t=0, then the value of the function at time t = ∆t is given as

f(∆t) = f(t = 0) + ∆t
df

dt

∣

∣

∣

∣

t=0

+
∆t2

2

d2f

dt2

∣

∣

∣

∣

t=0

+
∆t3

6

d3f

dt3

∣

∣

∣

∣

t=0

+ ...
∆tn

n!

dnf

dtn

∣

∣

∣

∣

t=0
(7.1)

Rearranging this equation yields,

f(∆t)− f(t = 0)

∆t
=

df

dt

∣

∣

∣

∣

t=0

+
∆t

2

d2f

dt2

∣

∣

∣

∣

t=0

+
∆t2

6

d3f

dt3

∣

∣

∣

∣

t=0

+...
∆tn−1

n!

dnf

dtn

∣

∣

∣

∣

t=0

(7.2)

Since ∆t is small then the series of terms on the right hand side is dominated by
the term with the smallest power of ∆t, i.e.

f(∆t)− f(t = 0)

∆t
=

df

dt

∣

∣

∣

∣

t=0

+
∆t

2

d2f

dt2

∣

∣

∣

∣

t=0

+ ... (7.3)

Therefore, the Euler approximation to the derivative is off by a factor proportional
to ∆t. The good news is that the error goes to zero as smaller and smaller time
steps are taken. The bad news is that we need to take very small time steps to get
good answers. In the next section we will see that obtaining better accuracy does
not require much extra work.

We call the error in the approximation to the derivative over one time step the
local truncation error. This error occurs over one time step and can be estimated
from the Taylor series, as we have just shown.

Exercise: DEQ 5 Write a MATLAB program to solve

dy

dt
= y (7.4)

using Euler’s method. Use the initial condition that y(t = 0) = 1, and
solve on the interval 0 < t < 1. The exact solution to this equation is
y(t) = et. Try solving with a time step of 0.25, 0.1, 0.05, and 0.01. Plot
the error between the numerical solution and the analytical solution
(y = et) as a function of ∆t. The result you should obtain is shown in
Figure 8. Can you explain why the departure between the actual and
predicted error grows at large ∆t.

Let’s return to our original problem of the spring and see if we can understand
why the first method that we tried worked so much better than the true Euler
method in equation 5. If you recall the first implementation worked quite well
because it was not a true Euler method. The first algorithm that we tried can be
written as

xN+1 = xN + vN∆t (7.5)

vN+1 = vN − kxN+1∆t (7.6)

Advancing to the next time step the equation for x becomes

xN+2 = xN+1 + vN+1∆t (7.7)



Numerical Methods for ODEs 15

10
−2

10
−1

10
−2

10
−1

∆ t

E
rr

or

Figure 8. Error as the time step is changed for Euler’s method applied to dy/dt = y. Both
the error and the function error = ∆t/2 are plotted. One can see from Equation 7.3, that
the error in the approximation is just as predicted, with slight departure for large time
steps. Note that we are plotting the difference between the true and numerical solution at
t = 1.

which can be rewritten as

xN+2 = xN + vN∆t+∆t(vN − k∆t(xN + vN∆t)). (7.8)

Collecting terms we obtain

xN+2 = xN + vN2∆t− kxN∆t2 − k∆t3vN∆t. (7.9)

using the fact that −kxN = d2x/dt2 and vN = dx/dt we can write the expression
for xN+2 as

xN+2 = xN + 2∆t
dx

dt

N

+∆t2
d2x

dt2

N

+∆t3
d3x

dt3

N

. (7.10)

The first 3 terms on the right hand side of this equation are the Taylor series for
the point xN+2: the ∆t3 term does not cancel. If we expand the velocity we will
find the same result. This method is formally accurate to terms of order ∆t2 rather
than ∆t of the true Euler method. The method that was the easiest to program,
in this case turned out to be a good one. Unfortunately, in general the easier the
method the less accurate!

8. Error Estimates: Global Error

In the last section we looked at how the error changed as we varied the step size. We
also used the Taylor series to estimate the discretization error associated with the
scheme that we were using. In addition to error at each time step, there is a global
error associated with the accumulation of errors at each time step. Refer back to the
spring problem and our attempt to apply the Euler method to the motion, Figure
6. It is clear that in this case the error is accumulating. If we look at the results



16 Numerical Methods for ODEs

0 5 10 15 20 25 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

E
rr

or

Figure 9. Error between numerical and true solution as a function of time for the mass on
spring system. The straight line shows t∆t/2. We see that the error is primarily a simple
sum of the truncation error at each time step. The non-linear behavior seen in the error
is due to the fact that the error depends on the solution, i.e. at long times the error will
grow exponentially.

for one cycle of the oscillation with the large step size we might think that the
solution has some error, but we might think that error is acceptable - it seems that
the position is off by 10%. At the end of 4 oscillations the large step size is clearly
giving results that are not acceptable. Physically we know that the system should
conserve energy and clearly the numerical solution is artificially gaining energy. The
accumulation of error is known as global error.

In Figure 9 we show the global error (yn − yexact(tn)) as a function of time for
the mass-spring system. We find that the global error of the numerical approxi-
mation is well estimated by the simple sum of the local truncation errors. We find
that the situation is somewhat worse since the local truncation error depends on
the second derivative of the function itself (see equation 7.3). Therefore, as the
error accumulates and the solution grows, even more error is introduced into the
approximation. At long times we find exponential growth of the error. It is clear
that accumulation of global error can be a severe problem for Euler’s method.

Now that we have discussed the impact of numerical truncation error we will
begin to look at schemes that are designed to be more accurate.

9. Midpoint method

When numerically solving differential equations, we want to find the best estimate
for the ’effective slope’ across the time step interval. So far we have used the value
of the slope at the start of the interval since this is the only location where we have
any information about the function. Consider figure 10 where we have plotted the
function f(t) = et and various approximations for the derivative to shoot across
the interval 0 < t < 1. We clearly see that the simple Euler method shoots too low.
If we somehow knew the value at the endpoint of the shooting interval (t = 1) and



Numerical Methods for ODEs 17

0 0.5 1 1.5 2
1

2

3

4

5

6

7

8

time

F
(t

)

1 + x

1 + x e0.5

1 + x e1

Figure 10. Midpoint approximation for f(t) = et

used that value, we would shoot too high. If we conjecture that using a value from
the midpoint of the interval might be better representation of the effective slope of
across the interval, we get a much better answer. The reason why can be derived
quite easily (and seen in Figure 10). The approximation that looks good in this
figure is

f(∆t) = f(t = 0) + ∆t
df

dt

∣

∣

∣

∣

t=∆t/2

(9.1)

Expanding the derivative of f with respect to time using a Taylor series yields

df

dt

∣

∣

∣

∣

t=∆t/2

=
df

dt

∣

∣

∣

∣

t=0

+
∆t

2

d2f

dt2

∣

∣

∣

∣

t=0

+
∆t2

4

d3f

dt3

∣

∣

∣

∣

t=0

+ ... (9.2)

Substituting this expression into equation 9.1 yields

f(∆t) = f(t = 0) + ∆t

(

df

dt

∣

∣

∣

∣

t=0

+
∆t

2

d2f

dt2

∣

∣

∣

∣

t=0

+
∆t2

4

d3f

dt3

∣

∣

∣

∣

t=0

+ ...

)

(9.3)

We see that the first three terms of the right-hand-side exactly match the Taylor
series approximation. Therefore the error of the approximation is on the order of
∆t2. The problem with this method is that this method requires knowing data in
the future. The problem can be remedied with a simple approximation, we will
use the Euler method to shoot to an approximated midpoint. We will estimate the
derivative there and then use the result to make the complete step. Specifically, the
midpoint method works as follows.

yN+1/2 = yN +
∆t

2

dy

dt

N

(9.4)

yN+1 = yN +∆t
dy

dt

N+1/2

. (9.5)



18 Numerical Methods for ODEs

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Euler step across half interval, yN+1/2 = 1+0.5

Step across interval, yN+1 = 1 + (1+0.5)

Exact Solution

time

Y
(t

)

Figure 11. Example of the midpoint method for y(t) = et, where ∆t = 1. First we take an
Euler step to the midpoint of the interval. The ’effective slope’ for the interval is computed
at this approximate midpoint location. The midpoint slope is used to take the full step
across the interval.

The first step applies Euler’s method halfway across the interval. The values of
yN+1/2 and t = ∆t/2 are used to recompute the derivatives. The values of the
estimated midpoint derivatives are then used to shoot across the entire domain. A
schematic is shown in Figure 11 for the equation dy/dt = y using a large time step
of ∆t = 1 in order to amplify the effects. The initial condition is y(t = 0) = 1, so
therefore dy/dt0 = 1 via the governing equation. Applying the governing equation
and the initial condition

yN+1/2 = 1 + 1∆t/2 (9.6)

yN+1 = 1 +∆t(1 + ∆t/2) (9.7)

Exercise: DEQ 6 Write a MATLAB program similar to the Euler
solver that applies the midpoint method. The program should be general
so that you can apply it to any system of equations. The program should
also follow the same usage as the Euler solver so that in your programs
you could easily switch between methods.

Use your midpoint solver to solve your mass-spring system. Compare
the result to the Euler solver. Change the time step and assess the error
of the approximation by comparing to the exact solution.

10. Runge-Kutta Method

There are many, many, many different schemes for solving ODEs numerically. Some
of them exist for a good reason, some are never used, some were relevant when com-
puters were slow, some just aren’t very good. However, different types of equations
are better suited for different methods, we will discuss this more in the next section.
The basic ideas, however are similar to the ones that we have already presented: the



Numerical Methods for ODEs 19

schemes try to minimize the amount of error in estimating the slope that propagates
the solution forward.

One of the standard workhorses for solving ODEs is the called the Runge-
Kutta method. This method is simply a higher order approximation to the midpoint
method. Instead of shooting to the midpoint, estimating the derivative, the shooting
across the entire interval - the Runge-Kutta method takes four steps, shooting across
one quarter of the interval, estimating the derivative, then shooting to the midpoint,
and so on. We will not provide a formal derivation of the Runge-Kutta algorithm,
instead we will present the method and implement it.

The general ODE that we are solving is given as,

dy

dt
= f(y, t). (10.1)

The Runge-Kutta method can be defined as:

k1 = ∆tf(tN , yN ) (10.2)

k2 = ∆tf(tN +∆t/2, yN + k1/2) (10.3)

k3 = ∆tf(tN +∆t/2, yN + k2/2) (10.4)

k4 = ∆tf(tN +∆t, yN + k3) (10.5)

yN+1 = yN +
k1

6
+
k2

3
+
k3

3
+
k4

6
(10.6)

One should note the similarity to the midpoint method discussed in the previous
section. Also note that each time step requires 4 evaluations of the derivatives, i.e.
the function f.

Since we have only given the equations to implement the Runge-Kutta method
it is not clear how the error behaves. Rather than perform the analysis, we will
compute the error by solving an equation numerically and compare the result to
an exact solution as we vary the time step. To test the error we solve the model
problem, dy/dt = −y, where y(0) = 1 and we integrate until time t = 1. In Figure
12 we plot the error between the exact and numerical solutions at t = 1 as a function
of the time step size. We also plot a function f = C∆t4 on the same graph. We
find that the error of the Runge-Kutta method scales as ∆t4. This is quite good -
if we double the resolution (half the time step size) we get 16 times less error!.

Exercise: DEQ 7 Implement the Runge-Kutta method by writing a
function that works in the same way as your midpoint method and Euler
solvers, only using this new algorithm.

Use your Runge-Kutta solver to solve your mass-spring system. Com-
pare the result to the Euler and midpoint solver. Compare the Runge-
Kutta solution to the exact solution and plot the error on a log-log
plot as you vary the time step size. How does this plot compare to one
generated applying the midpoint method?



20 Numerical Methods for ODEs

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

∆ t

er
ro

r

~∆ t4 

Figure 12. The error between the Runge-Kutta method and exact solution as a function
of time step size. One the plot we also display a function that scales as ∆t4. We see that
this fits the slop of the data quite well, therefore error in the Runge-Kutta approximation
scales as ∆t4.

11. Stability and Stiff Equations: Backward Euler Method

So far we have only discussed accuracy of ODE solvers, but another important
issue is stability. In many situations we find that the algorithms we have thus far
discussed will be unstable unless the time step is very small. By unstable, we mean
the solution will begin to oscillate or grow in an unphysical manner.

Consider the following set of coupled ODEs:

dy

dt
= −100(x+ y) (11.1)

dx

dt
= −x (11.2)

Equations of this form are common in chemistry where x and y are chemical species
and the coefficients in the equation (100 & 1) are reaction rates. It is common in
chemical systems to have reactions with varying rates of progress. Stiff equations
are have widely different time scales that can cause a numerical solution difficulty
even though the ’fast’ time scale might not be important for the final solution.

Exercise: DEQ 8 Set up equations 11.1 and 11.2 using your Euler
solver and the initial conditions that x(t = 0) = y(t = 0) = 1. Set your
time step to 0.001 and take 2000 time steps. Plot the x(t) and y(t) on
the same graph.

If you completed the exercise then you should generate a plot that looks like
Figure 13. This behavior is very common in chemical systems, notice that one chem-
ical (Y) goes from +1 to -1 very rapidly, then undergoes a much slower increased.
The behavior is indicative of the two times scales present in the equations, 1/100
and 1.



Numerical Methods for ODEs 21

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

Y
(t

),
 X

(t
)

Figure 13. Solution to the stiff differential equations 11.1 and 11.2. Note the two time
scales in the solution for y, there is the rapid decrease followed by the slow convergence
to zero.

Exercise: DEQ 9 Set up equations 11.1 and 11.2 using your Euler
solver and the initial conditions that x(t = 0) = 1, y(t = 0) = −1. Set
your time step to 0.001 and take 2000 time steps. Plot the x(t) and y(t)
on the same graph.

After completing this exercise you should notice that the plot looks very similar
to Figure 13, only the observation of the fast time scale is not present. In this case
we have set the initial condition such that the fast time scale does not influence the
appearance of the solution to the equations. The fast time scale does influence the
numerical solution, however. Try the following exercise:

Exercise: DEQ 10 Set up equations 11.1 and 11.2 using your Euler
solver and the initial conditions that x(t = 0) = 1, y(t = 0) = −1. Set
your time step to 0.02001 and take 2000 time steps. Plot the x(t) and
y(t) on the same graph.

Once you complete this exercise you should obtain a plot that looks like Figure
14. The solution looks correct at early times, but then we find that the solution of
y begins to oscillate across zero after the solution has come close to its final steady
state solution of x = y = 0. The numerical solution is unstable. Try making ∆t just
a little bit larger and you will notice that the solution is wildly unstable.

So what has happened, why has the solution gone unstable? A simple way
to view stability is consider the Euler method applied to the equation dy/dt =
−Cy, y(t = 0) = 1. When we write out Euler’s method for this equation we obtain

yN+1 = (1− C∆t)yN . (11.3)

We know that the true solution of this ODE should decay from 1 to 0 on a time
scale of 1/C. It is easy to see that if C∆t < 1 then the iterative equation 11.3



22 Numerical Methods for ODEs

0 5 10 15 20 25 30 35 40 45
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

Y
(t

),
 X

(t
)

Figure 14. Solution to stiff equations showing unstable behavior.

has qualitatively the right behavior, each subsequent value of y is smaller than the
last. If C∆t > 1 then we see that the sign of y will change with each iteration,
i.e. the equations are behaving in a non-physical manner. Further, if C∆t > 2
then y will approach infinity as the number of iterations approaches infinity; each
subsequent value of y is greater than the last. This stability problem is essentially
what has happened in our example of the the two coupled equations. The stability
requirements say that the equations must be integrated with the shortest time
scale, regardless if that time scale is influencing the solution. This can be a serious
limitation in many situations even on modern computers. In chemistry applications
one often cares about the reactions that occur over several seconds where the fastest
time scale in the system might be a few nano-seconds. It would require 109 time
steps to solve this system, a lot of work even for a fast PC.

Fortunately methods exist for solving stiff equations. A very simple way to
make a system more stable is to use the Backward Euler method. This method uses
information from the end of the time step interval to estimate the derivative, i.e.

yN+1 = yN +
dy

dt

N+1

(11.4)

Applying the Backward Euler technique to the equation dy/dt = −Cy, y(t = 0) = 1
yields,

yN+1 =
yN

(1 + C∆t)
. (11.5)

It is easy to see from this equation that regardless of the time step size the system
will always display the correct behavior: subsequent values of y will always be
smaller than the last, and y will never go negative. Of course stability does not
mean accuracy.

The difficulty with Backward Euler solvers is that they require information from
the future and are therefore often more difficult (or impossible) to implement for
non-linear equations. However, for linear equations such as the simple system that
we are dealing with in this section it is quite easy to implement the method directly.



Numerical Methods for ODEs 23

Exercise: DEQ 11 Solve equations 11.1 and 11.2 using a Backward
Euler method with the initial conditions x(t = 0) = 1, y(t = 0) =
−1. You do not need to write a general Backward Euler solver, just
implement a method specific for these equations. Set your time step to
0.25 and take 40 time steps. Plot the x(t) and y(t) on the same graph.
You should obtain a solution that looks quite reasonable. Notice that
you can obtain the same solution at a fraction of the cost of the forward
Euler.

There are a variety semi-implicit methods that are effective for solving stiff
systems in both linear and non-linear equations. These semi-implicit methods are
very important in the solution of ODEs but we will not cover them in this class.

12. Using MATLAB

As mentioned previously, the backward Euler method is not convenient as a general
method since the discretized equations and ability to apply the method depend on
the problem that you are solving. Many general methods exist for stiff equations,
but they are all based on the general idea of the backward Euler method, using
information from the future tends to stabilize the numerical method.

At this point it is worth introducing the ODE solvers that are built into MAT-
LAB. These solvers are very general, employ adaptive time stepping (speed up or
slow down when it needs to), and have the capability for handling stiff equations.
So you ask, if MATLAB can do all this already then why did you make us write all
these programs? Well, it is very easy to employ packaged numerical techniques and
obtain bad answers, especially in complex problems. It is also easy to use a package
that works just fine, but the operator (i.e. you) makes a mistake and gets a bad
answer. It is important to understand some of the basic issues of ODE solvers so
that you will be able to use them correctly and intelligently. On the other hand, if
other people have already spent a lot of time developing sophisticated techniques
that work really well, why should we replicate all their work. We turn to these
’canned’ routines at this point.

You have already developed a your own Runge-Kutta solver. MATLAB has a
solver that is called ODE45 and the usage of the function will be very similar to the
routines that you wrote for the Euler method, midpoint method, and Runge-Kutta.
The ODE45 command uses the same Runge-Kutta algorithm you developed, only
the MATLAB version uses adaptive time stepping. At this point in this tutorial we
are going to let you figure out how to use the ODE45 command. You can read the
help (i.e. type help ode45), though that isn’t the best help out there. You can also
surf the MATLAB web page documentation and find some examples of using the
ODE45 routine.

As mentioned, the ode45 command uses adaptive step sizes to control the error.
With these algorithms you specify the error (there is a default) and the algorithm
adjusts the time step size to maintain this at a constant level. Therefore, with
adaptive algorithms you cannot generate a plot of error vs. time step size. In general
these adaptive algorithms work by comparing the difference between taking a step
with two methods that have different orders (i.e. midpoint (∆t2) and Runge-Kutta



24 Numerical Methods for ODEs

(∆t4)). The difference is indicative of the error, and the time step is adjusted
(increased or decreased) to hold the error constant.

Exercise: DEQ 12 Through the MATLAB documentation, figure out
how to use the ode45 command. Apply the ODE45 command to the
spring equations that we discussed in previous sections. Compare the
results to those obtained with Euler, Midpoint, and Runge-Kutta solver.
Compare the error between the true and numerical solutions. Try to
adjust the error tolerance on the ODE45 command and see that the
tolerance and the true error roughly agree.

MATLAB has other ODE solvers in addition to the ODE45. You can read
the help on the MATLAB web page about the different solvers. The two most
common that you will use are ode45 and ode23s. ODE23s is optimized for solving
stiff equations. Try the following exercise to really see the difference.

Exercise: DEQ 13 Apply the ODE45 and ODE23s command to equa-
tions 11.1 and 11.2. Compare the results obtained with both methods,
specifically note how many time steps each method took. Compare the
difference between the two methods for the same error tolerance.

13. Is your solution correct?

One of the big difficulties in using numerical methods is that takes very little time
to get an answer, it takes much longer to decide if it is right. Usually the first test is
to check that the system is behaving physically. Usually before running simulations
it is best to use physics to try and understand qualitatively what you think your
system will do. Will it oscillate, will it grow, will it decay? Do you expect your
solution to be bounded, i.e. if you start a pendulum swinging under free gravity
you would not expect that the height of the swing would grow.

We already encountered unphysical growth when we solved the mass-spring
motion using Euler’s method in Figure 5 and 6. When the time step was large we
noticed unphysical behavior: the amplitude of the mass on the spring was growing
with time. This growth in oscillation amplitude is violating the conservation of
energy principle, therefore we know that something is wrong.

One simple test of a numerical method is to change the time step and see what
happens. If you have implemented the method correctly (and its a good method)
the answer should converge as the time step is decreased. If you know the order
of your approximation then you know how fast this decrease should happen. If the
method has an error proportional to ∆t then you know that cutting the time step
in half should cut the error in half. You should NEVER NEVER turn in results
from a simulation where you do not check different time steps to make sure that
your solution is converging. You should also note that just because the solution
converges does not mean that your answer is correct.

The MATLAB routines use adaptive time stepping, therefore you should vary
the error tolerance rather than the time step interval. You should always check the
convergence as you vary the error. Plot the difference between subsequent solu-
tions as you vary the error tolerance. Further results on checking convergence and
examples of doing so will be given in the problem example supplement.



Numerical Methods for ODEs 25

References

Boyce & DiPrima, 2001 Elementary Differential Equations and Boundary Value Problems,
John Wiley and Sons. (This is your Math text).

Epperson, 2002 An Introduction to Numerical Methods and Analysis John Wiley and
Sonce.

Press, Tuekolsky, Vetterling, & Flannery, 1992 Numerical Recipes in C, Cambridge Uni-
versity Press. See www.nr.com for free pdf version.

MATLAB Product Documentation www.mathworks.com.


