Analysis Methods in Atmospheric and Oceanic Science

AOSC 652

Getting to know FORTRAN: Input/Output, Data Sorting, Simple Statistics Day 3

Review Assignment 3

General help with Assignments 4a & 4b

Copyright © 2016 University of Maryland.

When commenting subroutines good to indicate input variables, output variables, and reference for the code, i.e.:

```
subroutine bilinear(y_out,t,u,y1,y2,y3,y4)
С
  Bilinear interpolation based on Eqn (3.6.5) of Numerical Recipes by Press et al.
С
С
С
  Input t Location of x value mapped into the range 0,1
         u Location of y value mapped into the range 0,1
С
С
  y1 Input value of field.
C
C
  y2 Input value of field.
    y3 Input value of field.
C y4 Input value of field.
C Output y out , interpolated value.
    y_{out} = (1, -t) * (1, -u) * y_{1} +
    t *(1.-u) *y2 +
t *u *y3 +
(1.-t) * u *y4
   +
   +
```

Copyright © 2016 University of Maryland.

return

end

+

When commenting subroutines good to indicate input variables, output variables, and reference for the code, i.e.:

```
subroutine bilinear(y_out,t,u,y1,y2,y3,y4)
С
  Bilinear interpolation based on Eqn (3.6.5) of Numerical Recipes by Press et al.
С
С
С
  Input t Location of x value mapped into the range 0,1
        u Location of y value mapped into the range 0,1
С
                                                       Source of routine
С
       y1 Input value of field.
                                                      exceedingly helpful
С
    y2 Input value of field.
С
    y3 Input value of field.
С
       y4 Input value of field.
C Output y out , interpolated value.
    y_out = (1, -t) * (1, -u) * y1 +
    +
   +
   +
    return
    end
```

Copyright © 2016 University of Maryland.

When commenting subroutines good to indicate input variables, output variables, and reference for the code, i.e.:

```
subroutine bilinear(y_out,t,u,y1,y2,y3,y4)
С
  Bilinear interpolation based on Eqn (3.6.5) of Numerical Recipes by Press et al.
С
С
С
  Input t Location of x value mapped into the range 0,1
        u Location of y value mapped into the range 0,1
С
С
       y1 Input value of field.
С
    y2 Input value of field.
                                              Please use 1, rather than 1
С
    y3 Input value of field.
                                              for floating point operations.
С
       y4 Input value of field.
C Output y out , interpolated value.
                                              1 will not work w/ some compilers
    y_out = (1, -t) * (1, -u) * y_1 +
    +
   +
   +
    return
    end
```

Copyright © 2016 University of Maryland.

If you end up writing code for a living, it will be essential to develop a comment "style" that works for you

```
subroutine bilinear(y out,t,u,y1,y2,y3,y4)
        Below is the bilinear interpolation calculation. This interpolates the
С
С
        ozone at a point by using known values on a fixed grid around this
0000000000000
        point.
                            |
₽
|
                         x3----Y2----x4
        Linear interpolation is done between x1-x2 and between x3-x4 to get the
        values of Y1 and Y2. Then, linear interpolation is done again in the
        vertical between Y1 and Y2 to get a value for point P.
C
        y \text{ out} = ((1-t)*(1-u)*y1) + (t*(1-u)*y2) + (t*u*y3) + ((1-t)*u*y4)
        return
        end
```

Copyright © 2016 University of Maryland.

Programming suggestions:

If you end up writing code for a living, it will be essential to develop a comment "style" that works for you

subroutine limfnd(xpt,xarray,npt,ilow,iupp)

- С
- C This code determines whether xpt is within the limits.
- C If so, call hunt. Otherwise, tell the user it is out of bounds and quit
- С

Copyright © 2016 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Programming suggestions:

If you end up writing code for a living, it will be essential to develop a comment "style" that works for you

subroutine limfnd(xpt,xarray,npt,ilow,iupp)

- С
- C This code determines whether xpt is within the limits.
- C If so, call hunt. Otherwise, tell the user it is out of bounds and quit
- С

Which variables are input, which are output ?

Copyright © 2016 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Programming suggestions:

If you end up writing code for a living, it will be essential to develop a comment "style" that works for you

subroutine limfnd(xpt,xarray,npt,ilow,iupp)

- С
- C This code determines whether xpt is within the limits.
- C If so, call hunt. Otherwise, tell the user it is out of bounds and quit
- С

Which variables are input, which are output ? What is meaning of ilow & iupp ?

Copyright © 2016 University of Maryland.

Programming suggestions:

If you end up writing code for a living, it will be essential to develop a comment "style" that works for you

subroutine limfnd(xpt,xarray,npt,ilow,iupp)

- С
- C This code determines whether xpt is within the limits.
- C If so, call hunt. Otherwise, tell the user it is out of bounds and quit
- С

Which variables are input, which are output ?

What is meaning of ilow & iupp ?

What key assumption about the arrays lat & lon is critical for the successful execution of this code ?

Copyright © 2016 University of Maryland.

Programming suggestions:

If you end up writing code for a living, it will be essential to develop a comment "style" that works for you

subroutine limfnd(xpt,xarray,npt,ilow,iupp)

```
С
С
    This code determines whether xpt is within the limits.
С
    If so, call hunt. Otherwise, tell the user it is out of bounds and quit
С
С
    Input variables:
С
            xpt : scalar
С
            xarray : array
С
            npt : dimension of xarray
С
    Output variables:
С
            ilow & iupp
С
         Values of ilow & iupp are determined
С
         such that xarray(ilow) < xpt < xarray(iupp); if this condition
С
         can not be satisified, ilow & iupp either are set to 0 or npt
```

Copyright © 2016 University of Maryland.

If you end up writing code for a living, it will be essential to develop a comment "style" that works for you

subroutine limfnd(xpt,xarray,npt,ilow,iupp)

```
С
        С
            This code determines whether xpt is within the limits.
        С
            If so, call hunt. Otherwise, tell the user it is out of bounds and quit
        С
        С
            Input variables:
        С
                     xpt : scalar
        С
                     xarray : array
        С
                     npt : dimension of xarray
        С
            Output variables:
                     ilow & iupp
        С
        С
                  Values of ilow & iupp are determined
        С
                  such that xarray(ilow) < xpt < xarray(iupp); if this condition
        С
                  can not be satisified, ilow & iupp either are set to 0 or npt
        С
        С
             Note: due to conditions of subroutine hunt, xarray must be either
        С
                    monotonically increasing or monotonically decreasing
Copyright © 2016 University of Maryland.
```

Programming suggestions, continued:

We had a block of code that finds a value of total ozone for a specified date, latitude, and longitude:

Best to place "loop structure" around this code to minimize user input rather than having to type info over and over

7 out of 15 students implemented a looping structure

Hopefully everyone will soon be comfortable enough in FORTRAN to let the computer do the work for you!

Copyright © 2016 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

write(6,700)

- 700 format('Enter start date (YYYYMMDD) ... 999999999 to end : ',\$) read(5,*)cdate
- 702 format(A) if(cdate.eq.'99999999') goto 999 read(cdate,'(I8)')startdate

write(6,705)

705 format('Enter end date (YYYYMMDD) : ', \$) read(5,*)enddate

```
•
```

- •
- •

```
write(98,799)cdate(7:8),cdate(3:8),ozonept
if (startdate.lt.enddate) then
    startdate=startdate+1
    write(cdate,'(I8)') startdate
    goto 707
else
    close(unit=98)
    goto 999
endif
```

```
Copyright © 2016 University of Maryland.
```


Dobson Units

 Bring all ozone above a certain location down to the ground, at 0°C and 1 atmosphere pressure.

 The thickness of this layer is about 3 millimeters (~ 0.1 inch), the thickness of two stacked pennies. This corresponds to 300 Dobson Units (approximately the global average).

 100 Dobson Units is 1 millimeter thick (approximately the thickness of ozone in the Antarctic ozone

The Dobson Unit is a convenient unit of measurement for total column ozone.

http://www.ccpo.odu.edu/SEES/ozone/class/Chap_3/index.htm

Copyright © 2016 University of Maryland.

OMI Total Ozone for Mar 13, 2016

OMI Total Ozone for Mar 14, 2016

OMI Total Ozone for Mar 15, 2016

OMI Total Ozone for Mar 16, 2016

OMI Total Ozone for Mar 17, 2016

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

Copyright © 2016 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

OMI Total Ozone for Mar 1, 2016

OMI Total Ozone for Mar 2, 2016

OMI Total Ozone for Mar 3, 2016

OMI Total Ozone for Mar 4, 2016

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

OMI Total Ozone for Mar 5, 2016

OMI Total Ozone for Mar 6, 2016

OMI Total Ozone for Mar 7, 2016

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

OMI Total Ozone for Mar 8, 2016

OMI Total Ozone for Mar 9, 2016

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

OMI Total Ozone for Mar 10, 2016

OMI Total Ozone for Mar 11, 2016

OMI Total Ozone for Mar 12, 2016

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

OMI Total Ozone for Mar 13, 2016

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

OMI Total Ozone for Mar 14, 2016

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

Copyright © 2016 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

Copyright © 2016 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

Copyright © 2016 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch .

OMI Total Ozone for Oct 21, 2015

Copyright © 2016 University of Maryland.

OMI Total Ozone for Oct 22, 2015

Copyright © 2016 University of Maryland.

OMI Total Ozone for Oct 23, 2015

Copyright © 2016 University of Maryland.

OMI Total Ozone for Oct 24, 2015

Copyright © 2016 University of Maryland.

OMI Total Ozone for Oct 25, 2015

Copyright © 2016 University of Maryland.

AOSC 652: HW 03 Points Subtracted

No symbol around targeted location	2
No indication of missing data on line plot	2
179.375 still in code	3
Latitude and Longitude not in file header	5
No indication, whatsoever, about name of targeted location (except perhaps in filename)	5
Fonts too small to be read	5
Images "jitter"	5
Incorrect values of total ozone found, such that lines plots inconsistent with NASA images	10
Numbers on vertical axis missing from line chart	10

 $Copyright @ 2016 \ University \ of \ Maryland.$

Extra Credit #2:

Example we used in class was total ozone over London, March 2016

Latitude = 51.75, Longitude = 0.25

If we go to <u>http://ozoneaq.gsfc.nasa.gov/tools/ozonemap</u> and enter 51.75, 0.25 for 15 March 2016, we get **262 DU**

For this date, our code outputs:

O3column for four closest points: Lat = 51.50, Lon = $-0.50 \Rightarrow O3 = 269 \text{ DU}$

Lat = 51.50, Lon = $0.50 \Rightarrow 0.50 = 262 \text{ DU}$

Lat = 52.50, Lon = 0.50 => O3 = 264 DU Lat = 52.50, Lon = -0.50 => O3 = 271 DU

Bilinear Inter O3column for Lat = 51.75 Lon = 0.25 is 264.25 DU

Copyright © 2016 University of Maryland.

Extra Credit #2:

Example we used in class was total ozone over London, March 2016

Latitude = 51.75, Longitude = 0.25

If we go to <u>http://ozoneaq.gsfc.nasa.gov/tools/ozonemap</u> and enter 51.75, 0.25 for 16 March 2016, we get **314 DU**

For this date, our code outputs:

O3column for four closest points: Lat = 51.50, Lon = $-0.50 \Rightarrow O3 = 314 \text{ DU}$

Lat = 51.50, Lon = 0.50 => O3 = 314 DU Lat = 52.50, Lon = 0.50 => O3 = 317 DU Lat = 52.50, Lon = -0.50 => O3 = 318 DU

Bilinear Inter O3column for Lat = 51.75 Lon = 0.25 is 314.81 DU

Copyright © 2016 University of Maryland.

Extra Credit #2:

Example we used in class was total ozone over London, March 2016

Latitude = 51.75, Longitude = 0.25

If we go to <u>http://ozoneaq.gsfc.nasa.gov/tools/ozonemap</u> and enter 51.75, 0.25 for 17 March 2016, we get **369 DU**

For this date, our code outputs:

O3column for four closest points: Lat = 51.50, Lon = $-0.50 \Rightarrow O3 = 370 \text{ DU}$

Lat = 51.50, Lon = 0.50 => O3 = 369 DU

Lat = 52.50, Lon = 0.50 => O3 = 370 DU Lat = 52.50, Lon = -0.50 => O3 = 370 DU

Bilinear Inter O3column for Lat = 51.75 Lon = 0.25 is 369.44 DU

Copyright © 2016 University of Maryland.

Extra Credit #2:

Example we used in class was total ozone over London, March 2016

Latitude = 51.75, Longitude = 0.25

If we go to <u>http://ozoneaq.gsfc.nasa.gov/tools/ozonemap</u> and enter 51.75, 0.25 for 17 March 2016, we get **369 DU**

For this date, our code outputs:

O3column for four closest points: Lat = 51.50, Lon = $-0.50 \Rightarrow O3 = 370 \text{ DU}$

Lat = 51.50, Lon = 0.50 => O3 = 369 DU Lat = 52.50, Lon = 0.50 => O3 = 370 DU

Lat = 52.50, Lon = -0.50 => O3 = 370 DU

Bilinear Inter O3column for Lat = 51.75 Lon = 0.25 is 369.44 DU

What is going on ?!?

Copyright © 2016 University of Maryland.

Extra Credit #2:

Example we used in class was total ozone over London, March 2016

Latitude = 51.75, Longitude = 0.25

If we go to <u>http://ozoneaq.gsfc.nasa.gov/tools/ozonemap</u> and enter 51.75, 0.25 for 15 March 2016, we get **262 DU**

For this date, our code outputs:

O3column for four closest points: Lat = 51.50, Lon = $-0.50 \Rightarrow 03 = 269 \text{ DU}$

Lat = 51.50, Lon = 0.50 => O3 = **262 DU** Lat = 52.50, Lon = 0.50 => O3 = 264 DU

Lat = 52.50, Lon = $-0.50 \Rightarrow 0.00 = 201 D0$

Bilinear Inter O3column for Lat = 51.75 Lon = 0.25 is 264.25 DU

Copyright © 2016 University of Maryland.

Extra Credit #2:

Example we used in class was total ozone over London, March 2016

Latitude = 51.75, Longitude = 0.25

If we go to <u>http://ozoneaq.gsfc.nasa.gov/tools/ozonemap</u> and enter 51.75, 0.25 for 16 March 2016, we get **314 DU**

For this date, our code outputs:

O3column for four closest points: Lat = 51.50, Lon = $-0.50 \Rightarrow O3 = 314 \text{ DU}$

Lat = 51.50, Lon = 0.50 => O3 = **314 DU** Lat = 52.50, Lon = 0.50 => O3 = 317 DU Lat = 52.50, Lon = -0.50 => O3 = 318 DU

Bilinear Inter O3column for Lat = 51.75 Lon = 0.25 is 314.81 DU

Copyright © 2016 University of Maryland.

Extra Credit #2:

Example we used in class was total ozone over London, March 2016

Latitude = 51.75, Longitude = 0.25

If we go to <u>http://ozoneaq.gsfc.nasa.gov/tools/ozonemap</u> and enter 51.75, 0.25 for 17 March 2016, we get **369 DU**

For this date, our code outputs:

O3column for four closest points: Lat = 51.50, Lon = $-0.50 \Rightarrow O3 = 370 \text{ DU}$

Lat = 51.50, Lon = 0.50 => O3 = **369 DU** Lat = 52.50, Lon = 0.50 => O3 = 370 DU

Lat = 52.50, Lon = $-0.50 \Rightarrow 0.03 = 370 \text{ DO}$ Lat = 52.50, Lon = $-0.50 \Rightarrow 0.03 = 370 \text{ DO}$

Bilinear Inter O3column for Lat = 51.75 Lon = 0.25 is 369.44 DU

Copyright © 2016 University of Maryland.

How much "ozone depletion" has occurred over London due to anthropogenic use of halocarbons?

Ozone data from http://acdb-ext.gsfc.nasa.gov/Data_services/merged

Copyright © 2016 University of Maryland.

How much "ozone depletion" has occurred over London due to anthropogenic use of halocarbons?

How much "ozone depletion" has occurred over London due to anthropogenic use of halocarbons?

